[go: up one dir, main page]

TWI894110B - Operating method for electronic apparatus for processing information and electronic apparatus supporting thereof - Google Patents

Operating method for electronic apparatus for processing information and electronic apparatus supporting thereof

Info

Publication number
TWI894110B
TWI894110B TW114107719A TW114107719A TWI894110B TW I894110 B TWI894110 B TW I894110B TW 114107719 A TW114107719 A TW 114107719A TW 114107719 A TW114107719 A TW 114107719A TW I894110 B TWI894110 B TW I894110B
Authority
TW
Taiwan
Prior art keywords
request information
processing model
processing
information processing
service
Prior art date
Application number
TW114107719A
Other languages
Chinese (zh)
Other versions
TW202526783A (en
Inventor
瑞 孫
Original Assignee
韓商韓領有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220116220A external-priority patent/KR102918498B1/en
Application filed by 韓商韓領有限公司 filed Critical 韓商韓領有限公司
Publication of TW202526783A publication Critical patent/TW202526783A/en
Application granted granted Critical
Publication of TWI894110B publication Critical patent/TWI894110B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4812Task transfer initiation or dispatching by interrupt, e.g. masked
    • G06F9/4831Task transfer initiation or dispatching by interrupt, e.g. masked with variable priority
    • G06F9/4837Task transfer initiation or dispatching by interrupt, e.g. masked with variable priority time dependent
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • G06F2209/5022Workload threshold

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • General Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Computer And Data Communications (AREA)
  • Stored Programmes (AREA)
  • Input From Keyboards Or The Like (AREA)

Abstract

根據本發明,揭示了一種資訊處理方法,其係藉由電子裝置而處理請求資訊者,其包括如下步驟:設定與藉由服務而獲得之請求資訊之處理相關之請求資訊處理模型;及基於上述請求資訊處理模型中包括之至少一個處理模型,處理藉由上述服務而獲得之請求資訊。According to the present invention, an information processing method is disclosed, which processes request information by an electronic device, comprising the following steps: setting a request information processing model related to the processing of request information obtained by a service; and processing the request information obtained by the above service based on at least one processing model included in the above request information processing model.

Description

處理資訊之電子裝置之動作方法及支持其之電子裝置Operation method of electronic device for processing information and electronic device supporting the same

本發明係關於一種處理資訊之方法及裝置,更具體而言,係關於一種用於處理藉由服務而獲得之請求資訊之方法及其電子裝置。The present invention relates to a method and device for processing information, and more particularly, to a method and electronic device for processing request information obtained through a service.

隨著電子技術之發展,電子商務已成為購物之一個領域。顧客即便不直接去購物中心或市場,亦可於網上購買物品,於網上購買之物品將配送至顧客請求之配送地。With the development of electronic technology, e-commerce has become a major area of shopping. Customers can purchase items online without having to go to a shopping mall or market. Items purchased online will be delivered to the customer's requested delivery location.

於電子商務方面,由於對商品之詳細、準確之資訊之處理會對服務滿意度產生相當大之影響,故而正在討論更詳細、更準確地處理資訊之各種方案。In the e-commerce sector, since the processing of detailed and accurate product information has a significant impact on service satisfaction, various solutions for more detailed and accurate information processing are being discussed.

相關內容可參照KR101756594B1或KR101500849B1等先前文獻。For related content, please refer to previous literature such as KR101756594B1 or KR101500849B1.

[發明所欲解決之問題] 根據本發明之方法,電子裝置可藉由設定請求資訊處理模型而處理藉由服務而獲得之請求資訊。 [Problem to be Solved by the Invention] According to the method of the present invention, an electronic device can process request information obtained through a service by setting a request information processing model.

本發明所欲實現之技術課題並不限於上述技術課題,本發明所屬之技術領域內具有常識者可根據以下記載而明確地理解未提及之其他技術課題。 [解決問題之技術手段] The technical issues to be achieved by this invention are not limited to the above-mentioned technical issues. Those skilled in the art to which this invention relates will clearly understand other technical issues not mentioned based on the following description. [Technical Means for Solving the Problem]

各種實施例可提供一種用於資訊處理之電子裝置之動作方法及支持其之電子裝置。Various embodiments may provide an operating method of an electronic device for information processing and an electronic device supporting the same.

各種實施例之一種資訊處理方法,其係藉由電子裝置而處理請求(request)資訊者,其包括:設定與藉由服務而獲得之請求資訊之處理相關之請求資訊處理模型;及基於上述請求資訊處理模型中包括之至少一個處理模型,處理藉由上述服務而獲得之請求資訊,且上述請求資訊處理模型可包括如下模型:第1處理模型,其在與上述服務相關聯之一個以上之伺服器(server)中包括之各伺服器中,將每單位時間要處理之請求資訊之個數限制為第1臨界個數以下;第2處理模型,其對應於將與上述服務對應之複數個APIs(Application Programming Interfaces,應用程式介面)根據重要度來分類之複數個第一API組中之特定API組,於上述各伺服器中將每單位時間要處理之請求資訊之個數限制為第2臨界個數以下;及第3處理模型,其對應於將上述複數個APIs根據資源(resource)使用量來分類之複數個第二API組中包括之各API組,將要處理之各請求資訊之個數限制為為了上述各API組而設定之各臨界個數以下。An information processing method of various embodiments is a method for processing request information by an electronic device, comprising: setting a request information processing model related to processing of request information obtained by a service; and processing the request information obtained by the service based on at least one processing model included in the request information processing model, wherein the request information processing model may include the following models: a first processing model, which limits the number of request information to be processed per unit time to less than a first critical number in each server included in one or more servers associated with the service; a second processing model, which corresponds to a plurality of APIs (Application Programming Interfaces) corresponding to the service. A specific API group among a plurality of first API groups classified by application programming interfaces (APIs) based on importance limits the number of request information to be processed per unit time in each of the above servers to below a second critical number; and a third processing model, which corresponds to each API group included in a plurality of second API groups classified by the above plurality of APIs based on resource usage, limits the number of each request information to be processed to below each critical number set for the above each API group.

於示例之實施例中,上述請求資訊處理模型可包括如下模型:第4處理模型,其對應於上述服務之用戶,而將每單位時間要處理之請求資訊之個數限制為第3臨界個數以下。In an exemplary embodiment, the request information processing model may include the following models: a fourth processing model, which corresponds to the user of the service and limits the number of request information to be processed per unit time to below the third critical number.

於示例之實施例中,可藉由與上述一個以上之伺服器共同對應之一個外部快取(Cache)而確認自上述用戶每單位時間獲得之請求資訊之個數。In an exemplary embodiment, the number of request information obtained from the user per unit time can be confirmed by an external cache corresponding to the one or more servers.

於示例之實施例中,可基於上述用戶之識別資訊及上述用戶正在使用中之API之資訊,確認自上述用戶每單位時間獲得之請求資訊之個數。In an exemplary embodiment, the number of request information obtained from the user per unit time can be confirmed based on the user's identification information and information about the API the user is using.

於示例之實施例中,上述資訊處理方法可進而包括如下步驟:藉由API標識符(Identifier)而確認上述API之資訊。In an exemplary embodiment, the information processing method may further include the following step: confirming the information of the API using an API identifier.

於示例之實施例中,上述請求資訊處理模型可包括如下模型:第5處理模型,其中斷藉由上述服務而獲得之全部請求資訊之處理。In an exemplary embodiment, the request information processing model may include the following models: a fifth processing model, which interrupts the processing of all request information obtained through the service.

於示例之實施例中,可拒絕對如下之請求資訊進行處理:超過基於上述請求資訊處理模型中包括之各處理模型而限制之臨界個數。In an exemplary embodiment, processing of request information that exceeds a critical number of requests limited by each processing model included in the above-mentioned request information processing model may be refused.

於示例之實施例中,上述資訊處理方法可進而包括如下步驟:設定與上述請求資訊處理模型中包括之各處理模型對應之各處理模型狀態識別資訊;及基於上述各處理模型狀態識別資訊,根據上述各處理模型而確認拒絕處理之請求資訊之個數。In an exemplary embodiment, the information processing method may further include the following steps: setting each processing model state identification information corresponding to each processing model included in the request information processing model; and based on the each processing model state identification information, confirming the number of request information that is rejected for processing according to each processing model.

於示例之實施例中,上述至少一個處理模型可基於與上述電子裝置對應之管理者之第1輸入而選擇。In an exemplary embodiment, the at least one processing model may be selected based on a first input from an administrator corresponding to the electronic device.

於示例之實施例中,上述第1臨界個數、上述第2臨界個數、及用於上述各API組之上述各臨界個數可基於與上述電子裝置對應之管理者之第2輸入而設定。In an exemplary embodiment, the first critical number, the second critical number, and the critical numbers for each of the API groups may be set based on a second input from an administrator corresponding to the electronic device.

於示例之實施例中,上述第1臨界個數、上述第2臨界個數、及用於上述各API組之上述各臨界個數可基於與上述服務相關之環境參數資訊而設定。In an exemplary embodiment, the first threshold number, the second threshold number, and the threshold numbers for each of the API groups may be set based on environmental parameter information related to the service.

於示例之實施例中,上述環境參數資訊可包括上述一個以上之伺服器之個數之資訊、用於上述服務之總資源容納量之資訊、及是否於預計請求資訊會增減之上述服務上進行促銷之資訊中的至少一者。In an exemplary embodiment, the environmental parameter information may include at least one of information about the number of the one or more servers, information about the total resource capacity used for the service, and information about whether promotions are being conducted on the service for which request information is expected to increase or decrease.

於示例之實施例中,上述資訊處理方法進而包括如下步驟:設定與上述請求資訊處理模型對應之層(layer)構造;且基於上述層構造,上述請求資訊處理模型可應用於用於上述電子裝置之動作之演算法(Algorithm)中。In an exemplary embodiment, the information processing method further includes the following steps: setting a layer structure corresponding to the request information processing model; and based on the layer structure, the request information processing model can be applied to the algorithm used for the operation of the electronic device.

各種實施例之一種非暫時性電腦可讀記錄媒體,其係記錄用以於電腦中執行資訊處理方法之程式者,上述資訊處理方法包括如下步驟:設定與藉由服務而獲得之請求資訊之處理相關之請求資訊處理模型;及基於上述請求資訊處理模型中包括之至少一個處理模型,處理藉由上述服務而獲得之請求資訊;且上述請求資訊處理模型可包括如下模型:第1處理模型,其在與上述服務相關聯之一個以上之伺服器(server)中包括之各伺服器中,將每單位時間要處理之請求資訊之個數限制為第1臨界個數以下;第2處理模型,其對應於將與上述服務對應之複數個APIs(Application Programming Interfaces,應用程式介面)根據重要度來分類之複數個第一API組中之特定API組,於上述各伺服器中將每單位時間將處理之請求資訊之個數限制為第2臨界個數以下;及第3處理模型,其對應於將上述複數個APIs根據資源(resource)使用量來分類之複數個第二API組中包括之各API組,將要處理之各請求資訊之個數限制為為了上述各API組而設定之各臨界個數以下。A non-transitory computer-readable recording medium according to various embodiments records a program for executing an information processing method in a computer, wherein the information processing method comprises the following steps: setting a request information processing model related to processing of request information obtained through a service; and processing the request information obtained through the service based on at least one processing model included in the request information processing model; and the request information processing model may include the following models: a first processing model that limits the number of request information to be processed per unit time in each of one or more servers associated with the service to less than a first critical number; a second processing model that corresponds to a plurality of APIs (Application Programming Interfaces) corresponding to the service. A specific API group among a plurality of first API groups classified by application programming interfaces (APIs) according to importance limits the number of request information to be processed per unit time in each of the above servers to below a second critical number; and a third processing model corresponds to each API group included in a plurality of second API groups classified by the above plurality of APIs according to resource usage, limiting the number of each request information to be processed to below each critical number set for the above each API group.

各種實施例之一種電子裝置,其係處理請求(request)資訊者,其包括:處理器(processor);及一個以上之記憶體(memory),其儲存一個以上之指令(instruction);上述一個以上之指令於執行時,控制上述處理器以便實行如下步驟:設定與藉由服務而獲得之請求資訊之處理相關之請求資訊處理模型;及基於上述請求資訊處理模型中包括之至少一個處理模型,處理藉由上述服務而獲得之請求資訊;上述請求資訊處理模型可包括如下模型:第1處理模型,其在與上述服務相關聯之一個以上之伺服器(server)中包括之各伺服器中,將每單位時間要處理之請求資訊之個數限制為第1臨界個數以下;第2處理模型,其對應於將與上述服務對應之複數個APIs(Application Programming Interfaces,應用程式介面)根據重要度來分類之複數個第一API組中之特定API組,於上述各伺服器中將每單位時間要處理之請求資訊之個數限制為第2臨界個數以下;及第3處理模型,其對應於將上述複數個APIs根據資源(resource)使用量來分類之複數個第二API組中包括之各API組,將要處理之各請求資訊之個數限制為為了上述各API組而設定之各臨界個數以下。An electronic device of various embodiments processes request information, comprising: a processor; and one or more memories storing one or more instructions; when the one or more instructions are executed, the processor is controlled to perform the following steps: setting a request information processing model related to processing of request information obtained through a service; and processing the request information based on the request information. At least one processing model included in the processing model processes the request information obtained by the above service; the above request information processing model may include the following models: a first processing model, which limits the number of request information to be processed per unit time to less than a first critical number in each server included in one or more servers associated with the above service; a second processing model, which corresponds to the plurality of APIs (Application Programming Interfaces) corresponding to the above service. Programming Interfaces) by classifying a specific API group in a first plurality of API groups according to importance, limiting the number of request information to be processed per unit time in each of the above servers to below a second critical number; and a third processing model, which corresponds to each API group included in a second plurality of API groups according to resource usage classification of the above plurality of APIs, limiting the number of request information to be processed to below each critical number set for the above each API group.

上述本發明之各種實施例僅為本發明之較佳之實施例中之一部分,該技術領域內具有常識者可基於以下詳述之詳細說明來導出並理解反映本發明之各種實施例之技術特徵之各種實施例。 [發明之效果] The various embodiments of the present invention described above are merely some of the preferred embodiments of the present invention. Those skilled in the art can derive and understand various embodiments reflecting the technical features of the various embodiments of the present invention based on the detailed description below. [Effects of the Invention]

本發明提出了一種電子裝置藉由設定請求資訊處理模型而處理藉由服務而獲得之請求資訊之方法,具有可有效率地實行請求資訊之處理之方面之技術效果。The present invention proposes a method for an electronic device to process request information obtained through a service by setting a request information processing model, which has the technical effect of efficiently implementing the processing of request information.

本發明中可獲得之效果並不限於上述效果,本發明所屬之技術領域內具有常識者可根據以下記載而明確地理解未提及之其他技術效果。The effects that can be obtained by the present invention are not limited to the effects described above. Those skilled in the art can clearly understand other technical effects not mentioned based on the following description.

以下之實施例係將各種實施例之構成要素與特徵以特定之形態結合。除非另有明確說明,否則可認為各構成要素或特徵具有選擇性。各構成要素或特徵能夠以不與其他構成要素或特徵結合之形態實施。又,亦可結合一部分構成要素及特徵來構成各種實施例。各種實施例中說明之動作之順序可改變。某個實施例之部分構成或特徵可包括於其他實施例中,或者可替換其他實施例之對應之構成或特徵。The following embodiments combine the components and features of the various embodiments in specific configurations. Unless otherwise expressly stated, each component or feature is considered optional. Each component or feature can be implemented without being combined with other components or features. Furthermore, various embodiments can be constructed by combining some components and features. The order of actions described in the various embodiments may be varied. Some components or features of one embodiment may be included in other embodiments, or may replace corresponding components or features of other embodiments.

於對圖式之說明中,未記述可能混淆各種實施例之主旨之程序或步驟,亦未記述以該技術領域內具有常識者之水準能夠理解之程序或步驟。In the description of the drawings, procedures or steps that may obscure the gist of the various embodiments are not described, nor are procedures or steps that can be understood at the level of a person having ordinary skill in the art described.

於整篇說明書中,於記載為某個部分「包括(comprising或including)」某個構成要素時,若未特別記載相反之內容,則意味著可進而包括其他構成要素,而並非排除其他構成要素。又,說明書中記載之「...部」、「...器」、「模組」等用語係指對至少一個功能或動作進行處理之單位,其可由硬體、軟體、或硬體與軟體之組合來實現。又,於記述各種實施例之文中(特別是以下之發明申請專利範圍中),若未於本說明書中另作指示或未於文中明確地反駁,則「一(a或an)」、「一個(one)」、「該(the)」及相似之相關詞能夠以包括單數及複數兩者之含義來使用。Throughout this specification, when it is stated that a certain part "comprising or including" a certain component, unless otherwise stated, it means that other components may be further included, and other components are not excluded. In addition, terms such as "...part", "...device", and "module" described in the specification refer to a unit that processes at least one function or action, which can be implemented by hardware, software, or a combination of hardware and software. In addition, in the text describing various embodiments (especially in the scope of the invention application below), unless otherwise indicated in this specification or not explicitly contradicted in the text, "a (or an)", "one (one)", "the (the)" and similar related words can be used to include both the singular and the plural meaning.

以下,參照附圖,詳細地對各種實施例之較佳之實施方式進行說明。連同附圖一併揭示於下文中之詳細說明係對各種實施例之例示性之實施方式進行說明,並非意欲表示唯一之實施方式。Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail. The detailed description disclosed below together with the accompanying drawings is intended to illustrate exemplary embodiments of the present invention and is not intended to represent the only embodiment.

又,各種實施例中使用之特定(specific)用語係為了有助於理解各種實施例而提供者,此種特定用語之使用可於不脫離各種實施例之技術思想之範圍內變更為其他形態。Furthermore, specific terms used in various embodiments are provided to facilitate understanding of the various embodiments, and the use of such specific terms may be changed into other forms without departing from the technical concepts of the various embodiments.

圖1係用以說明能夠實現各種實施例之用於資訊處理之電子裝置之動作方法的資訊處理系統之圖。FIG1 is a diagram of an information processing system for illustrating the operation method of an electronic device for information processing that can implement various embodiments.

參照圖1,各種實施例之資訊處理系統可於各種類型之裝置中實現。例如,資訊處理系統可在與服務相關之電子裝置100、能夠利用服務之用戶裝置200及用於服務之伺服器裝置300中實現。換言之,與服務相關之電子裝置100、用戶裝置200及伺服器裝置300可基於各個裝置中實現之資訊處理系統,實行本發明之各種實施例之動作。另一方面,各種實施例之資訊處理系統不僅侷限於上述圖1所示,亦可於更多樣之裝置中實現。Referring to Figure 1 , the information processing systems of various embodiments can be implemented in various types of devices. For example, the information processing system can be implemented in a service-related electronic device 100, a user device 200 capable of utilizing the service, and a server device 300 used for providing the service. In other words, the service-related electronic device 100, the user device 200, and the server device 300 can perform the operations of the various embodiments of the present invention based on the information processing systems implemented in each device. Furthermore, the information processing systems of various embodiments are not limited to those shown in Figure 1 above and can be implemented in a wider variety of devices.

各種實施例之電子裝置100可對應於如下裝置,其實行與服務相關之本發明中提議之資訊處理方法,且管理於用戶裝置200、伺服器裝置300及服務之間收發之資訊之處理。於本發明中,電子裝置100可構成為包含用戶裝置200或伺服器裝置300之功能。The electronic device 100 of various embodiments may correspond to a device that implements the information processing method proposed in the present invention related to services and manages the processing of information sent and received between the user device 200, the server device 300, and the service. In the present invention, the electronic device 100 may be configured to include the functions of the user device 200 or the server device 300.

各種實施例之用戶裝置200可為諸如台式電腦、平板電腦、行動終端之類之能夠被個人用戶利用之裝置。此外,實行類似之功能之其他裝置亦可用作用戶裝置200。The user device 200 of various embodiments can be a device that can be used by a personal user, such as a desktop computer, a tablet computer, a mobile terminal, etc. In addition, other devices that perform similar functions can also be used as the user device 200.

各種實施例之伺服器裝置300可為如下裝置:與複數個用戶裝置200實行無線及有線通訊,且包括具有大單位之儲存容量之儲存器。例如,伺服器裝置300可包括與複數個用戶裝置200連接之雲設備(Cloud Device)。The server device 300 of various embodiments may be a device that performs wireless and wired communication with a plurality of user devices 200 and includes a storage device with a large unit of storage capacity. For example, the server device 300 may include a cloud device connected to a plurality of user devices 200.

各種實施例之資訊處理系統可包括用於動作之各種模組。資訊處理系統中包括之模組可為實現資訊處理系統之(或者,包括於物理裝置中之)物理裝置(例如:電子裝置100、用戶裝置200及伺服器裝置300)能夠實行之指定動作之電腦代碼或一個以上之指令(instruction)。換言之,實現資訊處理系統之物理裝置以電腦代碼之形態將複數個模組儲存於記憶體中,且於執行儲存於記憶體中之複數個模組時,複數個模組可由物理裝置實行對應於複數個模組之指定動作。The information processing systems of various embodiments may include various modules for performing operations. The modules included in the information processing system may be computer code or one or more instructions that enable a physical device (e.g., electronic device 100, user device 200, and server device 300) that implements the information processing system (or that is included in the physical device) to perform a specific operation. In other words, the physical device that implements the information processing system stores multiple modules in memory in the form of computer code, and when the multiple modules stored in the memory are executed, the multiple modules can be caused to perform the specific operations corresponding to the multiple modules by the physical device.

圖2係示出各種實施例之裝置節點之構成之圖。FIG2 is a diagram showing the configuration of a device node according to various embodiments.

圖2之裝置節點可包括構成圖1之資訊處理系統之電子裝置100、用戶裝置200及伺服器裝置300,且圖2之裝置節點可包括輸入/輸出部210、通訊部220、儲存器230及處理器240。The device node of FIG. 2 may include the electronic device 100 , the user device 200 , and the server device 300 constituting the information processing system of FIG. 1 , and the device node of FIG. 2 may include an input/output unit 210 , a communication unit 220 , a memory 230 , and a processor 240 .

輸入/輸出部210可為接收用戶輸入或向用戶輸出資訊之各種介面或連接埠等。輸入/輸出部210可包括輸入模組及輸出模組,輸入模組自用戶接收用戶輸入。用戶輸入能夠以鍵輸入、觸控輸入、語音輸入等各種形態實現。作為可接收此種用戶輸入之輸入模組之示例,當然包括傳統形態之小鍵盤或鍵盤、滑鼠,此外亦包括感知用戶之觸控之觸控感測器、接收聲音信號之麥克風、藉由影像識別來識別手勢等之相機、包括感知用戶接近之照度感測器或紅外線感測器中之至少一者之接近感測器、藉由加速度感測器或陀螺儀感測器等而識別用戶動作之運動感測器及感知或接收其他各種形態之用戶輸入之各種形態的輸入機構,本發明之實施例之輸入模組可包括以上所列出之裝置中之至少一者。此處,觸控感測器可藉由如下方式實現,即,藉由貼附於顯示器面板上之觸控面板或觸控膜來感知觸控之壓電式或靜電式觸控感測器、藉由光學方式來感知觸控之光學式觸控感測器等。此外,輸入模組亦能夠以與接收用戶輸入之外部輸入裝置連接之輸入介面(USB(Universal Serial Bus,通用序列匯流排)埠、PS/2(Personal System 2,第2代個人系統)埠等)形態來實現,以此代替自身感知用戶輸入之裝置。又,輸出模組可輸出各種資訊。輸出模組可包括輸出影像之顯示器、輸出聲音之揚聲器、產生振動之觸覺裝置及其他各種形態之輸出機構中之至少一者。進而,輸出模組亦能夠以連接上述各個輸出機構之埠型輸出介面之形態實現。The input/output unit 210 can be any interface or port for receiving user input or outputting information to the user. The input/output unit 210 can include an input module and an output module. The input module receives user input. User input can be implemented in various forms, such as key input, touch input, and voice input. Examples of input modules that can receive such user input include traditional keypads or keyboards, and mice. In addition, they also include touch sensors that sense user touch, microphones that receive sound signals, cameras that recognize gestures through image recognition, proximity sensors that include at least one of an illumination sensor or an infrared sensor that senses user approach, motion sensors that recognize user movements through an accelerometer or a gyroscope sensor, and various types of input mechanisms that sense or receive other forms of user input. The input module of the embodiments of the present invention may include at least one of the devices listed above. Here, the touch sensor can be implemented as a piezoelectric or electrostatic touch sensor that senses touch via a touch panel or touch film attached to the display panel, or an optical touch sensor that senses touch optically. Furthermore, the input module can also be implemented as an input interface (such as a USB (Universal Serial Bus) port or PS/2 (Personal System 2) port) that connects to an external input device that receives user input, replacing a device that senses user input. Furthermore, the output module can output various types of information. The output module may include at least one of a display for outputting images, a speaker for outputting sounds, a tactile device for generating vibrations, and other various types of output mechanisms. Furthermore, the output module may also be implemented in the form of a port-type output interface that connects to the above-mentioned output mechanisms.

作為一例,顯示器形態之輸出模組可顯示文本、靜態圖像及視訊。顯示器可包括液晶顯示器(LCD:Liquid Crystal Display)、發光二極體(LED:Light Emitting Diode)顯示器、有機發光二極體(OLED:Organic Light Emitting Diode)顯示器、平板顯示器(FPD:Flat Panel Display)、透明顯示器(Transparent Display)、曲面顯示器(Curved Display)、可撓式顯示器(Flexible Display)、三維顯示器(3D Display)、全像顯示器(Holographic Display)、投影儀等可實行影像輸出功能之各種形態之裝置中之至少一種。此種顯示器亦可為與輸入模組之觸控感測器一體地構成之觸控顯示器之形態。For example, an output module in the form of a display can display text, static images, and video. Displays may include at least one of various types of devices capable of image output, such as liquid crystal displays (LCDs), light emitting diode (LED) displays, organic light emitting diode (OLED) displays, flat panel displays (FPDs), transparent displays, curved displays, flexible displays, 3D displays, holographic displays, and projectors. Such displays may also be touch displays integrated with the touch sensor of the input module.

通訊部220可與其他裝置進行通訊。因此,與服務相關之裝置節點可藉由通訊部而與其他裝置收發資訊。例如,裝置節點可利用通訊部來實行彼此間之通訊,或與其他裝置實行通訊。The communication unit 220 can communicate with other devices. Therefore, device nodes associated with the service can send and receive information with other devices via the communication unit. For example, device nodes can use the communication unit to communicate with each other or with other devices.

此處,通訊即資料之收發可藉由有線或無線來實現。為此,通訊部可構成為:經由LAN(Local Area Network,區域網路)而連接網際網路等之有線通訊模組、經由行動通訊基地台而連接行動通訊網路來收發資料之行動通訊模組、利用如無線保真(Wi-Fi)之WLAN(Wireless Local Area Network,無線區域網路)系通訊方式或如藍牙(Bluetooth)、紫蜂(Zigbee)之WPAN(Wireless Personal Area Network,無線個人區域網路)系通訊方式之近距離通訊模組、利用如GPS(Global Positioning System,全球定位系統)之GNSS(Global Navigation Satellite System,全球導航衛星系統)之衛星通訊模組或其等之組合。Here, communication, i.e., the transmission and reception of data, can be achieved either wired or wirelessly. For this purpose, the communication unit can be configured as: a wired communication module connected to the Internet via a LAN (Local Area Network), a mobile communication module connected to a mobile communication network via a mobile communication base station to transmit and receive data, a short-range communication module utilizing a WLAN (Wireless Local Area Network) communication method such as Wi-Fi or a WPAN (Wireless Personal Area Network) communication method such as Bluetooth or Zigbee, a satellite communication module utilizing a GNSS (Global Navigation Satellite System) such as GPS (Global Positioning System), or a combination thereof.

儲存器230可儲存各種資訊。儲存器230可暫時或半永久性地儲存資料。例如,裝置節點之儲存器230中可儲存與用以驅動裝置節點之作業系統(OS:Operating System)、用以代管網站之資料或用以產生點字之程式或應用程式(例如,網站應用程式)相關之資料等。又,儲存器230可如上所述以電腦代碼之形態儲存模組。Memory 230 can store various types of information. Memory 230 can store data temporarily or semi-permanently. For example, a device node's memory 230 can store data related to the operating system (OS) that drives the device node, data used to host a website, or programs or applications used to generate Braille (e.g., website applications). Furthermore, memory 230 can store modules in the form of computer code, as described above.

作為儲存器230之示例,可包括:硬式磁碟機(HDD:Hard Disk Drive)、SSD(Solid State Drive,固態硬碟)、快閃記憶體(Flash Memory)、唯讀記憶體(ROM:Read-Only Memory)、隨機存取記憶體(RAM:Random Access Memory)等。此種儲存器230能夠以內置類型或可裝卸類型提供。Examples of the memory 230 include a hard disk drive (HDD), a solid state drive (SSD), a flash memory (Flash Memory), a read-only memory (ROM), and a random access memory (RAM). The memory 230 can be provided as a built-in or removable type.

處理器240對裝置節點之整體動作進行控制。為此,處理器240可實行各種資訊之運算及處理,並對裝置節點之各構成要素之動作進行控制。例如,處理器240可執行用於資訊處理之程式及應用程式。處理器240可根據硬體、軟體或其等之組合,藉由電腦或與其類似之裝置來實現。於硬體方面而言,處理器240能夠以對電信號進行處理並實行控制功能之電路之形態來實現,於軟體方面而言,能夠以驅動硬體處理器240之程式之形態來實現。另一方面,於以下之說明中未特別提及之情形時,裝置節點之動作可解釋為藉由處理器240之控制來實行。即,可解釋為於執行上述資訊處理系統中實現之模組之情形時,模組控制處理器240來使裝置節點實行以下之動作。Processor 240 controls the overall operation of the device node. To this end, processor 240 can perform various information calculations and processing, and control the operation of each component of the device node. For example, processor 240 can execute programs and applications for information processing. Processor 240 can be implemented by a computer or similar device based on hardware, software, or a combination thereof. In terms of hardware, processor 240 can be implemented in the form of a circuit that processes electrical signals and performs control functions. In terms of software, it can be implemented in the form of a program that drives the hardware processor 240. On the other hand, in the following description, unless otherwise specified, the actions of the device nodes can be interpreted as being performed under the control of the processor 240. That is, when executing the modules implemented in the above-mentioned information processing system, the modules can be interpreted as controlling the processor 240 to cause the device nodes to perform the following actions.

簡言之,各種實施例可藉由各種機構實現。例如,各種實施例可藉由硬體、韌體(firmware)、軟體或其等之組合來實現。In short, various embodiments can be implemented by various mechanisms. For example, various embodiments can be implemented by hardware, firmware, software, or a combination thereof.

於藉由硬體實現之情形時,各種實施例之方法可藉由一個或一個以上之ASICs(application specific integrated circuits,特定應用積體電路)、DSPs(digital signal processors,數位信號處理器)、DSPDs(digital signal processing devices,數位信號處理裝置)、PLDs(programmable logic devices,可程式邏輯裝置)、FPGAs(field programmable gate arrays,場域可程式閘陣列)、處理器、控制器、微控制器、微處理器等實現。In the case of hardware implementation, the methods of various embodiments may be implemented by one or more ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs (field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, etc.

於藉由韌體或軟體實現之情形時,各種實施例之方法可由實行以下說明之功能或動作之模組、程序或函數等形態實現。例如,軟體代碼可儲存於記憶體中並由處理器驅動。上述記憶體可位於處理器之內部或外部,可藉由公知之各種機構而與上述處理器交換資料。When implemented via firmware or software, the methods of various embodiments may be implemented in the form of modules, procedures, or functions that perform the functions or actions described below. For example, the software code may be stored in memory and driven by a processor. The memory may be internal or external to the processor and may exchange data with the processor via various well-known mechanisms.

以下,基於上述技術思想而對各種實施例進行更詳細之說明。以下說明之各種實施例可應用上述內容。例如,於以下說明之各種實施例中未定義之動作、功能、用語等可基於上述說明之內容來實行並加以說明。The following describes various embodiments in more detail based on the above technical concepts. The above descriptions can be applied to the various embodiments described below. For example, actions, functions, and terms not defined in the various embodiments described below can be implemented and described based on the above descriptions.

於以下之說明中,以與服務相關之電子裝置100實行用於資訊處理方法之動作為前提,記述了各種實施例。In the following description, various embodiments are described based on the premise that the service-related electronic device 100 implements operations for the information processing method.

圖3係示出實行本發明所提議之資訊處理方法之電子裝置之構造圖。FIG3 is a structural diagram showing an electronic device for implementing the information processing method proposed by the present invention.

於圖3中,實行資訊處理方法之電子裝置100可包括通訊設備301、控制部303及記憶體305。圖3之電子裝置100中包括之各構成要素可對應於圖2之裝置節點之構成,或者圖3之電子裝置100可包括圖2之裝置節點之構成。作為一例,圖3之電子裝置100中包括之通訊設備301可對應於圖2之裝置節點之構成中包括之通訊部220。In Figure 3 , electronic device 100 implementing the information processing method may include a communication device 301, a control unit 303, and a memory 305. The components included in electronic device 100 in Figure 3 may correspond to the components of the device node in Figure 2 , or the electronic device 100 in Figure 3 may include the components of the device node in Figure 2 . For example, communication device 301 included in electronic device 100 in Figure 3 may correspond to communication unit 220 included in the components of the device node in Figure 2 .

圖3之電子裝置100可具有如下功能:藉由通訊設備301而與其他裝置進行通訊。The electronic device 100 in FIG. 3 may have the following functions: communicating with other devices via the communication device 301 .

控制部303可控制電子裝置100,以便實行包括下文敍述之圖4至圖14之各種實施例之資訊輸出方法。作為一例,控制部303可控制電子裝置100實行下文敍述之圖4之各動作401至403,且控制電子裝置100儲存及收發實行圖4之動作401至403所需之各種資訊。The control unit 303 can control the electronic device 100 to implement the information output method of various embodiments, including those described below in Figures 4 through 14. For example, the control unit 303 can control the electronic device 100 to implement actions 401 through 403 described below in Figure 4 and control the electronic device 100 to store and transmit various information required to implement actions 401 through 403 in Figure 4.

記憶體305可為揮發性記憶體或非揮發性記憶體,使控制部303執行用以實行資訊輸出方法之程式所需之程式之代碼可儲存於記憶體305中。The memory 305 may be a volatile memory or a non-volatile memory, so that the control unit 303 can store the program code required to execute the program for implementing the information output method in the memory 305.

於本發明中,實行資訊輸出方法之電子裝置100並不限定於圖3之構成,且除圖3所示之各種構成要素之外,本發明之電子裝置100中亦可包括其他通用之構成要素。In the present invention, the electronic device 100 for implementing the information output method is not limited to the structure shown in FIG. 3 , and in addition to the various components shown in FIG. 3 , the electronic device 100 of the present invention may also include other common components.

圖4係示出各種實施例之用於資訊處理之電子裝置之動作方法的圖。FIG4 is a diagram illustrating an operation method of an electronic device for information processing according to various embodiments.

根據圖4,電子裝置100可為了處理請求資訊,而實行處理請求資訊之動作,可設定與藉由服務而獲得之請求資訊之處理相關之請求資訊處理模型401,且可基於請求資訊處理模型中包括之至少一個處理模型,處理藉由服務而獲得之請求資訊403。4 , the electronic device 100 may process request information and execute an action to process request information. It may set a request information processing model 401 related to the processing of request information obtained through a service, and may process request information 403 obtained through a service based on at least one processing model included in the request information processing model.

根據圖4,電子裝置100設定請求資訊處理模型並處理請求資訊之動作可為了與電子裝置100相關之服務而實行,且上述服務可對應於利用服務之複數個用戶訂購及購買服務中銷售之複數個物品之服務。於服務中銷售之複數個物品可包括賣方為了銷售物品而註冊之各種種類或類型之物品,而不限制於物品之類型或類型。As shown in FIG4 , the electronic device 100 may configure a request information processing model and process request information for a service related to the electronic device 100. The service may correspond to a service in which multiple users utilizing the service order and purchase multiple items sold within the service. The multiple items sold within the service may include various types or categories of items registered by the seller for sale, and are not limited to the type or category of the items.

根據各種實施例,於動作401中,電子裝置100可設定與藉由服務而獲得之請求資訊之處理相關之請求資訊處理模型。According to various embodiments, in action 401, the electronic device 100 may set a request information processing model related to processing request information obtained through a service.

例如,根據動作401由電子裝置100設定之請求資訊處理模型可包括第1處理模型,該第1處理模型在與服務相關聯之一個以上之伺服器(server)中所包括之各伺服器中,將每單位時間將處理之請求資訊之個數限制為第1臨界個數以下。以下,下文敍述之一個以上之伺服器或各伺服器可理解為與圖1中之伺服器裝置300對應之概念。For example, the request information processing model configured by electronic device 100 in accordance with action 401 may include a first processing model that limits the number of request information processed per unit time by each of one or more servers associated with the service to a first critical number or less. Hereinafter, the one or more servers or each server described below may be understood as corresponding to server device 300 in FIG. 1 .

如上所述之第1處理模型相當於用以防止在與服務相關聯之一個以上之伺服器(server)中包括之各伺服器中處理請求資訊時產生之負荷之處理模型,且第1處理模型能夠設定為根據應用第1處理模型之管理者之選擇輸入來應用。作為一例,於一個以上之伺服器每單位時間要處理之請求資訊之個數被確認為固定個數以上,且電子裝置100之管理者判斷各伺服器中每單位時間要處理之請求資訊之個數過多之情形時,管理者可進行選擇輸入以應用第1處理模型,藉由利用管理者之選擇輸入來應用第1處理模型,可將各伺服器中每單位時間要處理之請求資訊之個數限制為第1臨界個數以下。The first processing model described above is a processing model for reducing the load generated when processing request information on each of the one or more servers associated with the service, and the first processing model can be configured to be applied based on the selection input of an administrator who applies the first processing model. For example, if the number of request information to be processed per unit time by one or more servers is determined to be greater than a fixed number, and the administrator of the electronic device 100 determines that the number of request information to be processed per unit time by each server is excessive, the administrator can select and input the application of the first processing model. By applying the first processing model based on the administrator's selection input, the number of request information to be processed per unit time by each server can be limited to or below the first critical number.

或者,除了管理者之選擇輸入之外,電子裝置100亦能夠以如下方式設定:於滿足一定條件之情況下應用第1處理模型。作為一例,可將一個以上之伺服器每單位時間要處理之請求資訊之個數設定成固定個數以上之條件而用於第1處理模型,電子裝置100能夠以如下方式管理:於滿足上述之條件之情形時,自動應用第1處理模型,將各伺服器中每單位時間要處理之請求資訊之個數限制為第1臨界個數以下。Alternatively, in addition to administrator input, the electronic device 100 can be configured to apply the first processing model when certain conditions are met. For example, a condition can be set such that the number of request information to be processed per unit time by one or more servers must be at least a fixed number, and the first processing model can be used. The electronic device 100 can then manage the situation by automatically applying the first processing model when these conditions are met, limiting the number of request information to be processed per unit time by each server to below the first critical number.

此處,為了第1處理模型而設定之第1臨界個數可為藉由管理者之輸入而設定之值。Here, the first critical number set for the first processing model may be a value set by an administrator input.

圖5係示出設定請求資訊處理模型中包括之第1處理模型之一示例之圖。FIG5 is a diagram showing an example of a first processing model included in the setting request information processing model.

於圖5中,電子裝置100係以如下方式管理:藉由與服務相關聯之一個以上之伺服器對自利用服務之複數個用戶獲得之請求資訊進行處理(500),此時,第1處理模型能夠以與501相同之形態應用,該第1處理模型將在各伺服器中每單位時間要處理之請求資訊之個數限制為特定之臨界個數以內。In FIG5 , the electronic device 100 is managed as follows: request information obtained from a plurality of users utilizing the service is processed by one or more servers associated with the service (500). At this time, the first processing model can be applied in the same form as 501, which limits the number of request information to be processed per unit time in each server to within a specific critical number.

於圖5中,藉由應用第1處理模型,可將各伺服器每1分鐘要處理之請求資訊之個數限制為10,000個以內,且此種第1處理模型亦能夠基於如下情況藉由管理者之選擇輸入或自動應用而設定:一個以上之伺服器每1分鐘要處理之請求資訊之個數被確認為30,000個以上。In Figure 5, by applying the first processing model, the number of request messages that each server must process per minute can be limited to 10,000 or less. This first processing model can also be set by administrator input or automatically applied based on the following situation: the number of request messages that one or more servers must process per minute is confirmed to be greater than 30,000.

例如,根據動作401由電子裝置100設定之請求資訊處理模型可包括第2處理模型,該第2處理模型對應於將與服務對應之複數個APIs(Application Programming Interfaces,應用程式介面)根據重要度來分類之複數個第一API組中之特定API組,於上述各伺服器中將每單位時間將處理之請求資訊之個數限制為第2臨界個數以下。For example, the request information processing model set by the electronic device 100 according to action 401 may include a second processing model, which corresponds to a specific API group in a plurality of first API groups in which a plurality of APIs (Application Programming Interfaces) corresponding to the service are classified according to importance, and the number of request information to be processed per unit time in each of the above-mentioned servers is limited to below the second critical number.

如上所述之第2處理模型相當於用以防止在與服務相關聯之一個以上之伺服器(server)中包括之各伺服器中處理與具有特定之重要度之API組對應之請求資訊時產生的負荷之處理模型,且第2處理模型能夠設定為根據應用第2處理模型之管理者之選擇輸入來應用。The second processing model described above is equivalent to a processing model for preventing the load generated when processing request information corresponding to an API group with a specific importance in each server included in one or more servers associated with the service, and the second processing model can be set to be applied based on the selection input of the administrator who applies the second processing model.

服務上之各種APIs可具有相互不同之重要度,電子裝置100以如下方式管理非常重要,即,能夠主要處理由具有較高重要度之APIs獲得之請求資訊。因此,電子裝置100根據服務上之各種APIs之重要度而區分為具有較高重要度之API組與具有較低重要度之API組,且可限制對應於具有較低重要度之API組而獲得之請求資訊之處理,以便可主要處理對應於具有較高重要度之API組而獲得之請求資訊。The various APIs on a service may have different levels of importance. It is important for the electronic device 100 to manage these APIs so that it can primarily process request information received from APIs with higher importance. Therefore, the electronic device 100 divides the various APIs on a service into a group with higher importance and a group with lower importance based on their importance. The electronic device 100 can limit the processing of request information received from the group with lower importance so that it can primarily process request information received from the group with higher importance.

作為一例,於對應於具有較低重要度之API組,一個以上之伺服器每單位時間要處理之請求資訊之個數被確認為固定個數以上,電子裝置100之管理者判斷於各伺服器中對應於具有較低重要度之API組而處理之請求資訊的個數增加,從而在與具有較高重要度之API組對應之請求資訊之處理中產生負荷之情形時,管理者可進行選擇輸入以應用第2處理模型,藉由利用管理者之選擇輸入來應用第2處理模型,可於各伺服器中對應於具有較低重要度之API組,將每單位時間要處理之請求資訊之個數限制為第2臨界個數以下。藉由應用此種第2處理模型,可於各伺服器中確保用於與具有較高重要度之API組對應之請求資訊之一定水準以上的每單位時間處理容量。For example, when the number of request information to be processed per unit time by one or more servers corresponding to an API group with lower importance is confirmed to be greater than a fixed number, the administrator of the electronic device 100 determines that the number of request information processed corresponding to the API group with lower importance in each server has increased, thereby generating a load in the processing of request information corresponding to the API group with higher importance. In this case, the administrator can make a selection input to apply the second processing model. By using the administrator's selection input to apply the second processing model, the number of request information to be processed per unit time corresponding to the API group with lower importance in each server can be limited to below the second critical number. By applying this second processing model, a certain level of processing capacity per unit time for request information corresponding to a highly important API group can be secured in each server.

或者,除了管理者之選擇輸入之外,電子裝置100亦能夠以如下方式設定:於滿足一定條件之情況下應用第2處理模型。作為一例,可對應於具有較低重要度之API組,將一個以上之伺服器每單位時間要處理之請求資訊之個數設定為固定個數以上之條件而用於第2處理模型,電子裝置100能夠以如下方式管理:於滿足上述之條件之情形時,自動應用第2處理模型,對應於各伺服器中具有較低重要度之API組,將每單位時間要處理之請求資訊之個數限制為第2臨界個數以下。Alternatively, in addition to administrator input, the electronic device 100 can be configured to apply a second processing model when certain conditions are met. For example, for API groups with lower importance, a condition can be set such that the number of request information to be processed per unit time by one or more servers is set to be at least a fixed number, and the second processing model can be used. The electronic device 100 can manage the situation by automatically applying the second processing model when these conditions are met, limiting the number of request information to be processed per unit time for API groups with lower importance on each server to below the second critical number.

此處,為了第2處理模型而設定之第2臨界個數可為藉由管理者之輸入而設定之值。又,為了第2處理模型,電子裝置100可預先確認並管理關於各API之重要度之資訊,且亦可基於關於各API之重要度之資訊來實行如下動作,即,將服務上之各種APIs區分為具有較高重要度之API組與具有較低重要度之API組。Here, the second critical number set for the second processing model can be a value set by an administrator. Furthermore, for the second processing model, the electronic device 100 can pre-identify and manage information regarding the importance of each API, and can also implement the following operation based on the information regarding the importance of each API, namely, dividing the various APIs on the service into API groups with higher importance and API groups with lower importance.

關於第2處理模型,重要度較高之API之示例包括購買物品時用於提供結算頁面之API、用於向購物車追加物品之API等,重要度較低之API之示例包括用於確認用戶之結算機制之API、用於物品訂購時請求保鮮袋之API等。Regarding the second processing model, examples of more important APIs include the API used to provide the checkout page when purchasing items and the API used to add items to the shopping cart. Examples of less important APIs include the API used to confirm the user's checkout mechanism and the API used to request plastic bags when ordering items.

圖6係示出設定請求資訊處理模型中包括之第2處理模型之一示例之圖。FIG6 is a diagram showing an example of a second processing model included in the setting request information processing model.

於圖6中,電子裝置100能夠以如下方式管理:將自利用服務之複數個用戶獲得之請求資訊區分為於服務上對應於具有較高重要度之API組而獲得之請求資訊、及對應於具有較低重要度之API組而獲得之請求資訊,且可藉由與服務相關聯之一個以上之伺服器對對應於各API組而獲得之請求資訊進行處理(600)。此時,第2處理模型能夠以與601相同之形態應用,該第2處理模型於各伺服器中對應於具有較低重要度之API組,將每單位時間要處理之請求資訊之個數限制為特定之臨界個數以內。In FIG6 , the electronic device 100 can manage request information received from multiple users using a service by dividing it into request information corresponding to an API group with higher importance on the service and request information corresponding to an API group with lower importance, and can process the request information corresponding to each API group by one or more servers associated with the service ( 600 ). In this case, the second processing model can be applied in the same form as 601 , which limits the number of request information to be processed per unit time to within a specific critical number for each server corresponding to the API group with lower importance.

於圖6中,藉由應用第2處理模型,可於各伺服器中對應於具有較低重要度之API組,將每1分鐘要處理之請求資訊之個數限制為8,000個以內,且此種第2處理模型亦能夠基於如下情況根據管理者之選擇輸入或自動應用而設定:一個以上之伺服器對應於具有較低重要度之API組每1分鐘要處理之請求資訊之個數被確認為24,000個以上。藉由應用與601相同之第2處理模型,可於各伺服器中確保用於與具有較高重要度之API組對應之請求資訊之一定水準以上的每單位時間處理容量。In Figure 6, by applying the second processing model, the number of request messages processed per minute for API groups with lower importance on each server can be limited to 8,000 or less. This second processing model can also be set based on administrator input or automatic application if the number of request messages processed per minute for API groups with lower importance on one or more servers is confirmed to be 24,000 or more. By applying the same second processing model as in Figure 601, each server can ensure a certain level of processing capacity per unit time for request messages corresponding to API groups with higher importance.

例如,根據動作401由電子裝置100設定之請求資訊處理模型可包括第3處理模型,該第3處理模型對應於將複數個APIs(Application Programming Interfaces,應用程式介面)根據資源(resource)使用量來分類之複數個第二API組中包括之各API組,將要處理之各請求資訊之個數限制為為了上述各API組而設定之各臨界個數以下。For example, the request information processing model set by the electronic device 100 according to action 401 may include a third processing model, which corresponds to each API group included in a plurality of second API groups that classify a plurality of APIs (Application Programming Interfaces) according to resource usage, and limits the number of request information to be processed to below the critical number set for each of the above API groups.

如上所述之第3處理模型相當於在與服務相關聯之一個以上之伺服器(server)中包括之各伺服器中,處理與根據資源使用量來分類之複數個第二API組分別對應之請求資訊之過程中,用以防止所管理之各API組之剩餘資源容量為0之處理模型,且第3處理模型能夠設定為根據應用第3處理模型之管理者之選擇輸入來應用。The third processing model described above is equivalent to a processing model for preventing the remaining resource capacity of each managed API group from reaching zero during the process of processing request information corresponding to a plurality of second API groups classified according to resource usage in each server included in one or more servers associated with the service, and the third processing model can be set to be applied based on the selection input of the administrator who applies the third processing model.

服務上之各種APIs可消耗相互不同之資源使用量,電子裝置100以不超過用於各APIs之資源使用量之方式管理可能非常重要。因此,電子裝置100能夠以如下方式管理:根據其資源使用量將服務上之各種APIs區分為具有較高資源使用量之API組、具有中等資源使用量之API組、及具有較低資源使用量之API組,可對應於API組而分配固定之資源容量,且可於不超過所分配之資源容量之範圍內主要處理對應於各API組而獲得之請求資訊。The various APIs on a service may consume different amounts of resources, and it may be important for the electronic device 100 to manage the resources used by each API in a manner that does not exceed the resource usage of each API. Therefore, the electronic device 100 can manage the various APIs on a service by classifying them into API groups with higher resource usage, API groups with medium resource usage, and API groups with lower resource usage based on their resource usage. Fixed resource capacity can be allocated to each API group, and request information received can be primarily processed within the allocated resource capacity.

作為一例,可1)為具有較高資源使用量之API組分配固定之資源容量,確認可根據所分配之資源容量來處理之請求資訊之臨界個數l值;2)為具有中等資源容量之API組分配固定之資源容量,確認可根據所分配之資源容量來處理之請求資訊之臨界個數n值;3)為具有較低資源使用量之API組分配固定之資源容量,確認可根據所分配之資源容量來處理之請求資訊之臨界個數m值。於電子裝置100之管理者欲管理不超過分配至各API組之資源容量之情形時,管理者可進行選擇輸入以應用第3處理模型,藉由利用管理者之選擇輸入來應用第3處理模型,可對應於各API組將已處理之請求資訊之個數限制為已確認之各API組之各臨界個數以內。For example, 1) a fixed resource capacity can be allocated to an API group with high resource usage, and the critical number l of request information that can be processed based on the allocated resource capacity can be determined; 2) a fixed resource capacity can be allocated to an API group with medium resource capacity, and the critical number n of request information that can be processed based on the allocated resource capacity can be determined; 3) a fixed resource capacity can be allocated to an API group with low resource usage, and the critical number m of request information that can be processed based on the allocated resource capacity can be determined. When the administrator of the electronic device 100 wishes to manage resources within the capacity allocated to each API group, the administrator may select input to apply the third processing model. By utilizing the administrator's selection input to apply the third processing model, the number of processed request information for each API group may be limited to within the confirmed critical number of each API group.

此處,為了第3處理模型而設定之各臨界個數可為藉由管理者之輸入而設定之值。又,為了第3處理模型,電子裝置100可預先確認並管理關於各API之資源使用量之資訊,且亦可基於關於各API之資源使用量之資訊來實行如下動作,即,將服務上之各種APIs區分為具有較高資源使用量之API組、具有中等資源使用量之API組、及具有較低資源使用量之API組。Here, each critical number set for the third processing model can be a value set by an administrator. Furthermore, for the third processing model, the electronic device 100 can pre-check and manage information about the resource usage of each API. Based on this information, the electronic device 100 can also categorize the various APIs on the service into a group with high resource usage, a group with medium resource usage, and a group with low resource usage.

關於第3處理模型,具有較高資源使用量之API之示例可包括著陸API、用於與購買按鈕輸入對應之購買進行API等,具有中等資源使用量之API之示例可包括用於設定配送預定日期等日程之API等。又,具有較低資源使用量之API之示例可包括變更配送地址之API、用以輸入與海外直購相關之個人通關編碼之API等。Regarding the third processing model, examples of APIs with high resource usage include landing APIs and purchase execution APIs corresponding to purchase button input. Examples of APIs with medium resource usage include APIs for setting schedules such as delivery dates. Furthermore, examples of APIs with low resource usage include APIs for changing delivery addresses and APIs for entering personal pass codes related to overseas direct purchases.

圖7係示出設定請求資訊處理模型中包括之第3處理模型之一示例之圖。FIG7 is a diagram showing an example of a third processing model included in the setting request information processing model.

於圖7中,電子裝置100能夠以如下方式管理:將自利用服務之複數個用戶獲得之請求資訊區分為於服務上對應於具有較高資源使用量之API組而獲得之請求資訊、對應於具有中高等資源使用量之API組而獲得之請求資訊、及對應於具有較低資源使用量之API組而獲得之請求資訊,且藉由與服務相關聯之一個以上之伺服器對對應於各API組而獲得之請求資訊進行處理(700)。此時,第3處理模型能夠以與701相同之形態應用,該第3處理模型對應於各API組將要處理之請求資訊之個數限制為為了各API組而設定之各臨界個數以內。In FIG7 , the electronic device 100 can manage request information received from a plurality of users utilizing a service by classifying request information received from the service corresponding to an API group with high resource usage, request information received from an API group with medium to high resource usage, and request information received from an API group with low resource usage, and processing the request information received from each API group by one or more servers associated with the service ( 700 ). At this time, the third processing model can be applied in the same manner as 701 , limiting the number of request information to be processed for each API group to within a threshold number set for each API group.

於圖7中,藉由應用第3處理模型,可對應於具有較高資源使用量之API組將要處理之請求資訊之個數限制為1,000個以內,可對應於具有中等資源使用量之API組將要處理之請求資訊之個數限制為5,000個以內,可對應於具有較低資源使用量之API組將要處理之請求資訊之個數限制為10,000個以內,因此,用於各API組之資源容量能夠以不能為0之方式管理。又,此種第3處理模型能夠設定為藉由管理者之選擇輸入來應用。In Figure 7, by applying the third processing model, the number of request messages to be processed for API groups with high resource usage can be limited to 1,000, the number of request messages to be processed for API groups with medium resource usage can be limited to 5,000, and the number of request messages to be processed for API groups with low resource usage can be limited to 10,000. This ensures that the resource capacity for each API group cannot be reduced to zero. Furthermore, this third processing model can be set to be applied by administrator input.

例如,根據動作401由電子裝置100設定之請求資訊處理模型可包括第4處理模型,該第4處理模型對應於服務之用戶而將每單位時間要處理之請求資訊之個數限制為第3臨界個數以下。For example, the request information processing model set by the electronic device 100 according to action 401 may include a fourth processing model, which limits the number of request information to be processed per unit time to below a third critical number corresponding to the user of the service.

如上所述之第4處理模型相當於在與服務相關聯之一個以上之伺服器(server)中包括之各伺服器中,用於防止因特定用戶之重複輸入而於短時間內獲得過多之請求資訊所產生負荷之處理模型,且第4處理模型能夠設定為根據應用第4處理模型之管理者之選擇輸入來應用。The fourth processing model described above corresponds to a processing model for preventing a load from being generated by excessive request information received in a short period of time due to repeated input from a specific user in each of the one or more servers associated with the service, and the fourth processing model can be set to be applied based on the selection input of an administrator who applies the fourth processing model.

於服務上,用戶可藉由各種APIs進行各種輸入,產生與用戶之輸入對應之請求資訊,由各伺服器進行處理,但若用戶進行反覆多次點擊(click)或觸摸(touch)等輸入、或使用宏(macro)等而於短時間內產生大量之請求資訊,即便放任伺服器全部處理,亦會產生不必要之負荷,因此電子裝置100以避免出現相同之問題之方式管理可能非常重要。因此,電子裝置100能夠以如下方式管理:對應於服務上之各用戶,確認每單位時間獲得之請求資訊之個數,必要時將各用戶之每單位時間要處理之請求資訊之個數限制為第3臨界個數以下。On services, users can perform various inputs through various APIs, generating request information corresponding to the user inputs, which is then processed by each server. However, if users repeatedly input through clicks or touches, or use macros to generate a large number of request information in a short period of time, even if the server is allowed to process all of them, it will generate unnecessary load. Therefore, it is very important to manage the electronic device 100 in a way that avoids the same problems. Therefore, the electronic device 100 can manage the following: for each user on the service, the number of request information received per unit time is confirmed, and when necessary, the number of request information to be processed per unit time for each user is limited to below the third critical number.

此處,為了第4處理模型而設定之第3臨界個數可為藉由管理者之輸入來設定之值。Here, the third critical number set for the fourth processing model can be a value set by the administrator's input.

例如,自用戶每單位時間獲得之請求資訊之個數可藉由與服務相關聯之一個以上之伺服器共同對應之一個外部快取(Cache)而進行確認。即,於應用其他處理模型時,與在一個以上之伺服器中包括之各伺服器中分別設定之快取有所不同,於第4處理模型之情況下,設定了與一個以上之伺服器共同對應之一個外部快取,從而可容易地追蹤自用戶獲得之請求資訊之個數。For example, the number of request information received from users per unit time can be checked using an external cache shared by one or more servers associated with a service. Specifically, unlike other processing models where caches are set up individually for each server in a server-based system, the fourth processing model uses a single external cache shared by one or more servers, making it easy to track the number of request information received from users.

例如,自用戶每單位時間獲得之請求資訊之個數可基於用戶之識別資訊及用戶正在使用中之API之資訊而進行確認。即,由於用戶藉由重複輸入而產生大量之請求資訊很可能為在特定之API中實行之動作,因此電子裝置100可有效利用用戶之識別資訊與用戶正在使用中之API之資訊來追蹤藉由與此相同之用戶之動作而確認之請求資訊。For example, the number of request information received per unit time from a user can be determined based on the user's identification information and the information about the API the user is currently using. Specifically, since a large number of request information generated by repeated user input is likely to be actions performed within a specific API, the electronic device 100 can effectively utilize the user's identification information and the information about the API the user is currently using to track request information determined by the same user action.

例如,電子裝置100可藉由API標識符(Identifier)而確認與上述相同之用戶正在使用中之API之資訊。各API中使用之用語之定義、資訊處理途徑、事件名稱等可能會有所不同,因此電子裝置100可設定識別各API之標識符,且藉由已設定之標識符來追蹤用戶正在使用中之API之資訊。For example, electronic device 100 can use API identifiers to identify the API information currently being used by the same user as described above. The definitions of terms, information processing paths, and event names used in each API may vary. Therefore, electronic device 100 can set an identifier to identify each API and use the set identifier to track information about the APIs currently being used by the user.

圖8係示出設定請求資訊處理模型中包括之第4處理模型之一示例之圖。FIG8 is a diagram showing an example of the fourth processing model included in the setting request information processing model.

於圖8中,電子裝置100能夠以如下方式管理:可將自利用服務之複數個用戶獲得之請求資訊區分為對應於各用戶而獲得之請求資訊,且藉由與服務相關聯之一個以上之伺服器對對應於各用戶而獲得之請求資訊進行處理(800)。In FIG. 8 , the electronic device 100 can manage in the following manner: request information obtained from a plurality of users utilizing a service can be divided into request information corresponding to each user, and the request information corresponding to each user is processed by one or more servers associated with the service ( 800 ).

於圖8中,藉由應用第4處理模型,而以如下方式進行管理,即,對應於根據識別資訊區分之特定用戶而獲得之請求資訊之個數不超過每1分鐘20個(801),為了確認各用戶每單位時間獲得之請求資訊,可設定與一個以上之伺服器共同對應之一個外部快取(803)。此種第4處理模型能夠以根據管理者之選擇輸入來應用之方式設定。In FIG8 , by applying the fourth processing model, management is performed in such a manner that the number of request information corresponding to a specific user identified by identification information does not exceed 20 per minute (801). In order to confirm the request information obtained per unit time for each user, an external cache (803) corresponding to one or more servers can be set. This fourth processing model can be set in a manner that is applied according to the administrator's selection input.

例如,根據動作401由電子裝置100設定之請求資訊處理模型可包括第5處理模型,該第5處理模型中斷藉由服務而獲得之全部請求資訊之處理。For example, the request information processing model set by the electronic device 100 according to action 401 may include a fifth processing model that interrupts the processing of all request information obtained through the service.

如上所述之第5處理模型相當於在發生藉由與服務相關聯之一個以上之伺服器(server)來處理請求資訊之問題時,中斷用以處理全部請求資訊之處理模型,且第5處理模型能夠設定為根據應用第5處理模型之管理者之選擇輸入來應用。The fifth processing model described above is equivalent to interrupting the processing model used to process all request information when a problem occurs in processing request information by one or more servers associated with the service, and the fifth processing model can be set to be applied based on the selection input of the administrator who applies the fifth processing model.

第5處理模型能夠以如下方式設定:於各伺服器單位中指示中斷請求資訊處理,以免於各伺服器中處理請求資訊,或者對於在請求資訊傳達至各伺服器之前之前端指示中斷請求資訊處理,以免於各伺服器中處理請求資訊。The fifth processing model can be configured as follows: each server unit is instructed to suspend request information processing so that the request information is not processed in each server, or the front end is instructed to suspend request information processing before the request information is transmitted to each server so that the request information is not processed in each server.

圖9係示出設定請求資訊處理模型中包括之第5處理模型之一示例之圖。FIG9 is a diagram showing an example of the fifth processing model included in the setting request information processing model.

於圖9中,電子裝置100能夠以如下方式藉由第5處理模型而進行管理,即,防止藉由各伺服器對藉由服務而獲得之全部請求資訊進行處理(900),且此種第5處理模型能夠設定為根據管理者之選擇輸入來應用。In FIG9 , the electronic device 100 can be managed by the fifth processing model in such a manner that all request information obtained by the service is prevented from being processed by each server ( 900 ), and this fifth processing model can be set to be applied according to the administrator's selection input.

例如,可拒絕對如下之請求資訊進行處理:超過基於請求資訊處理模型中包括之各處理模型而限制之臨界個數。For example, you can refuse to process a request message that exceeds a critical number of restrictions based on the processing models included in the request message processing model.

例如,電子裝置100可根據請求資訊處理模型中包括之各處理模型而確認拒絕處理之請求資訊之個數。具體而言,電子裝置100可設定與請求資訊處理模型中包括之各處理模型對應之各處理模型狀態識別資訊,且基於各處理模型狀態識別資訊,根據各處理模型而確認拒絕處理之請求資訊之個數。For example, the electronic device 100 may determine the number of request messages that were rejected based on each processing model included in the request information processing model. Specifically, the electronic device 100 may set each processing model state identification information corresponding to each processing model included in the request information processing model, and based on each processing model state identification information, determine the number of request messages that were rejected based on each processing model.

根據各種實施例,於動作403中,電子裝置100可基於請求資訊處理模型中包括之至少一個處理模型,處理藉由服務而獲得之請求資訊。According to various embodiments, in action 403, the electronic device 100 may process the request information obtained through the service based on at least one processing model included in the request information processing model.

例如,根據動作403,電子裝置100可有效利用處理請求資訊之至少一個處理模型,於上述第1處理模型至上述第5處理模型中藉由電子裝置100之管理者之第1輸入來選擇。即,電子裝置100之管理者可根據情況而選擇應用處理請求資訊之處理模型。For example, according to action 403, the electronic device 100 can effectively utilize at least one processing model for processing request information, selected from the first processing model to the fifth processing model by the first input of the administrator of the electronic device 100. In other words, the administrator of the electronic device 100 can select the processing model to be applied to the processing request information according to the situation.

例如,根據動作403,電子裝置100可基於電子裝置100之管理者之第2輸入,而設定在為了處理請求資訊而設定之請求資訊處理模型中包括之各處理模型中限制之各臨界個數。即,電子裝置100之管理者可根據情況而設定用於各處理模型之請求資訊處理之臨界個數。For example, according to action 403, the electronic device 100 may set the critical number of requests to be processed in each processing model included in the request information processing model configured for processing the request information based on the second input from the administrator of the electronic device 100. In other words, the administrator of the electronic device 100 may set the critical number of requests to be processed in each processing model as appropriate.

例如,根據動作403,電子裝置100可基於與服務相關之環境參數資訊,而設定在為了處理請求資訊而設定之請求資訊處理模型中包括之各處理模型中限制之各臨界個數。即,電子裝置100能夠以如下方式管理:電子裝置100之管理者不設定用於各處理模型之請求資訊處理之臨界個數,而根據與服務相關之環境參數資訊來設定用於各處理模型之請求資訊處理之臨界個數。For example, according to action 403, the electronic device 100 may set, based on service-related environmental parameter information, the threshold number of requests to be processed in each processing model included in the request information processing model configured to process the request information. In other words, the electronic device 100 can be managed in such a way that the administrator of the electronic device 100 does not set the threshold number of requests to be processed in each processing model, but rather sets the threshold number of requests to be processed in each processing model based on service-related environmental parameter information.

例如,如上所述之環境參數資訊可包括能夠影響伺服器之請求資訊處理之參數之資訊中之至少一種資訊,例如上述一個以上之伺服器之個數之資訊、用於上述服務之總資源容納量之資訊、及/或是否於預計請求資訊會增減之上述服務上進行促銷之資訊。For example, the environmental parameter information described above may include at least one type of information about parameters that can affect the server's request information processing, such as information about the number of the one or more servers, information about the total resource capacity used for the service, and/or information about whether to conduct promotions on the service for which request information is expected to increase or decrease.

另一方面,電子裝置100亦可設定層(layer)構造,將根據圖4為了處理請求資訊而設定之請求資訊處理模型應用於通用演算法(Algorithm)中。即,電子裝置100可設定與請求資訊處理模型對應之層(layer)構造,且根據已設定之層構造,請求資訊處理模型可應用於用於電子裝置100之動作之通用演算法中。Alternatively, electronic device 100 may configure a layer structure to apply the request information processing model configured for processing request information according to FIG. 4 to a general algorithm. Specifically, electronic device 100 may configure a layer structure corresponding to the request information processing model, and based on the configured layer structure, the request information processing model may be applied to the general algorithm used for the operation of electronic device 100.

圖10係示出用以將請求資訊處理模型應用於用於電子裝置100之動作之演算法中之層構造的一示例之圖。FIG. 10 is a diagram showing an example of a layer structure for applying the request information processing model to an algorithm for operating the electronic device 100.

於圖10中,於電子裝置100為了處理請求資訊而設定第1處理模型至第5處理模型之情形時(1001),可在用於電子裝置100之動作之演算法中之一個示例演算法、即Bucket4J核心(core)演算法1005中設定可應用上述第1處理模型至上述第5處理模型之展示層(Facade Layer)構造(1003)。In FIG. 10 , when the electronic device 100 sets the first to fifth processing models to process request information ( 1001 ), a facade layer structure ( 1003 ) that can apply the first to fifth processing models can be set in the Bucket4J core algorithm 1005 , which is an example algorithm among the algorithms used for the operation of the electronic device 100 .

由圖10可知,第1處理模型對應於「伺服器速率限制(Server Rate Limit)」,第2處理模型對應於「保留速率限制(Reserved Rate Limit)」,第3處理模型對應於「並發速率限制(Concurrent Rate Limit)」,第4處理模型對應於「API+客戶端速率限制(API+Client Rate Limit)」,第5處理模型對應於「自毀開關(Kill Switch)」。As shown in Figure 10, the first processing model corresponds to the "Server Rate Limit," the second processing model corresponds to the "Reserved Rate Limit," the third processing model corresponds to the "Concurrent Rate Limit," the fourth processing model corresponds to the "API+Client Rate Limit," and the fifth processing model corresponds to the "Kill Switch."

毋庸贅言,根據圖4至圖10,電子裝置100在用於實行資訊處理之動作方法之過程中設定或處理之各資訊能夠以各種形態來結合。Needless to say, according to FIG. 4 to FIG. 10 , the information set or processed by the electronic device 100 in the process of implementing the information processing method can be combined in various forms.

圖11至圖14係示出基於包括第1處理模型至第5處理模型之請求資訊處理模型而處理請求資訊之一示例之圖。例如,圖11至圖14之示例可於伺服器裝置300中處理對應於用戶裝置200之輸入而產生之請求資訊,且可於圖4至圖10中基於上述電子裝置100之動作而實行以下圖式中說明之各實施例。Figures 11 through 14 illustrate an example of processing request information based on a request information processing model including the first through fifth processing models. For example, the example of Figures 11 through 14 may involve processing request information generated in response to input from a user device 200 in a server device 300, and may implement the various embodiments described in the following figures based on the operations of the electronic device 100 described above in Figures 4 through 10.

具體而言,以下圖式中說明之各實施例能夠以如下形態實行:於用戶裝置200自用戶接收輸入資訊並將與上述輸入資訊相關之請求資訊傳輸至伺服器裝置300時,伺服器裝置300可於圖4至圖10中基於電子裝置100之動作來處理請求資訊。然而,以下圖式中說明之各實施例並不限定於此種形態,能夠以可實現各實施例之所有形態實行。Specifically, the embodiments described in the following figures can be implemented in the following manner: when user device 200 receives input information from a user and transmits request information related to the input information to server device 300, server device 300 can process the request information based on the actions of electronic device 100 shown in Figures 4 to 10. However, the embodiments described in the following figures are not limited to this embodiment and can be implemented in all forms that can implement the embodiments.

圖11係示出基於各種實施例之請求資訊處理模型而處理請求資訊之一示例的圖。FIG. 11 is a diagram showing an example of processing request information based on a request information processing model according to various embodiments.

於圖11中,可確認基於請求資訊處理模型,應用相當於「自毀開關」之第5處理模型與相當於「伺服器速率限制」之第1處理模型。與電子裝置100對應之管理者將第5處理模型設定為關(off)(1101),於視需要中斷對全部請求資訊之處理之情形時,可再次將其設定為開(on)。In Figure 11, it can be seen that the fifth processing model, which is equivalent to a "self-destruct switch," and the first processing model, which is equivalent to a "server rate limit," are applied based on the request information processing model. The administrator corresponding to the electronic device 100 sets the fifth processing model to off (1101), and can set it back to on when it is necessary to interrupt the processing of all request information.

又,於圖11中,與電子裝置100對應之管理者於可確認各伺服器中之請求資訊之處理將產生負荷,例如於每1分鐘需要處理之請求資訊之個數為100,000個以上之情形時(1103-1),基於第1處理模型,可在各伺服器中將每1分鐘要處理之請求資訊之個數限制為10,000個以下(1103-2)。Furthermore, in FIG11 , the administrator corresponding to the electronic device 100 can confirm that the processing of request information in each server will generate a load. For example, when the number of request information that needs to be processed per minute is more than 100,000 ( 1103 - 1 ), based on the first processing model, the number of request information to be processed per minute in each server can be limited to less than 10,000 ( 1103 - 2 ).

此時,如上所述之各處理模型之應用並不限制於圖11中所示之順序,可根據與電子裝置100對應之管理者之輸入或各處理模型是否滿足預設之條件等來應用各處理模型。At this time, the application of each processing model described above is not limited to the order shown in Figure 11. Each processing model can be applied based on the input of the administrator corresponding to the electronic device 100 or whether each processing model meets the preset conditions.

圖12係示出基於各種實施例之請求資訊處理模型而處理請求資訊之另一示例的圖。為了方便起見,圖12之示例示出了追加應用至圖11之示例之第4處理模型,但第4處理模型之應用形態並不限定於圖12,第4處理模型可單獨應用或與各種其他處理模型組合而一併應用。FIG12 illustrates another example of request information processing based on the request information processing model of various embodiments. For convenience, FIG12 illustrates the fourth processing model applied in addition to the example of FIG11 . However, the application of the fourth processing model is not limited to FIG12 ; the fourth processing model can be applied alone or in combination with various other processing models.

於圖12中,可確認基於請求資訊處理模型,應用相當於「自毀開關」之第5處理模型、相當於「伺服器速率限制」之第1處理模型及相當於「API+客戶端速率限制」之第4處理模型。與圖11中記述同樣地,圖12中與電子裝置100對應之管理者:1)將第5處理模型設定為關(1201),2)對應於每1分鐘要處理之請求資訊之個數為100,000個以上之情形,可根據第1處理模型,於各伺服器中將每1分鐘要處理之請求資訊之個數限制為10,000個以內(1203-1、1203-2)。In Figure 12, we can see that based on the request information processing model, the fifth processing model, which is equivalent to a "self-destruct switch," the first processing model, which is equivalent to a "server rate limit," and the fourth processing model, which is equivalent to a "API + client rate limit," are applied. Similar to the description in Figure 11, the administrator corresponding to electronic device 100 in Figure 12: 1) sets the fifth processing model to off (1201); 2) in response to the number of request information to be processed per minute exceeding 100,000, the first processing model is used to limit the number of request information to be processed per minute on each server to 10,000 or less (1203-1, 1203-2).

又,於圖12中,與電子裝置100對應之管理者於自用戶獲得之請求資訊之個數為每1分鐘20個以上、或用於自用戶獲得之請求資訊之輸入為每1分鐘20次以上之情形時(1205-1),基於第4處理模型,可將對應於該用戶之每1分鐘要處理之請求資訊之個數限制為20個以下(1205-2)。Furthermore, in FIG12 , when the number of request information received from a user by the administrator corresponding to the electronic device 100 is more than 20 per minute, or the number of request information received from the user is input more than 20 times per minute ( 1205 - 1 ), based on the fourth processing model, the number of request information to be processed per minute for the corresponding user can be limited to less than 20 ( 1205 - 2 ).

此時,如上所述之各處理模型之應用並不限制於圖12中所示之順序,可根據與電子裝置100對應之管理者之輸入或各處理模型是否滿足預設之條件等來應用各處理模型。At this time, the application of each processing model described above is not limited to the order shown in Figure 12. Each processing model can be applied based on the input of the administrator corresponding to the electronic device 100 or whether each processing model meets the preset conditions.

圖13係示出基於各種實施例之請求資訊處理模型而處理請求資訊之另一示例的圖。為了方便起見,圖13之示例示出了追加應用至圖12之示例之第2處理模型,但第2處理模型之應用形態並不限定於圖13,第2處理模型可單獨應用或與各種其他處理模型組合而一併應用。FIG13 illustrates another example of request information processing based on the request information processing model of various embodiments. For convenience, FIG13 illustrates a second processing model applied in addition to the example of FIG12 . However, the application of the second processing model is not limited to FIG13 ; the second processing model can be applied alone or in combination with various other processing models.

於圖13中,可確認基於請求資訊處理模型,應用相當於「自毀開關」之第5處理模型、相當於「伺服器速率限制」之第1處理模型、相當於「API+客戶端速率限制」之第4處理模型及相當於「保留速率限制」之第2處理模型。與圖12中記述同樣地,圖13中與電子裝置100對應之管理者:1)將第5處理模型設定為關(1301),2)於每1分鐘要處理之請求資訊之個數為100,000個以上之情形時,根據第1處理模型,於各伺服器中將每1分鐘要處理之請求資訊之個數限制為10,000個以內(1303-1、1303-2),3)於自用戶獲得之請求資訊之個數為每1分鐘20個以上、或用於自用戶獲得之請求資訊之輸入為每1分鐘20次以上之情形時,基於第4處理模型,可將對應於該用戶之每1分鐘要處理之請求資訊之個數限制為20個以下(1305-1、1305-2)。In FIG13 , it can be confirmed that based on the request information processing model, the fifth processing model equivalent to the “self-destruct switch”, the first processing model equivalent to the “server rate limit”, the fourth processing model equivalent to the “API+client rate limit”, and the second processing model equivalent to the “retention rate limit” are applied. As described in FIG12 , the administrator corresponding to the electronic device 100 in FIG13 : 1) sets the fifth processing model to off ( 1301 ), 2) when the number of request information to be processed per minute is more than 100,000, the number of request information to be processed per minute in each server is limited to within 10,000 ( 1 303-1, 1303-2), 3) When the number of request information received from a user is more than 20 per minute, or the input for the request information received from the user is more than 20 times per minute, based on the fourth processing model, the number of request information to be processed per minute corresponding to the user can be limited to less than 20 (1305-1, 1305-2).

又,於圖13中,與電子裝置100對應之管理者能夠以如下方式管理:將與服務對應之複數個APIs(Application Programming Interfaces,應用程式介面)根據重要度分類為具有較高重要度之API組與具有較低重要度之API組時,由於對應於具有較低重要度之API組而處理之請求資訊之個數為8,000個以上,故而判斷為超過需要(1307-1),基於第2處理模型,可對應於具有較低重要度之API組,於各伺服器中將每單位時間要處理之請求資訊之個數限制為8,000個以下,對應於具有較高重要度之API組,於各伺服器中可每單位時間處理2,000個請求資訊(1307-2)。Furthermore, in FIG13 , the administrator corresponding to the electronic device 100 can manage in the following manner: when the multiple APIs (Application Programming Interfaces) corresponding to the service are classified into an API group with higher importance and an API group with lower importance according to their importance, since the number of request information processed for the API group with lower importance is more than 8,000, it is determined to be excessive ( 1307 - 1 ). Based on the second processing model, the number of request information to be processed per unit time in each server can be limited to less than 8,000 for the API group with lower importance, and 2,000 request information can be processed per unit time in each server for the API group with higher importance ( 1307 - 2 ).

此時,如上所述之各處理模型之應用並不限制於圖13中所示之順序,可根據與電子裝置100對應之管理者之輸入或各處理模型是否滿足預設之條件等來應用各處理模型。At this time, the application of each processing model described above is not limited to the order shown in Figure 13. Each processing model can be applied based on the input of the administrator corresponding to the electronic device 100 or whether each processing model meets the preset conditions.

圖14係示出基於各種實施例之請求資訊處理模型而處理請求資訊之另一示例的圖。為了方便起見,圖14之示例示出了追加應用至圖13之示例之第3處理模型,但第3處理模型之應用形態並不限定於圖14,第3處理模型可單獨應用或與各種其他處理模型組合而一併應用。FIG14 illustrates another example of request information processing based on the request information processing model of various embodiments. For convenience, the example of FIG14 shows a third processing model applied in addition to the example of FIG13 . However, the application of the third processing model is not limited to FIG14 ; the third processing model can be applied alone or in combination with various other processing models.

於圖14中,可確認基於請求資訊處理模型,應用相當於「自毀開關」之第5處理模型、相當於「伺服器速率限制」之第1處理模型、相當於「API+客戶端速率限制」之第4處理模型、相當於「保留速率限制」之第2處理模型及相當於「並發限制(Concurrent Limit)」之第3處理模型。與圖13中記述同樣地,圖14中與電子裝置100對應之管理者:1)將第5處理模型設定為關(1401),2)於每1分鐘要處理之請求資訊之個數為100,000個以上之情形時,根據第1處理模型,可於各伺服器中將每1分鐘要處理之請求資訊之個數限制為10,000個以內(1403-1、1403-2,3)於自用戶獲得之請求資訊之個數為每1分鐘20個以上、或自用戶獲得之請求資訊之輸入為每1分鐘20次以上之情形時,基於第4處理模型,可將對應於該用戶之每1分鐘要處理之請求資訊之個數限制為20個以下(1405-1、1405-2)。又,與電子裝置100對應之管理者能夠以如下方式管理:4)確認對應於具有較低重要度之API組而處理之請求資訊之個數為8,000個以上時,根據第2處理模型,對應於具有較低重要度之API組,於各伺服器中將每單位時間要處理之請求資訊之個數限制為8,000個以下,對應於具有較高重要度之API組,於各伺服器中可每單位時間處理2,000個請求資訊(1407-1、1407-2)。In Figure 14, we can see that based on the request information processing model, the fifth processing model, equivalent to the "self-destruct switch," the first processing model, equivalent to the "server rate limit," the fourth processing model, equivalent to the "API + client rate limit," the second processing model, equivalent to the "retention rate limit," and the third processing model, equivalent to the "concurrent limit," are applied. As described in FIG13 , the administrator corresponding to the electronic device 100 in FIG14 : 1) sets the fifth processing model to off ( 1401 ); 2) when the number of request information to be processed per minute is more than 100,000, the number of request information to be processed per minute in each server can be limited to 10,000 or less based on the first processing model ( 1403-1 , 1403-2 ); 3) when the number of request information received from a user is more than 20 per minute, or the number of request information received from a user is input more than 20 times per minute, the number of request information to be processed per minute corresponding to the user can be limited to less than 20 based on the fourth processing model ( 1405-1 , 1405-2 ). In addition, the administrator corresponding to the electronic device 100 can manage in the following manner: 4) When it is confirmed that the number of request information processed corresponding to the API group with lower importance is more than 8,000, according to the second processing model, corresponding to the API group with lower importance, the number of request information to be processed per unit time in each server is limited to less than 8,000, and corresponding to the API group with higher importance, 2,000 request information can be processed per unit time in each server (1407-1, 1407-2).

此外,於圖14中,與電子裝置100對應之管理者能夠以如下方式管理:根據資源使用量,將與服務對應之複數個APIs(Application Programming Interfaces,應用程式介面)分類為具有較高資源使用量之API組、具有中等資源使用量之API組及具有較低資源使用量之API組時,根據對應於具有較高資源使用量之API組而處理之請求資訊之個數,判斷為超過分配給具有較高資源使用量之API組之資源容量(1409-1),基於第3處理模型,對應於分配給具有較高資源使用量之API組之資源容量,以可處理之請求資訊之臨界個數為1,000個以內之方式限制該API組之請求資訊處理,對應於具有較高資源使用量之API組,最多可處理1,000個請求資訊(1409-2)。In addition, in FIG14 , the manager corresponding to the electronic device 100 can manage the following manner: according to the resource usage, multiple APIs (Application Programming When APIs (application programming interfaces) are classified into an API group with high resource usage, an API group with medium resource usage, and an API group with low resource usage, the number of request messages processed corresponding to the API group with high resource usage is determined to exceed the resource capacity allocated to the API group with high resource usage (1409-1). Based on the third processing model, the resource capacity allocated to the API group with high resource usage is used to limit the request message processing of the API group so that the critical number of processable request messages is within 1,000. Therefore, the API group with high resource usage can process a maximum of 1,000 request messages (1409-2).

此時,如上所述之各處理模型之應用並不限制於圖14中所示之順序,可根據與電子裝置100對應之管理者之輸入或各處理模型是否滿足預設之條件等來應用各處理模型。At this time, the application of each processing model described above is not limited to the order shown in Figure 14. Each processing model can be applied based on the input of the administrator corresponding to the electronic device 100 or whether each processing model meets the preset conditions.

圖11至圖14之示例可與圖4至圖10中記述之電子裝置100之動作相關聯地實行,圖11至圖14之示例係用於揭示本發明之一個示例,本發明之各種實施例不限定於圖11至圖14之示例形態,可根據能夠實現本發明之各種實施例之所有形態來實行。The examples of Figures 11 to 14 can be implemented in association with the actions of the electronic device 100 described in Figures 4 to 10. The examples of Figures 11 to 14 are used to disclose an example of the present invention. Various embodiments of the present invention are not limited to the example forms of Figures 11 to 14, and can be implemented according to all forms of various embodiments that can implement the present invention.

本說明書與圖式中所公開之本發明之實施例僅為用以容易地說明本發明之技術內容且幫助理解本發明之特定例,並非為了限定本發明之範圍。即,對於本發明所屬之技術領域內具有常識者而言,當然明白可實施基於本發明之技術思想之其他變化例。又,上述每個實施例可視需要而相互組合並運用。例如,本發明之所有實施例中,可將一部分相互組合,藉由系統而實現。The embodiments of the present invention disclosed in this specification and drawings are intended merely to illustrate the technical content of the present invention and to provide specific examples to facilitate understanding of the present invention. They are not intended to limit the scope of the present invention. In other words, those skilled in the art will readily appreciate that other variations based on the technical principles of the present invention can be implemented. Furthermore, each of the above embodiments can be combined and utilized as needed. For example, all of the embodiments of the present invention may be combined in part to implement a system.

又,本發明之系統等之方法能夠以藉由各種電腦機構而實行之程式命令形態來實現,且記錄於電腦可讀媒體。Furthermore, the system and methods of the present invention can be implemented in the form of program commands executed by various computer mechanisms and recorded in a computer-readable medium.

如上所述,於特定觀點下,本發明之各種實施例可於電腦可讀記錄媒體(computer readable recording medium)中實現為電腦可讀代碼(computer readable code)。電腦可讀記錄媒體係能夠儲存可藉由電腦系統而讀取之資料之任意資料儲存設備。電腦可讀記錄媒體之示例可包括:唯讀記憶體(read only memory,ROM)、隨機存取記憶體(random access memory,RAM)、光碟唯讀記憶體(compact disk-read only memory,CD-ROM)、磁帶(magnetic tape)、軟碟(floppy disk)、光資料儲存設備及載波(carrier wave)(藉由網際網路進行之資料發送等)。電腦可讀記錄媒體亦可藉由連接於網路之電腦系統而分散,因此以分散方式儲存並執行電腦可讀代碼。又,用以達成本發明之各種實施例之功能性程式、代碼及片段(segment)可由應用本發明之領域之熟練程式設計師容易地解釋。As described above, in certain aspects, various embodiments of the present invention may be implemented as computer-readable code in a computer-readable recording medium. A computer-readable recording medium is any data storage device capable of storing data that can be read by a computer system. Examples of computer-readable recording media may include read-only memory (ROM), random access memory (RAM), compact disk-read-only memory (CD-ROM), magnetic tape, floppy disk, optical data storage devices, and carrier waves (for data transmission over the Internet, etc.). The computer-readable recording medium can also be distributed by computer systems connected to a network, thereby storing and executing computer-readable codes in a distributed manner. In addition, the functional programs, codes, and segments used to implement various embodiments of the present invention can be easily interpreted by programmers skilled in the art of applying the present invention.

又,可知本發明之各種實施例之裝置及方法能夠以硬體、軟體、或硬體與軟體之組合之形態來實現。此種軟體例如可與是否可刪除或可再次記錄無關地儲存於如ROM等儲存裝置之揮發性或非揮發性儲存裝置、或例如RAM、記憶體晶片、裝置或積體電路之記憶體、或例如光碟(compact disk,CD)、DVD(Digital Versatile Disc,數位多功能光碟)、磁碟或磁帶等可光學或磁性地記錄並且可由機器(例如電腦)讀取之儲存媒體。可知本發明之各種實施例之方法可藉由包括控制部及記憶體之電腦或包括如上所述之記憶體或電腦之車輛等而實現,此種記憶體係包括實現本發明之實施例之命令之程式或可由適於儲存程式之機器讀取之儲存媒體的一例。Furthermore, it is understood that the devices and methods of various embodiments of the present invention can be implemented in the form of hardware, software, or a combination of hardware and software. Such software can be stored, for example, in a volatile or non-volatile storage device such as a ROM, or a memory such as a RAM, a memory chip, a device, or an integrated circuit, or a storage medium such as a compact disk (CD), a DVD (Digital Versatile Disc), a magnetic disk, or a magnetic tape that can be optically or magnetically recorded and read by a machine (e.g., a computer), regardless of whether the software is rewritable or erasable. It is understood that the methods of various embodiments of the present invention can be implemented by a computer including a control unit and a memory, or a vehicle including the memory or computer as described above. Such a memory is an example of a program including commands for implementing the embodiments of the present invention or a storage medium that can be read by a machine suitable for storing the program.

因此,本發明包括:用以實現本說明書之發明申請專利範圍中記載之裝置或方法之代碼的程式、及可由儲存此種程式之機器(電腦等)讀取之儲存媒體。又,此種程式可藉由如藉由有線或無線連接來傳輸之通訊信號之任意媒體而進行電子移送,本發明適當地包括其均等物。Therefore, the present invention includes a program as code for implementing the apparatus or method described in the invention claims of this specification, and a storage medium readable by a machine (such as a computer) storing such a program. Furthermore, such a program can be electronically transferred via any medium, such as a communication signal transmitted via a wired or wireless connection, and the present invention appropriately includes their equivalents.

又,可理解為上述說明之本發明之實施例僅為示例,於本領域內具有常識者可據此實現各種變化及均等範圍之實施例。因此,本發明之真正之技術保護範圍應根據以下之發明申請專利範圍而界定。Furthermore, it should be understood that the embodiments of the present invention described above are merely illustrative, and that those skilled in the art can implement various modifications and equivalent embodiments based thereon. Therefore, the true scope of technical protection for the present invention should be defined in accordance with the scope of the invention patent application below.

100: 電子裝置 200: 用戶裝置 210: 輸入/輸出部 220: 通訊部 230: 儲存器 240: 處理器 300: 伺服器裝置 301: 通訊設備 303: 控制部 305: 記憶體 401: 動作 403: 動作 500: 藉由與服務相關聯之一個以上之伺服器對自利用服務之複數個用戶獲得之請求資訊進行處理 600: 將自利用服務之複數個用戶獲得之請求資訊區分為於服務上對應於具有較高重要度之API組而獲得之請求資訊、及對應於具有較低重要度之API組而獲得之請求資訊,且可藉由與服務相關聯之一個以上之伺服器對對應於各API組而獲得之請求資訊進行處理 700: 將自利用服務之複數個用戶獲得之請求資訊區分為於服務上對應於具有較高資源使用量之API組而獲得之請求資訊、對應於具有中高等資源使用量之API組而獲得之請求資訊、及對應於具有較低資源使用量之API組而獲得之請求資訊,且藉由與服務相關聯之一個以上之伺服器對對應於各API組而獲得之請求資訊進行處理 800: 將自利用服務之複數個用戶獲得之請求資訊區分為對應於各用戶而獲得之請求資訊,且藉由與服務相關聯之一個以上之伺服器對對應於各用戶而獲得之請求資訊進行處理 801: 對應於根據識別資訊區分之特定用戶而獲得之請求資訊之個數不超過每1分鐘20個 803: 設定與一個以上之伺服器共同對應之一個外部快取 900: 防止藉由各伺服器對藉由服務而獲得之全部請求資訊藉由各伺服器進行處理 1001: 設定第1處理模型至第5處理模型之情形 1003: 設定可應用上述第1處理模型至上述第5處理模型之展示層(Facade Layer)構造 1005: Bucket4J核心(core)演算法 1101: 將第5處理模型設定為關(off) 1103-1: 每1分鐘需要處理之請求資訊之個數為100,000個以上之情形 1103-2: 將每1分鐘要處理之請求資訊之個數限制為10,000個以下 1201: 將第5處理模型設定為關 1203-1: 將每1分鐘要處理之請求資訊之個數限制為10,000個以內 1203-2: 將每1分鐘要處理之請求資訊之個數限制為10,000個以內 1205-1: 自用戶獲得之請求資訊之個數為每1分鐘20個以上、或用於自用戶獲得之請求資訊之輸入為每1分鐘20次以上之情形 1205-2: 將對應於該用戶之每1分鐘要處理之請求資訊之個數限制為20個以下 1301: 將第5處理模型設定為關 1303-1: 將每1分鐘要處理之請求資訊之個數限制為10,000個以內 1303-2: 將每1分鐘要處理之請求資訊之個數限制為10,000個以內 1305-1: 將對應於該用戶之每1分鐘要處理之請求資訊之個數限制為20個以下 1305-2: 將對應於該用戶之每1分鐘要處理之請求資訊之個數限制為20個以下 1307-1: 判斷為超過需要 1307-2: 將每單位時間要處理之請求資訊之個數限制為8,000個以下,對應於具有較高重要度之API組,於各伺服器中可每單位時間處理2,000個請求資訊 1401: 將第5處理模型設定為關 1403-1: 將每1分鐘要處理之請求資訊之個數限制為10,000個以內 1403-2: 將每1分鐘要處理之請求資訊之個數限制為10,000個以內 1405-1: 將對應於該用戶之每1分鐘要處理之請求資訊之個數限制為20個以下 1405-2: 將對應於該用戶之每1分鐘要處理之請求資訊之個數限制為20個以下 1407-1: 將每單位時間要處理之請求資訊之個數限制為8,000個以下,對應於具有較高重要度之API組,於各伺服器中可每單位時間處理2,000個請求資訊 1407-2: 將每單位時間要處理之請求資訊之個數限制為8,000個以下,對應於具有較高重要度之API組,於各伺服器中可每單位時間處理2,000個請求資訊 1409-1: 判斷為超過分配給具有較高資源使用量之API組之資源容量 1409-2: 基於第3處理模型,對應於分配給具有較高資源使用量之API組之資源容量,以可處理之請求資訊之臨界個數為1,000個以內之方式限制該API組之請求資訊處理,對應於具有較高資源使用量之API組,最多可處理1,000個請求資訊 100: Electronic device 200: User device 210: Input/output unit 220: Communication unit 230: Storage unit 240: Processor 300: Server device 301: Communication device 303: Control unit 305: Memory 401: Action 403: Action 500: Processing of request information received from multiple users utilizing the service by one or more servers associated with the service 600: Request information received from multiple users utilizing a service is divided into request information corresponding to a higher-importance API group and request information corresponding to a lower-importance API group on the service. The request information received corresponding to each API group may be processed by one or more servers associated with the service. 700: Separating request information received from multiple users utilizing a service into request information corresponding to API groups with high resource usage, request information corresponding to API groups with medium to high resource usage, and request information corresponding to API groups with low resource usage on the service, and processing the request information corresponding to each API group using one or more servers associated with the service. 800: Separating request information received from multiple users utilizing a service into request information corresponding to each user, and processing the request information corresponding to each user using one or more servers associated with the service. 801: The number of request messages received for a specific user identified by identification information is limited to 20 per minute. 803: Configuring an external cache associated with one or more servers. 900: Preventing each server from processing all request messages received by a service. 1001: Configuring the first through fifth processing models. 1003: Configuring the facade layer structure that applies the first through fifth processing models. 1005: Bucket4J core algorithm. 1101: Disabling the fifth processing model. 1103-1: Configuring the number of request messages processed per minute exceeding 100,000. 1103-2: Limit the number of request messages processed per minute to 10,000 or less. 1201: Set the fifth processing model to off. 1203-1: Limit the number of request messages processed per minute to 10,000 or less. 1203-2: Limit the number of request messages processed per minute to 10,000 or less. 1205-1: If the number of request messages received from a user is 20 or more per minute, or if the number of requests used to process request messages received from a user is 20 or more per minute, 1205-2: Limit the number of request messages processed per minute for that user to 20 or less. 1301: Set the fifth processing model to off. 1303-1: Limit the number of request messages processed per minute to 10,000. 1303-2: Limit the number of request messages processed per minute to 10,000. 1305-1: Limit the number of request messages processed per minute for this user to 20 or fewer. 1305-2: Limit the number of request messages processed per minute for this user to 20 or fewer. 1307-1: Determined to be excessive. 1307-2: Limit the number of requests processed per unit time to 8,000 or fewer. For high-priority API groups, each server can process 2,000 requests per unit time. 1401: Set the fifth processing model to Off. 1403-1: Limit the number of requests processed per minute to 10,000 or fewer. 1403-2: Limit the number of requests processed per minute to 10,000 or fewer. 1405-1: Limit the number of requests processed per minute for this user to 20 or fewer. 1405-2: Limit the number of requests processed per minute for this user to 20 or fewer. 1407-1: Limit the number of requests processed per unit time to 8,000 or fewer. For API groups with higher importance, each server can process 2,000 requests per unit time. 1407-2: Limit the number of requests processed per unit time to 8,000 or fewer. For API groups with higher importance, each server can process 2,000 requests per unit time. 1409-1: The resource capacity allocated to API groups with high resource usage has been determined to have been exceeded. 1409-2: Based on the third processing model, resource capacity allocated to API groups with higher resource usage will be used to limit request processing for that API group to a maximum of 1,000 request messages. Therefore, API groups with higher resource usage can only process a maximum of 1,000 request messages.

圖1係用以說明能夠實現各種實施例之用於資訊處理之電子裝置之動作方法的資訊處理系統之圖。 圖2係示出各種實施例之裝置節點之構成之圖。 圖3係示出實行本發明所提議之資訊處理方法之電子裝置之構造圖。 圖4係示出各種實施例之用於資訊處理之電子裝置之動作方法的圖。 圖5係示出設定請求資訊處理模型中包括之第1處理模型之一示例之圖。 圖6係示出設定請求資訊處理模型中包括之第2處理模型之一示例之圖。 圖7係示出設定請求資訊處理模型中包括之第3處理模型之一示例之圖。 圖8係示出設定請求資訊處理模型中包括之第4處理模型之一示例之圖。 圖9係示出設定請求資訊處理模型中包括之第5處理模型之一示例之圖。 圖10係示出用以將請求資訊處理模型應用於用於電子裝置100之動作之演算法中之層構造的一示例之圖。 圖11至圖14係示出基於包括第1處理模型至第5處理模型之請求資訊處理模型而處理請求資訊之一示例之圖。 Figure 1 is a diagram illustrating an information processing system capable of implementing the operating methods of an electronic device for information processing according to various embodiments. Figure 2 is a diagram illustrating the configuration of device nodes according to various embodiments. Figure 3 is a diagram illustrating the configuration of an electronic device for implementing the information processing methods proposed by the present invention. Figure 4 is a diagram illustrating the operating methods of the electronic device for information processing according to various embodiments. Figure 5 is a diagram illustrating an example of the first processing model included in the configuration request information processing model. Figure 6 is a diagram illustrating an example of the second processing model included in the configuration request information processing model. Figure 7 is a diagram illustrating an example of the third processing model included in the configuration request information processing model. Figure 8 is a diagram illustrating an example of the fourth processing model included in the configuration request information processing model. Figure 9 illustrates an example of the fifth processing model included in the configuration of the request information processing model. Figure 10 illustrates an example of a layer structure for applying the request information processing model to an algorithm for operating the electronic device 100. Figures 11 through 14 illustrate an example of processing request information based on the request information processing model including the first through fifth processing models.

401: 動作 403: 動作 401: Action 403: Action

Claims (13)

一種資訊處理方法,其係藉由電子裝置而處理請求資訊者,其包括如下步驟: 設定與藉由服務而獲得之請求資訊之處理相關之請求資訊處理模型;及 基於上述請求資訊處理模型中包括之至少一個處理模型,處理藉由上述服務而獲得之請求資訊; 上述請求資訊處理模型包括如下模型: 第1處理模型,其基於一個以上之伺服器中每單位時間被處理之請求資訊之個數等於或大於一第一數目之一第一條件被滿足,在與上述服務相關聯之該一個以上之伺服器中包括之各伺服器中,將每單位時間要處理之請求資訊之該個數限制為第1臨界個數以下;及 第2處理模型,基於對應於特定API組中每單位時間被處理之請求資訊之個數等於或大於一第二數目之一第二條件被滿足,其對應於將與上述服務對應之複數個APIs根據重要度來分類之複數個第一API組中之特定API組,於上述各伺服器中將每單位時間要處理之請求資訊之個數限制為第2臨界個數以下。 An information processing method for processing request information using an electronic device comprises the following steps: Setting a request information processing model related to processing request information obtained through a service; and Processing the request information obtained through the service based on at least one processing model included in the request information processing model; The request information processing model includes the following models: A first processing model, based on a first condition that the number of request information processed per unit time in one or more servers is equal to or greater than a first number, limits the number of request information to be processed per unit time in each of the one or more servers associated with the service to less than a first critical number; and The second processing model limits the number of request information to be processed per unit time on each of the servers to below a second threshold number, based on a second condition being satisfied: the number of request information processed per unit time for a specific API group in the plurality of first API groups categorized by importance for the plurality of APIs corresponding to the service is equal to or greater than a second threshold number. 如請求項1之資訊處理方法,其中上述請求資訊處理模型包括如下模型: 第3處理模型,其對應於將上述複數個APIs根據資源使用量來分類之複數個第二API組中包括之各API組,將要處理之各請求資訊之個數限制為為了上述各API組而設定之各臨界個數以下。 The information processing method of claim 1, wherein the request information processing model includes the following: A third processing model, corresponding to each API group included in a plurality of second API groups categorized by resource usage, limits the number of request messages to be processed to below a threshold number set for each API group. 如請求項1之資訊處理方法,其中上述請求資訊處理模型包括如下模型: 第4處理模型,其對應於上述服務之用戶而將每單位時間要處理之請求資訊之個數限制為第3臨界個數以下。 The information processing method of claim 1, wherein the request information processing model includes the following models: A fourth processing model, corresponding to users of the service, limits the number of request information to be processed per unit time to below a third critical number. 如請求項3之資訊處理方法,其中藉由與上述一個以上之伺服器共同對應之一個外部快取而確認自上述用戶每單位時間獲得之請求資訊之個數。The information processing method of claim 3, wherein the number of request information obtained from the user per unit time is confirmed by an external cache corresponding to the one or more servers. 如請求項3之資訊處理方法,其中基於上述用戶之識別資訊及上述用戶正在使用中之API之資訊,確認自上述用戶每單位時間獲得之請求資訊之個數。The information processing method of claim 3, wherein the number of request messages received from the user per unit time is determined based on the user's identification information and information about the API currently being used by the user. 如請求項5之資訊處理方法,其進而包括如下步驟: 藉由API標識符而確認上述API之資訊。 The information processing method of claim 5 further comprises the following steps: Identifying the API information using an API identifier. 如請求項1之資訊處理方法,其中上述請求資訊處理模型包括如下模型: 第5處理模型,其中斷藉由上述服務而獲得之全部請求資訊之處理。 The information processing method of claim 1, wherein the request information processing model includes the following models: A fifth processing model, comprising: processing all request information obtained through the service. 如請求項1之資訊處理方法,其中拒絕對如下之請求資訊進行處理:超過基於上述請求資訊處理模型中包括之各處理模型而限制之臨界個數。The information processing method of claim 1, wherein the processing of the following request information is refused: the request information exceeds a critical number limited by each processing model included in the above-mentioned request information processing model. 如請求項1之資訊處理方法,其進而包括如下步驟: 設定與上述請求資訊處理模型中包括之各處理模型對應之各處理模型狀態識別資訊;及 基於上述各處理模型狀態識別資訊,根據上述各處理模型而確認拒絕處理之請求資訊之個數。 The information processing method of claim 1 further comprises the following steps: Setting each processing model status identification information corresponding to each processing model included in the request information processing model; and Based on the each processing model status identification information, determining the number of request information that was rejected for processing according to each processing model. 如請求項1之資訊處理方法,其中上述至少一個處理模型係基於與上述電子裝置對應之管理者之第1輸入而選擇。The information processing method of claim 1, wherein the at least one processing model is selected based on a first input from a manager corresponding to the electronic device. 如請求項1之資訊處理方法,其中上述第1臨界個數及上述第2臨界個數係基於與上述電子裝置對應之管理者之第2輸入而設定。The information processing method of claim 1, wherein the first critical number and the second critical number are set based on a second input from an administrator corresponding to the electronic device. 如請求項1之資訊處理方法,其進而包括如下步驟: 設定與上述請求資訊處理模型對應之層構造;且 基於上述層構造,上述請求資訊處理模型應用於用於上述電子裝置之動作之演算法中。 The information processing method of claim 1 further comprises the following steps: Setting a layer structure corresponding to the request information processing model; and Based on the layer structure, applying the request information processing model to an algorithm for operating the electronic device. 一種電子裝置,其係處理請求資訊者,其包括: 處理器;及 一個以上之記憶體,其儲存一個以上之指令; 上述一個以上之指令於執行時,控制上述處理器以便實行如下步驟: 設定與藉由服務而獲得之請求資訊之處理相關之請求資訊處理模型;及 基於上述請求資訊處理模型中包括之至少一個處理模型,處理藉由上述服務而獲得之請求資訊; 上述請求資訊處理模型包括如下模型: 第1處理模型,其基於一個以上之伺服器中每單位時間被處理之請求資訊之個數等於或大於一第一數目之一第一條件被滿足,在與上述服務相關聯之該一個以上之伺服器中包括之各伺服器中,將每單位時間要處理之請求資訊之該個數限制為第1臨界個數以下;及 第2處理模型,基於對應於特定API組中每單位時間被處理之請求資訊之個數等於或大於一第二數目之一第二條件被滿足,其對應於將與上述服務對應之複數個APIs根據重要度來分類之複數個第一API組中之特定API組,於上述各伺服器中將每單位時間要處理之請求資訊之個數限制為第2臨界個數以下。 An electronic device that processes request information comprises: a processor; and one or more memories storing one or more instructions; when executed, the one or more instructions control the processor to perform the following steps: setting a request information processing model related to processing request information obtained through a service; and processing the request information obtained through the service based on at least one processing model included in the request information processing model; the request information processing model includes the following models: The first processing model limits the number of request information processed per unit time in each of the one or more servers associated with the service to below a first threshold number based on a first condition being satisfied that the number of request information processed per unit time in one or more servers is equal to or greater than a first number. The second processing model limits the number of request information processed per unit time in each of the one or more servers associated with the service to below a second threshold number based on a second condition being satisfied that the number of request information processed per unit time in a specific API group is equal to or greater than a second number.
TW114107719A 2022-09-15 2023-09-08 Operating method for electronic apparatus for processing information and electronic apparatus supporting thereof TWI894110B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220116220A KR102918498B1 (en) 2022-09-15 Operating method for electronic apparatus for processing information and electronic apparatus supporting thereof
KR10-2022-0116220 2022-09-15

Publications (2)

Publication Number Publication Date
TW202526783A TW202526783A (en) 2025-07-01
TWI894110B true TWI894110B (en) 2025-08-11

Family

ID=90275355

Family Applications (2)

Application Number Title Priority Date Filing Date
TW112134201A TWI879074B (en) 2022-09-15 2023-09-08 Operating method for electronic apparatus for processing information and electronic apparatus supporting thereof
TW114107719A TWI894110B (en) 2022-09-15 2023-09-08 Operating method for electronic apparatus for processing information and electronic apparatus supporting thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW112134201A TWI879074B (en) 2022-09-15 2023-09-08 Operating method for electronic apparatus for processing information and electronic apparatus supporting thereof

Country Status (2)

Country Link
TW (2) TWI879074B (en)
WO (1) WO2024058294A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040024817A1 (en) * 2002-07-18 2004-02-05 Binyamin Pinkas Selectively restricting access of automated agents to computer services
TW200731136A (en) * 2005-10-20 2007-08-16 Microsoft Corp Load balancing
US20090307353A1 (en) * 2008-06-10 2009-12-10 International Business Machines Corporation Requester-Side Autonomic Governor Method
US9313215B2 (en) * 2011-09-26 2016-04-12 Visa International Service Association Monitoring and limiting requests to access system resources
TW201722109A (en) * 2015-12-01 2017-06-16 廣達電腦股份有限公司 Server resource management system and management method thereof
WO2020000944A1 (en) * 2018-06-25 2020-01-02 星环信息科技(上海)有限公司 Preemptive scheduling based resource sharing use method, system and
CN113326107A (en) * 2020-02-28 2021-08-31 中科星图股份有限公司 Kubernetes cluster-based periodic task scheduling method and electronic equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634542B1 (en) * 2005-07-01 2009-12-15 Sprint Communications Company L.P. System and method to manage service instances for request processing
KR20080079343A (en) * 2006-12-15 2008-09-01 주식회사 케이티프리텔 Server and method for monitoring middleware server in mobile communication network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040024817A1 (en) * 2002-07-18 2004-02-05 Binyamin Pinkas Selectively restricting access of automated agents to computer services
TW200731136A (en) * 2005-10-20 2007-08-16 Microsoft Corp Load balancing
US20090307353A1 (en) * 2008-06-10 2009-12-10 International Business Machines Corporation Requester-Side Autonomic Governor Method
US9313215B2 (en) * 2011-09-26 2016-04-12 Visa International Service Association Monitoring and limiting requests to access system resources
TW201722109A (en) * 2015-12-01 2017-06-16 廣達電腦股份有限公司 Server resource management system and management method thereof
WO2020000944A1 (en) * 2018-06-25 2020-01-02 星环信息科技(上海)有限公司 Preemptive scheduling based resource sharing use method, system and
CN113326107A (en) * 2020-02-28 2021-08-31 中科星图股份有限公司 Kubernetes cluster-based periodic task scheduling method and electronic equipment

Also Published As

Publication number Publication date
TWI879074B (en) 2025-04-01
TW202526783A (en) 2025-07-01
KR20240037558A (en) 2024-03-22
WO2024058294A1 (en) 2024-03-21
TW202422451A (en) 2024-06-01

Similar Documents

Publication Publication Date Title
TWI901037B (en) Operating method for electronic apparatus for providing information and electronic apparatus supporting thereof
KR20240110915A (en) Operating method for providing information related to item and electronic apparatus supporting thereof
TWI890093B (en) Method for providing membership page, electronic device supporting the method, and non-transitory computer-readable recording medium comprising computer program for performing the method
TWI894110B (en) Operating method for electronic apparatus for processing information and electronic apparatus supporting thereof
TWI900910B (en) Operating method for electronic apparatus for providing information and electronic apparatus supporting thereof
TWI875282B (en) Operating method for electronic apparatus for providing information and electronic apparatus supporting thereof
KR102918498B1 (en) Operating method for electronic apparatus for processing information and electronic apparatus supporting thereof
TWI871045B (en) Operating method for electronic apparatus for providing information and electronic apparatus supporting thereof
TWI897071B (en) Operating method for electronic apparatus for providing information and electronic apparatus supporting thereof
TWI862111B (en) Operating method for electronic apparatus for providing information and electronic apparatus supporting thereof
TWI897086B (en) Operating method for electronic apparatus for providing service and electronic apparatus supporting thereof
KR102369857B1 (en) Operating method for electronic apparatus for providing advertisement message and electronic apparatus supporting thereof
TWI899784B (en) Operating method for electronic apparatus for configuring assignment of delivery task and electronic apparatus supporting thereof
TWI884898B (en) Operating method for electronic apparatus for performing cashe update and electronic apparatus supporting thereof
TWI905682B (en) Method for providing item information and electronic apparatus therefor
TWI900978B (en) Operating method for electronic apparatus for providing information and electronic apparatus supporting thereof
TWI908492B (en) Method and apparatus for providing item information
TWI904908B (en) Operating method for electronic apparatus for configuring performing of test and electronic apparatus supporting thereof
TWI902645B (en) Operating method for electronic apparatus for configuring information and electronic apparatus supporting thereof
TWI907574B (en) Operating method for electronic apparatus for providing advertisement message and electronic apparatus supporting thereof
TWI864836B (en) Operating method for electronic apparatus for providing information and electronic apparatus supporting thereof
TW202501272A (en) Operating method for electronic apparatus for transmitting data and electronic apparatus supporting thereof
TW202601489A (en) Operating method for electronic apparatus for configuring assignment of delivery task and electronic apparatus supporting thereof
TW202533144A (en) Operating method for electronic apparatus for providing information and electronic apparatus supporting thereof
TW202441419A (en) Operating method for electronic apparatus for managing transmission of information and electronic apparatus supporting thereof