TWI221435B - Method for optimizing timing control process parameters in chemical mechanical polishing - Google Patents
Method for optimizing timing control process parameters in chemical mechanical polishing Download PDFInfo
- Publication number
- TWI221435B TWI221435B TW90101454A TW90101454A TWI221435B TW I221435 B TWI221435 B TW I221435B TW 90101454 A TW90101454 A TW 90101454A TW 90101454 A TW90101454 A TW 90101454A TW I221435 B TWI221435 B TW I221435B
- Authority
- TW
- Taiwan
- Prior art keywords
- process parameters
- network
- parameter
- calculate
- polishing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000008569 process Effects 0.000 title claims abstract description 42
- 238000005498 polishing Methods 0.000 title claims abstract description 29
- 239000000126 substance Substances 0.000 title claims abstract description 10
- 238000013528 artificial neural network Methods 0.000 claims abstract description 8
- 238000000227 grinding Methods 0.000 claims description 19
- 238000002474 experimental method Methods 0.000 claims description 15
- 238000004458 analytical method Methods 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 11
- 238000005457 optimization Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000011160 research Methods 0.000 claims description 5
- 238000012549 training Methods 0.000 claims description 3
- 101100398584 Arabidopsis thaliana TT10 gene Proteins 0.000 claims 1
- 241000282376 Panthera tigris Species 0.000 claims 1
- 229910052785 arsenic Inorganic materials 0.000 claims 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims 1
- 238000001311 chemical methods and process Methods 0.000 claims 1
- 230000002079 cooperative effect Effects 0.000 claims 1
- 230000000875 corresponding effect Effects 0.000 claims 1
- 238000003801 milling Methods 0.000 claims 1
- 239000013077 target material Substances 0.000 claims 1
- 238000012360 testing method Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000013401 experimental design Methods 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 241001122767 Theaceae Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
1221435 _____________ A7 ----—-— B7 _ 五、發明說明(/) 【發明所屬之技術領域】 、本發明係為一種化學機械研磨時控製程參數最佳化方 法,將田口實驗法與類神經網路結合來模擬求取CMp之製 fee又定中之最佳苓數組,在縮短研磨時間之下,提供 更佳之研磨效果。 八 【先前技術】 化學機械研磨(Chemical Mechanical Polishing, C Μ P)製程乃是使用含有微細研磨拋光粉粒之化學研磨液, 配合研磨塾之機械運動來進行化學敍刻與機械抛光,以達 到研磨的效果,近年來由IBM公司率先將此技術之改良, 應用於半導體之製程上,突破了半導體工業上晶圓製作的 瓶頸,得到相當不錯的平坦效果。 一在半導體之製程中,最重要的部份為沉積、微影與蝕 刻三大技術,而CMP之製程技術是晶圓的平坦化的主要輔 $技術,一個沉積層的解析度與微影製程中圖形轉移是否 70正,都間接或直接受到晶圓平坦化的影響,尤其是積體 電路的多重金屬線製程與其所牵涉晶圓平坦化問題,乃是 VLSI製程技術向前推進之重大挑戰之一。當超大型積體電 路之導線寬達到0.25微米以下時,CMp也是現今唯一能提 ί、王面性平坦化(Global pianarizati〇n),,之技術,因此 為目刖全球半導體業界與研究機關競相發展 、致力開發研 究之技術。 CMP製程包括了化學反應與機械運動的影響,其作用 過程中之諸多影響因素有;晶圓載具之轉速、晶片施壓之 • — — III— 1---- (請先閱讀背面之注意事項再填寫本頁) 訂· · 3 五、發明說明(y) 大小、研敷供應速率與研敗之PH值等等,皆 結果產生極大的影響,對於苴紫 曰、磨之 pUD & ,、衣%方面做精確的控制,佶 之製程能進行適當的磨除,避免過多或過少的移除, 亦為CMP製程技術中重要的課題之_, 占、 (End Point DeteetiQn)問題。 U 制 終點偵測傳統方法是以離線方式來進行,離線量測之 &點輕確度高,’㈣其離線方式㈣之缺點亦造成移除 之過量或不足’是故現階段皆朝線上即時量測的方向進行 、’又由於CMP乃為一種極具動態之過程,使用線上即時量 測的方式將會較符合需求。其方式包括有·· 1·馬達電流法(Motor current method); 2. 研磨墊溫度變化法(pad thermal丨贴狀); 3. 光學法(Optic interfer ⑽ eter meth〇d); 4·聲波法(Acoustic method); 5·振動法(Small vibration method)。 以上之終點偵測技術雖依據不同之原理來達到偵測終 點,但皆必需結合精確之閉迴路(cl〇se 1〇〇p)製程控制技 術,然至目前為止,真正即時閉迴路製程控制技術尚不多 見’因此如何結合精確之線上監控與終點偵測技術,發展 即時閉迴路製程控制技術以增加產能並降低成本,即為本 發明之基本精神。 【發明内容】 本發明之主要目的在於提供一種化學機械研磨時控製 程參數最佳化方法,在考慮時間因素對其移除率與平坦度 4 12214351221435 _____________ A7 ----——-— B7 _ V. Description of the invention (/) [Technical field to which the invention belongs] The present invention is a method for optimizing control process parameters during chemical mechanical polishing. The combination of neural network is used to simulate and obtain the best lingling array in the system of CMP. It can provide better grinding effect under the shortening of grinding time. [Previous Technology] The chemical mechanical polishing (CMP) process is to use a chemical polishing liquid containing fine grinding and polishing powder particles, and perform mechanical engraving and mechanical polishing with the mechanical movement of the grinding wheel to achieve grinding. In recent years, IBM has taken the lead in improving this technology and applied it to the semiconductor manufacturing process, breaking through the bottleneck of wafer manufacturing in the semiconductor industry and obtaining a fairly good flat effect. First, in the semiconductor manufacturing process, the most important parts are the three major technologies of deposition, lithography, and etching. The CMP process technology is the main auxiliary technology for wafer planarization, and the resolution of a deposition layer and the lithography process. Whether the pattern transfer in China is 70% is directly or indirectly affected by wafer planarization, especially the multi-metal wire process of integrated circuits and the wafer planarization involved. This is a major challenge for VLSI process technology to advance. One. When the wire width of ultra-large integrated circuits reaches less than 0.25 micrometers, CMP is also the only technology that can be used today, Global pianarization. Therefore, the global semiconductor industry competes with research institutions for the global semiconductor industry. Develop and commit to research and development technology. The CMP process includes the effects of chemical reactions and mechanical movements. There are many influencing factors in the process; the speed of the wafer carrier and the pressure of the wafer • — — III — 1 ---- (Please read the precautions on the back first (Fill in this page again) Revision · · 3 V. Description of the invention (y) The size, supply rate of research application and PH value of research failure, etc., all have a great impact on the results, for PUD & In order to accurately control the clothing, the process can be properly ground to avoid too much or too little removal. It is also an important issue in the CMP process technology. It is a problem of End Point DeteetiQn. The traditional method of U-end point detection is performed offline. The & point of offline measurement is highly accurate. The disadvantage of '㈣its offline method' also causes excessive or insufficient removal. The direction of measurement is' and because CMP is a very dynamic process, the use of online real-time measurement will be more in line with demand. The methods include: 1. Motor current method; 2. Pad thermal method (pad thermal); 3. Optical method (Optic interfer ⑽ eter method); 4. Sonic method (Acoustic method); 5. · Small vibration method. Although the above endpoint detection technologies are based on different principles to achieve the detection endpoint, they must all be combined with accurate closed loop (close 100p) process control technology. However, until now, true real-time closed loop process control technology It is rare to see how to combine accurate on-line monitoring and endpoint detection technology to develop real-time closed-loop process control technology to increase production capacity and reduce costs, which is the basic spirit of the present invention. [Summary of the Invention] The main purpose of the present invention is to provide a method for optimizing control process parameters during chemical mechanical polishing, taking into account the time factor for its removal rate and flatness. 4 1221435
五、發明,說明(^ 的影響,同時不需改纟弟目 有機σ #構與增加其它量測設備Fifth, the invention, explain the impact of (^, without the need to change the head of the organic σ # structure and add other measurement equipment
Tl^〇VER ^ Γ 制作為研磨終點之模式,而能達到最高移除率與 取小不均勻度之研磨目的。 【實施方式】 本發明之化學機械研磨時控製程參數最佳化方法所使 用之技術手段在於以類神經田口實驗法來進行實驗設計分 斤與製程模式之建構,其詳細内容請配合圖表,參照以下 之說明。 人所°胃犬員神t田口貝驗法乃是結合類神經網路與田口實 鲂法之有效糸統模擬與參數設定工具,其在參數設計上進 行CMP製程參數之最佳化之步驟如下: 1·以田口法設計與引導實驗: 進行實驗之材料主要為較易取得之氧化層,選取四個 較重要且可調整的製程參數當作控制變因其分別為: A_晶片施壓大小(Down Force) Β·研磨平台轉速(Platen Speed) C·研磨漿成份(Solid content) D.研磨墊背壓(Back pressure) (E.研磨時間(p〇iishing time)) 而移除率(Removal rate)與研磨壓力及研磨速度之關 係如 preston equation 中所示: 裝--------訂--------# (請先閱讀背面之注意事項再填寫本頁)Tl ^ 〇VER ^ Γ is made as the mode of grinding end point, which can achieve the highest removal rate and the purpose of grinding with small unevenness. [Embodiment] The technical method used in the optimization method of the control process parameters in the chemical mechanical polishing of the present invention is to construct the experimental design weighting and process mode by using the neural-like Taguchi experiment method. For details, please refer to the chart and refer to The following description. The Takaguchi test method is a valid system simulation and parameter setting tool that combines neural-like network and Taguchi method. The optimization steps of CMP process parameters in parameter design are as follows: : 1. Design and guide experiments by Taguchi method: The materials used for the experiments are mainly oxide layers that are easier to obtain. Four more important and adjustable process parameters are selected as control variables. They are: A_ Wafer pressure (Down Force) B. Platen Speed C. Grinding Slurry Composition D. Back Pressure (E. Polishing Time) and Removal Rate The relationship with the grinding pressure and grinding speed is shown in the preston equation: -------- Order -------- # (Please read the precautions on the back before filling this page)
Removal rateRemoval rate
AH Δ/AH Δ /
kp * Pkp * P
HeHe
As △ t 5 五、發明說明(V) 其中ΔΗ:表面高度變化 △ t :研磨時間 Kp :研磨參數 Ρ :研磨壓力 A S/ Δ t 所Μ墊相對於晶片之線性速度 因此移除率與研磨壓力和研磨速度成正比,且 equat咖中研磨壓力之計算乃是晶片下壓力除以 研磨墊的接觸面積,因此隨著研磨時間的不同,晶片之表 面均勾度將會不同’其接觸面積也必將改變,使晶片之下 壓力隨之改變’因此可以推論材料移除率(MateriaI rem〇val rate,_與曰曰曰卩表面不均自度㈣hin Wafer N_lf_lty,W麵)為研磨時間之函數,因此時間被 選為第5個控制變因來建構更完整之_製程模式(eAs △ t 5 V. Description of the invention (V) where ΔΗ: surface height change △ t: polishing time Kp: polishing parameter P: polishing pressure AS / Δ t The linear velocity of the M pad relative to the wafer and therefore the removal rate and polishing pressure It is directly proportional to the polishing speed, and the calculation of the polishing pressure in equat coffee is the wafer pressing force divided by the contact area of the polishing pad. Therefore, as the polishing time is different, the average surface hook of the wafer will be different. Will change, so that the pressure under the wafer changes accordingly. Therefore, it can be inferred that the material removal rate (MateriaI rem〇val rate, _ and 卩 不 surface uneven self-degree ㈣ hin Wafer N_lf_lty, W surface) is a function of polishing time, Therefore, time was selected as the fifth control variable to build a more complete _ process model (e
Polishing time)。 在實驗設計上選定如表—所示之L25( 55)直交表,並中 5行代表A~E 5個控制變因,而25列中每—列則代表ς文 實驗之5個控制變因之水準值,實驗中所需觀察之猶具 有望大特性(the bigger the better)而WIWNU則具有望 小特性(the smaller the better)。兩者之計算方^如$ (1) 使用光學薄膜測厚儀量測研磨前晶圓之厚度量測 9點,並令其值為t!; (2) 研磨T分鐘後,再量測研磨後晶圓的厚度“; (3) 研磨速率,各點研磨速率之平均值即為 6 1221435Polishing time). In the experimental design, the L25 (55) orthogonal table as shown in the table is selected, and the 5 rows represent the 5 control variables of A to E, and each of the 25 columns represents the 5 control variables of the experimental study. The level of the value, the observation required in the experiment still has the bigger the better, and WIWNU has the smaller the better. The calculation method of the two is as follows: (1) Use an optical film thickness gauge to measure the thickness of the wafer before grinding and measure 9 points, and make the value t !; (2) After grinding for T minutes, measure the grinding The thickness of the rear wafer "; (3) the polishing rate, the average value of the polishing rate at each point is 6 1221435
五、發明說明(f) 該次實驗之MRR ; (4)WIWNU=(t2 的標準差 σ )/(·^ 的平均值 mean)*1〇〇% 又由於WIWNU必需於研磨後厚度相近時比較才有意義 ,因此進一步以t2之標準差〇r來取代WIW,找出使 WIWNU符合所求之最佳參數。 2 ·訊號雜音比分析: 影響製程性能之主要因子為控制因子(c〇n计 factor)與雜音分子(noise fact〇r),田口式的實驗設計 ^式以訊號雜音比(S / N)比來作為衡量產品或製程品值好 壞之性能指標’ S/N比愈高表示品f愈穩定,系統的機能 較接近理想的目標。 对之製程技術而 攸1父表之規劃進行實驗後 、,先針對每一個實驗分別計算出其相對應之抓即與〇標準 差之(S/Ν)比,其值如表二所示,然後計算各因素之效果 製成回應表(表三與表四)及回應圖(第一圖與第二圖),最 後進行變異數分析(Analysis Wi贿,棚Μ)。回 應表之功能乃是在說明㈣子在不同水準下之效果,回應V. Description of the invention (f) MRR of this experiment; (4) WIWNU = (standard deviation of t2 σ) / (· ^ mean mean) * 100%, and because WIWNU must be compared when the thickness is similar after grinding Only makes sense, so further replace WIW with the standard deviation of t2, find the best parameters to make WIWNU meet the requirements. 2 · Signal-to-noise ratio analysis: The main factors that affect process performance are the control factor (factor) and noise fact (factor). The experimental design of Taguchi's formula is based on the signal-to-noise ratio (S / N) ratio. As a performance indicator to measure the value of a product or process, the higher the S / N ratio, the more stable the product f, and the closer the system's performance is to the ideal target. After experimenting on the process technology and the planning of the parent table, first calculate the corresponding ratio (S / N) to 0 standard deviation for each experiment. The values are shown in Table 2. Then calculate the effect of each factor to make a response table (Table 3 and Table 4) and a response chart (the first chart and the second chart), and finally perform the analysis of variation number (Analysis Wi bribe, shed M). The function of the response table is to explain the effectiveness of Xunzi at different levels.
圖則顯示出各因子在不同水準間效果變化之趨勢,而變I 數分析則是找出各因子的貢獻度,因此由s/N的回應表盘 回應圖中可以清楚地看出每個因子在實驗過程範圍裡,產 ^/N比最大之水準值,亦即此因子之最佳水準,將每個 wIWNr^在最佳水準的組合條件下,即為相對於瞻與 IWNU之敢佳參數組合。 由弟-圖中可以找出A5B5CiD5Ei為針對mrr之局部最 1221435 五、發明說明(t) =進數°又疋f :而由第二圖中可找出祕⑽必為針對t2 私準呈之局部最佳參數設定值。 來r表^^為_與们刪之變異數分析,以本發明 - ”析可以找出每個因子在設定範圍内對於提 ' =低:標準差(可視為WI_有多少的貢獻度 (E = f 之參考。表五中顯示背㈣)與時間 =R之影響相對小於其它因子,至於移除後之厚 度才示準差則5個控制變因皆有一定程度之影塑。 3.CMP製程模型(Model)之建立·· 曰 呈二程技術為一極複雜的系統,因此本發明擬以 系統而言,較簡單之直交表往往益::_對,雜的 又表彺彺無法提供類神經網路充分 東樣本,在本發明中,以表2之實驗數據為訓練樣本 ’ Γ:?本設定在正負0·8之間,來建立類神經網路 二=不式之網路如第三圖,所用之學習方法為— I備有不而人為方式去調整學習參數與慣性因子之學羽 =二調學習法則,在網路訓練時,以表一之控制變因: 輸入,移除率與研磨後厚度標準差分別為兩個輸出項 ,然因隱與厚度標以分別具有相反之望大性質及1 性質,因此定義目標函數: a^MRR (S / N) + STDEV (S / N) 以概括匿與厚度標準差(s贿),建立一個 麵與画之⑽製程模型,其中之晴 (s/N)在求取最佳參數(S/N)時皆是愈大愈好,因此目把失 裝 (請先閱讀背面之注意事項再填寫本頁) 訂· 8 五、發明說明(γ ) 數,最大化乃是參數調整之方向,又由於CMP製程中主要 目標為快速移除且確保WIWNU於所要求之範圍内,因此將 a設為0· 6,b設為〇· 4。 4 ·製程參數最佳化: ”直=表之各水準值間並非連續性,以s/N分析所獲得 的最佳參數仍是較粗略的估計,如第三圖之CMp製程乃是 將順與STDEV並入寺量,因此最佳參數並無法由S/N比 之刀析中求得,若欲得更精確的最佳參數組合則必需以所 建立之類神經網路MRR_S贿㈣為卫具,並利用最佳參 數設計法來進行參數最佳化之微調功能,其參數微調化之 步驟如下: (1) 將S/N比分析所獲得之局部最佳MRR與STDEV參 數值輸人路,計算網路輸出值,該網路輸出值為 (J)max ° (2) 在(J)max附近計算3⑺/碰值,並在允許有效範圍 内改變Xi以增加δ⑺鑛·,若a⑺/肪為正,則增加xi,若 3〇/)/视為負,則減少xi,當xi無法改變時,跳到步驟⑷ ’其中Xi代表網路之輸入因子。 (3) 利用類神經網路計算j。當J>Jmax,令Jmax=j, 並回到步驟(2)。 (4) 所求之參數即為針對MRR與STDEV之最佳參數值 依上述步驟,最佳參數可設定為:The graph shows the trend of the effect of each factor at different levels, and the variable I analysis is to find the contribution of each factor. Therefore, from the response chart of the s / N, it can be clearly seen that each factor is In the range of the experimental process, the level of the maximum yield ^ / N ratio, that is, the optimal level of this factor, and the combination of each wIWNr ^ under the optimal level is the relative parameter combination of Zhan and IWNU . From the figure, you can find that A5B5CiD5Ei is the local best for mrr. 1221435 V. Description of the invention (t) = number of degrees ° and 疋 f: From the second figure, the secret can be found for t2. Local optimum parameter setting value. Let's use the table to analyze the variation number of _ and we delete. Using the present invention-"analysis can find out that each factor within the set range contributes to the improvement of '= low: standard deviation (can be regarded as how much WI_ has contributed ( The reference of E = f. Table 5 shows the backlash) and the effect of time = R is relatively smaller than other factors. As for the thickness after removal, the standard deviation is shown. The 5 control variables all have a certain degree of shadowing. 3.CMP The establishment of the process model (Model) ... Said that the two-pass technology is a very complicated system, so the present invention is intended to be based on the system. The simpler orthogonal tables are often beneficial: The neural network-like sample is sufficient. In the present invention, the experimental data of Table 2 is used as a training sample. 'Γ :? This is set between positive and negative 0 · 8 to build a neural network-like two = informal network such as In the third picture, the learning method used is-I have a manual method to adjust the learning parameters and the inertia factor = the two-tune learning rule. During network training, use the control variables shown in Table 1: Input, shift The removal rate and the standard deviation of the thickness after grinding are two output terms. Do n’t have the opposite nature and 1 nature, so define the objective function: a ^ MRR (S / N) + STDEV (S / N) to summarize the standard deviation of thickness and thickness (s bribe), and establish a face and a picture The process model, in which the sunny (s / N) is as large as possible when obtaining the optimal parameters (S / N), so it is out of order (please read the precautions on the back before filling this page). Order · 8 V. Description of the invention (maximum number), the maximization is the direction of parameter adjustment, and because the main goal in the CMP process is to quickly remove and ensure that WIWNU is within the required range, a is set to 0, 6, b Set to 0.4. 4 Optimization of process parameters: Straight = The levels in the table are not continuous. The best parameters obtained by s / N analysis are still rough estimates, as shown in the third figure. The CMp process is to incorporate Shun and STDEV into the temple. Therefore, the optimal parameters cannot be obtained from the S / N ratio analysis. If a more accurate optimal parameter combination is required, a neural network such as the one established must be used. MRR_S is used as a guard, and the fine-tuning function of parameter optimization is performed by using the best parameter design method. The steps are as follows: (1) Input the local optimal MRR and STDEV parameter values obtained from the S / N ratio analysis into the human path, and calculate the network output value. The network output value is (J) max ° (2) at (J ) Calculate 3⑺ / touch value around max, and change Xi within the allowable effective range to increase δ⑺ ore. If a⑺ / fat is positive, increase xi. If 3 //) is considered negative, decrease xi. When xi If it cannot be changed, skip to step ⑷ 'where Xi represents the input factor of the network. (3) Calculate j using neural network. When J > Jmax, let Jmax = j, and return to step (2). (4) The required parameter is the optimal parameter value for MRR and STDEV. According to the above steps, the optimal parameter can be set as:
Solid content : 20% 9 1221435 五 發明說明(Solid content: 20% 9 1221435 V. Description of the invention (
Down force : 8.OpsiDown force: 8.Opsi
Back pressure : 3.2psiBack pressure: 3.2psi
Plsten speed. · 41 rpmPlsten speed.41 rpm
Polishing time : 42sec 其中42Sec之物理意義為當发 可停止研磨,此時能產生最大 ;、sed即 5.驗證實驗: 半〇取小之不均勾度。 焉双實驗乃採用前述類神經田口 e 行實驗,並對照國家毫微米元件實目仵之取t茶數進 參數,如表七所示,Μ^目㈣使用之原始 ,、T Larrier speed 與 兩項參數,對MRR與WIWNU之影變不〇n 組合中仍Μ原始數據作設^。 U此取仏参數 由表七之實驗結果可知’在晶 (咖)合乎要求之情形下,本發明中找出之針:= 材枓之最佳參數組,確實可在研磨時間縮短ι/3之下,^ 到快速研磨之目的。而對於其它異於氧化層之材質亦可用 相同之流程找出個狀最佳參數組合及研料間,換言之 ’在不需更新機台設備下,除可選取CMp製程之最佳化史 數組合之外,以亦可作為⑽終點偵測之有效工具,無論 就其成本考量或成效上來看’皆有其發展之高度可行性: 經濟效益’實為—優異之發明’因此具文中請發明專利。 【圖式簡單說明】 回應圖 第一圖··本發明中之方法針對MRR之 10 1221435 A7 B7 五、發明說明(I) 第二圖:本發明中之方法針對STDEV之回應圖。 第三圖:本發明之方法中模擬CMP製程之類神經 網路架構簡單示意圖。 【主要元件符號說明】 (無) ---1------AWII .— (請先閱讀背面之注意事項再填寫本頁) 訂Polishing time: 42sec Among them, the physical meaning of 42Sec is that it can stop grinding when it is sent, and at this time, it can produce the maximum;, sed is 5. Verification experiment: Take half of the small uneven hook.焉 The double experiment is to use the aforementioned neural Taguchi e experiment and compare the t tea number into the parameters of the real nanometer component of the country. As shown in Table 7, the original value used for M ^ eye, T Larrier speed and two This parameter sets the original data in the combination of MRR and WIWNU's shadow change. U This parameter can be found from the experimental results in Table 7. 'In the case where the crystal (coffee) meets the requirements, the needle found in the present invention: = the optimal parameter set of the material, can indeed shorten the grinding time / 3 Below, ^ to the purpose of rapid grinding. For other materials that are different from the oxide layer, the same process can be used to find the optimal parameter combination and research room for the shape. In other words, without the need to update the machine equipment, in addition to the optimization history and number combination of the CMP process can be selected In addition, it can also be used as an effective tool for end-point detection. Regardless of its cost considerations or effectiveness, 'all have high feasibility of its development: economic benefits' actually-excellent inventions'. Therefore, the invention patent is requested in the text. . [Brief description of the diagram] Response diagram The first diagram ... The method of the present invention is directed to MRR 10 1221435 A7 B7 5. Description of the invention (I) The second diagram: The response diagram of the method of the present invention directed to STDEV. Third diagram: A simple schematic diagram of a neural network architecture such as a CMP process in the method of the present invention. [Description of main component symbols] (None) --- 1 ------ AWII .— (Please read the precautions on the back before filling this page) Order
I 11 1221435 A7 B7 五、發明說明(/〇) 表 1 L25(55)直交表(orthogonal array) V ίτ ) A B C D E 列\ A B C D E Solid Content (wt%) Down Force (psi) Back Pressure (psi) Platen Speed (rpm) Time (sec) I 1 1 1 1 1 5% 4 0 20 40 2 1 2 2 2 2 5% 5 1 30 45 3 1 3 3 3 3 5% 6 2 40 50 4 1 4 4 4 4 5% 7 3 50 55 5 1 5 5 5 5 5% 8 3.5 60 60 6 2 1 4 2 3 10% 4 3 30 50 7 2 2 5 3 4 10% 5 3.5 40 55 8 2 3 1 4 5 10% 6 0 50 60 9 2 4 2 5 1 10% 7 1 60 40 10 2 5 3 1 2 10% 8 2 20 45 11 3 1 2 3 5 15% 4 1 40 60 12 3 2 3 4 1 15% 5 2 50 40 13 3 3 4 5 2 15% 6 3 60 45 14 3 4 5 1 3 15% 7 3.5 20 50 15 3 5 1 2 4 15% 8 0 30 55 16 4 1 5 4 2 20% 4 3.5 50 45 17 4 2 1 5 3 20% 5 0 60 50 18 4 3 2 1 4 20% 6 1 20 55 19 4 4 3 2 5 20% 7 2 30 60 20 • 4 5 4 3 1 20% 8 3 40 40 21 5 1 3 5 4 25% 4 2 60 55 22 5 2 4 1 5 25% 5 3 20 60 23 5 3 5 2 1 25% 6 3.5 30 40 24 5 4 1 3 2 25% 7 0 40 45 25 5 5 2 4 3 25% 8 1 50 50 (請先閱讀背面之注意事項再填寫本頁) 士蜞在P疳;吞田士颉闵它拷淮Δ λ i目4欠/r 9 1 η Y 9Q7 /入登、 1221435 A7 B7 五、發明說明(//) 表2實驗結果與訊號雜音比(S/N Ratio) L25(55) MRR (S/N) STDEV (S/N) A B C D E (A/S) (/2) 1 1 1 1 1 1 9.14 19.22 137.540 17.23 2 1 2 2 2 2 14.5 23.23 109.591 19.20 3 1 3 3 3 3 16.34 24.26 99.567 20.04 4 1 4 4 4 4 20.31 26.15 128.673 17.81 5 1 5 5 5 5 20.55 26.26 98.534 20.13 6 2 1 4 2 3 16.09 24.13 51.999 25.68 7 2 2 5 3 4 23.45 27.4 152.866 16.31 8 2 3 1 4 5 28.92 29.22 298.643 10.50 9 2 4 2 5 1 34.64 30.79 88.683 21.04 10 2 5 3 1 2 22.51 27.05 112.108 19.01 11 3 1 2 3 5 19.44 25.77 92.238 20.70 12 3 2 3 4 1 27.68 28.84 114.126 18.85 13 3 3 4 5 2 36.89 31.34 114.363 18.83 14 3 4 5 1 3 22.11 26.89 55.401 25.13 15 3 5 1 2 4 31.84 30.06 110.232 19.15 16 4 1 5 4 2 20.44 26.21 100.058 19.99 17 4 2 1 5 3 29.22 29.31 169.638 15.41 18 4 3 2 1 4 18.37 25.28 167.419 15.52 19 4 4 3 2 5 28.72 29.16 114.870 18.80 20 4 5 4 3 1 39.28 31.88 69.075 23.21 21 5 1 3 5 4 23.25 27.33 113.494 18.90 22 5 2 4 1 5 17.1 24.66 46.615 26.63 23 5 3 5 2 1 25.74 28.21 52.903 25.53 24 5 4 1 3 2 34.59 30.78 139.578 17.10 25 5 5 2 4 :3 44.11 32.89 206.076 13.72 1IIII — — — — I --- (請先閱讀背面之注意事項再填寫本頁) · 13 1221435 A7 B7 五、發明說明( 表3針對MRR之回應表 MRR之回應表 因子 水準 A B C D E Solid Content (wt%) Down Force (psi) Back Pressure (psi) Platen Speed (rpm) Jime (sec) 1 23.80363 24.53263 27.71867 24.62076 27.78998 2 27.71891 26.68942 27.59314 26.95966 27.72017 3 28.58194 27.66443 27.32932 28.02038 27.49836 4 28.37092 28.75611 27.63418 28.66399 27,24576 5 28.77449 29.60729 26.97457 28.9851 26.99562 -IIIIIIII — I · I I . (請先閱讀背面之注意事項再填寫本頁) 訂·- ^ 4® m (/^XTC\ /ΌΐΠν 9Q7 /N ^ ^ 1221435 A7 _ B7 五、發明說明(丨夕) 表4針對t2標準差之回應表 乜標準差之回應表 \^因子 水準\\ A B C D E Solid Content (wt%) Down Force (psi) Back Pressure (psi) Platen Speed (rpm) Time (sec) 1 18.88245 20.50176 15.8791 20.7043 21.17418 2 18.50823 19.28189 18.03852 21.6729 18.82889 3 20.53432 18.08461 19.11871 19.4741 19.99524 4 18.58753 19.97647 22.43348 16.8772 17.54044 5 20.37666 19.04445 21.41936 20.6428 19.35043 Γ-裝----- (請先閱讀背面之注意事項再填寫本頁) ·- /mrc、λ / mrw 9Q7 八卷、 1221435 A7 B7 五、發明說明(丨f) 表5 針對MRR之變異數分析結果 因子 平方和 自由度 均方和 貢獻度 A 86.2601 4 21.565 37.5417 B 77.4767 4 19.3692 33.719 C 1.83596 4 0.45899 0.79904 D 62.0033 4 15.5008 26.9848 E 2.19542 4 0.54886 0.95548 總和 229.771 20 100 — — III— .裝--------訂·-------# (請先閱讀背面之注意事項再填寫本頁) lb 1221435 A7 Β7 五、發明說明(^) 表6針對STDEV之變異數分析結果 因子 平方和 自由度 均方和 貢獻度 A 19.8066 4 4.95164 6.93045 B 17.0717 4 4.26793 5.97351 C 138.034 4 34.5086 48.2991 D 74.4472 4 18.6118 26.0496 .E 36.4308 4 9.10771 12.7474 總和 285.791 20 100 (請先閱讀背面之注意事項再填寫本頁) '1 1221435 A7 _B7 五、發明說明(1 t) 表7最佳參數確認實驗 最佳參數確認實驗 原始參數 最佳參數 Solid Content 15 % 20% Down Force 7 psi 8 psi M Back Pressure 3 psi 3.2 psi Platen Speed 20 rpm 41 rpm Carrier Speed 25 rpm 25 rpm Oscillation Speed 1 mm/sec 2 mm/sec Time 60s A2s 平均移除量 15992 A 1897.9 4 移除後平均厚度 3509.9 / 3149.9 / 移除後厚度標準差 112.2 / US.OA 實驗之MRR値 26.65 A/s 45Λ9 A/s 實驗之WIWNU値 3.1963 % 3.7506 % -----------Aw- I --- (請先閱讀背面之注意事項再填寫本頁) . #·I 11 1221435 A7 B7 V. Description of the invention (/ 〇) Table 1 L25 (55) orthogonal array V ίτ) ABCDE column \ ABCDE Solid Content (wt%) Down Force (psi) Back Pressure (psi) Platen Speed (rpm) Time (sec) I 1 1 1 1 1 5% 4 0 20 40 2 1 2 2 2 2 5% 5 1 30 45 3 1 3 3 3 3 5% 6 2 40 50 4 1 4 4 4 4 5 % 7 3 50 55 5 1 5 5 5 5 5% 8 3.5 60 60 6 2 1 4 2 3 10% 4 3 30 50 7 2 2 5 3 4 10% 5 3.5 40 55 8 2 3 1 4 5 10% 6 0 50 60 9 2 4 2 5 1 10% 7 1 60 40 10 2 5 3 1 2 10% 8 2 20 45 11 3 1 2 3 5 15% 4 1 40 60 12 3 2 3 4 1 15% 5 2 50 40 13 3 3 4 5 2 15% 6 3 60 45 14 3 4 5 1 3 15% 7 3.5 20 50 15 3 5 1 2 4 15% 8 0 30 55 16 4 1 5 4 2 20% 4 3.5 50 45 17 4 2 1 5 3 20% 5 0 60 50 18 4 3 2 1 4 20% 6 1 20 55 19 4 4 3 2 5 20% 7 2 30 60 20 • 4 5 4 3 1 20% 8 3 40 40 21 5 1 3 5 4 25% 4 2 60 55 22 5 2 4 1 5 25% 5 3 20 60 23 5 3 5 2 1 25% 6 3.5 30 40 24 5 4 1 3 2 25% 7 0 40 45 25 5 5 2 4 3 25% 8 1 50 50 (Please read the notes on the back before filling out this page) Δ λ i 4 ow / r 9 1 η Y 9Q7 / entry, 1221435 A7 B7 V. Description of the invention (//) Table 2 Experimental results and signal noise ratio (S / N Ratio) L25 (55) MRR (S / N) STDEV (S / N) ABCDE (A / S) (/ 2) 1 1 1 1 1 1 9.14 19.22 137.540 17.23 2 1 2 2 2 2 14.5 23.23 109.591 19.20 3 1 3 3 3 3 16.34 24.26 99.567 20.04 4 1 4 4 4 4 20.31 26.15 128.673 17.81 5 1 5 5 5 20.55 26.26 98.534 20.13 6 2 1 4 2 3 16.09 24.13 51.999 25.68 7 2 2 5 3 4 23.45 27.4 152.866 16.31 8 2 3 1 4 5 28.92 29.22 298.643 10.50 9 2 4 2 5 1 34.64 30.79 88.683 21.04 10 2 5 3 1 2 22.51 27.05 112.108 19.01 11 3 1 2 3 5 19.44 25.77 92.238 20.70 12 3 2 3 4 1 27.68 28.84 114.126 18.85 13 3 3 4 5 2 36.89 31.34 114.363 18.83 14 3 4 5 1 3 22.11 26.89 55.401 25.13 15 3 5 1 2 4 31.84 30.06 110.232 19.15 16 4 1 5 4 2 20.44 26.21 100.058 19.99 17 4 2 1 5 3 29.22 29.31 169.638 15.41 18 4 3 2 1 4 18.37 25.28 167.419 15.52 19 4 4 3 2 5 28.72 29.16 114.870 18.80 20 4 5 4 3 1 39.28 31.88 69.075 23.21 21 5 1 3 5 4 23.25 27.33 113.494 18 .90 22 5 2 4 1 5 17.1 24.66 46.615 26.63 23 5 3 5 2 1 25.74 28.21 52.903 25.53 24 5 4 1 3 2 34.59 30.78 139.578 17.10 25 5 5 2 4: 3 44.11 32.89 206.076 13.72 1IIII — — — — I- -(Please read the precautions on the back before filling this page) · 13 1221435 A7 B7 V. Description of the invention (Table 3 MRR response form MRR response form factor level ABCDE Solid Content (wt%) Down Force (psi) Back Pressure (psi) Platen Speed (rpm) Jime (sec) 1 23.80363 24.53263 27.71867 24.62076 27.78998 2 27.71891 26.68942 27.59314 26.95966 27.72017 3 28.58194 27.66443 27.32932 28.02038 27.49836 4 28.37092 28.75611 27.63418 28.66399 26296 29296 296.296. · II. (Please read the notes on the back before filling this page) Order ·-^ 4® m (/ ^ XTC \ / ΌΐΠν 9Q7 / N ^ ^ 1221435 A7 _ B7 V. Description of the invention (丨 xi) Table 4 is for Response table for t2 standard deviation 回应 Response table for standard deviation \ ^ Factor level \\ ABCDE Solid Content (wt%) Down Force (psi) Back Pressure (psi) Platen S peed (rpm) Time (sec) 1 18.88245 20.50176 15.8791 20.7043 21.17418 2 18.50823 19.28189 18.03852 21.6729 18.82889 3 20.53432 18.08461 19.11871 19.4741 19.99524 4 18.58753 19.97647 22.43348 16.8772 17.54044 5 20.37666 19.04445 21.41936 20.6428 19.35043 Γ-load ----- Note on the back page, please fill in this page again)--/ mrc, λ / mrw 9Q7 vol. 8, 1221435 A7 B7 V. Description of the invention (丨 f) Degree A 86.2601 4 21.565 37.5417 B 77.4767 4 19.3692 33.719 C 1.83596 4 0.45899 0.79904 D 62.0033 4 15.5008 26.9848 E 2.19542 4 0.54886 0.95548 Sum 229.771 20 100 — — III — .Installation -------- Order · ---- --- # (Please read the notes on the back before filling this page) lb 1221435 A7 Β7 V. Description of the invention (^) Table 6 Analysis results of the variance of the STDEV factor squared degrees of freedom mean square and contribution A 19.8066 4 4.95164 6.93045 B 17.0717 4 4.26793 5.97351 C 138.034 4 34.5086 48.2991 D 74.4472 4 18.6118 26.0496 .E 36.4308 4 9.10771 12.7474 Total 285.791 20 100 (Please read the precautions on the back before filling out this page) '1 1221435 A7 _B7 V. Description of the invention (1 t) Table 7 Best parameter confirmation experiment Best parameter confirmation Experiment original parameter Best parameter Solid Content 15% 20% Down Force 7 psi 8 psi M Back Pressure 3 psi 3.2 psi Platen Speed 20 rpm 41 rpm Carrier Speed 25 rpm 25 rpm Oscillation Speed 1 mm / sec 2 mm / sec Time 60s A2s Average removal amount 15992 A 1897.9 4 average thickness after removal 3509.9 / 3149.9 / standard deviation of thickness after removal 112.2 / US.OA experiment MRR 値 26.65 A / s 45Λ9 A / s experiment WIWNU 値 3.1963% 3.7506% -------- --- Aw- I --- (Please read the notes on the back before filling this page). # ·
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW90101454A TWI221435B (en) | 2001-01-20 | 2001-01-20 | Method for optimizing timing control process parameters in chemical mechanical polishing |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW90101454A TWI221435B (en) | 2001-01-20 | 2001-01-20 | Method for optimizing timing control process parameters in chemical mechanical polishing |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TWI221435B true TWI221435B (en) | 2004-10-01 |
Family
ID=34388841
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW90101454A TWI221435B (en) | 2001-01-20 | 2001-01-20 | Method for optimizing timing control process parameters in chemical mechanical polishing |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI221435B (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7991216B2 (en) | 2007-06-15 | 2011-08-02 | National Taiwan University Of Science And Technology | Method of analyzing effective polishing frequency and number of polishing times on polishing pads having different patterns and profiles |
| TWI713085B (en) * | 2019-05-16 | 2020-12-11 | 國立交通大學 | Semiconductor process result prediction method |
| TWI737867B (en) * | 2017-01-23 | 2021-09-01 | 日商不二越機械工業股份有限公司 | Work polishing method and work polishing apparatus |
| TWI739906B (en) * | 2016-10-18 | 2021-09-21 | 日商荏原製作所股份有限公司 | Substrate processing control system, substrate processing control method, and program |
| US11524382B2 (en) | 2018-04-03 | 2022-12-13 | Applied Materials, Inc. | Polishing apparatus using machine learning and compensation for pad thickness |
| TWI789385B (en) * | 2017-04-21 | 2023-01-11 | 美商應用材料股份有限公司 | Polishing apparatus using neural network for monitoring |
| US11780047B2 (en) | 2020-06-24 | 2023-10-10 | Applied Materials, Inc. | Determination of substrate layer thickness with polishing pad wear compensation |
| CN119761276A (en) * | 2025-03-03 | 2025-04-04 | 全芯智造技术有限公司 | Simulation method for semiconductor device, electronic equipment and storage medium |
| US12447578B2 (en) | 2018-09-26 | 2025-10-21 | Applied Materials, Inc. | Compensation for substrate doping in edge reconstruction for in-situ electromagnetic inductive monitoring |
-
2001
- 2001-01-20 TW TW90101454A patent/TWI221435B/en not_active IP Right Cessation
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7991216B2 (en) | 2007-06-15 | 2011-08-02 | National Taiwan University Of Science And Technology | Method of analyzing effective polishing frequency and number of polishing times on polishing pads having different patterns and profiles |
| TWI739906B (en) * | 2016-10-18 | 2021-09-21 | 日商荏原製作所股份有限公司 | Substrate processing control system, substrate processing control method, and program |
| TWI737867B (en) * | 2017-01-23 | 2021-09-01 | 日商不二越機械工業股份有限公司 | Work polishing method and work polishing apparatus |
| TWI789385B (en) * | 2017-04-21 | 2023-01-11 | 美商應用材料股份有限公司 | Polishing apparatus using neural network for monitoring |
| US12447577B2 (en) | 2017-04-21 | 2025-10-21 | Applied Materials, Inc. | Polishing apparatus using neural network for monitoring |
| US12370646B2 (en) | 2018-04-03 | 2025-07-29 | Applied Materials, Inc. | Polishing apparatus using machine learning and compensation for pad thickness |
| US11524382B2 (en) | 2018-04-03 | 2022-12-13 | Applied Materials, Inc. | Polishing apparatus using machine learning and compensation for pad thickness |
| US12447578B2 (en) | 2018-09-26 | 2025-10-21 | Applied Materials, Inc. | Compensation for substrate doping in edge reconstruction for in-situ electromagnetic inductive monitoring |
| TWI713085B (en) * | 2019-05-16 | 2020-12-11 | 國立交通大學 | Semiconductor process result prediction method |
| US11780047B2 (en) | 2020-06-24 | 2023-10-10 | Applied Materials, Inc. | Determination of substrate layer thickness with polishing pad wear compensation |
| US12090599B2 (en) | 2020-06-24 | 2024-09-17 | Applied Materials, Inc. | Determination of substrate layer thickness with polishing pad wear compensation |
| CN119761276B (en) * | 2025-03-03 | 2025-07-01 | 全芯智造技术有限公司 | Simulation method, electronic device and storage medium for semiconductor device |
| CN119761276A (en) * | 2025-03-03 | 2025-04-04 | 全芯智造技术有限公司 | Simulation method for semiconductor device, electronic equipment and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI221435B (en) | Method for optimizing timing control process parameters in chemical mechanical polishing | |
| TW483060B (en) | Method of controlling wafer polishing time using sample-skip algorithm and wafer polishing using the same | |
| US6564116B2 (en) | Method for determining efficiently parameters in chemical-mechanical polishing (CMP) | |
| CN112936085B (en) | Chemical mechanical polishing control method and control system | |
| US6594542B1 (en) | Method and system for controlling chemical mechanical polishing thickness removal | |
| JP2021528861A (en) | Generation of training spectra for machine learning systems for spectroscopic image monitoring | |
| EP1138071A1 (en) | A method and system for polishing semiconductor wafers | |
| US20080020676A1 (en) | Run-To-Run Control Of Backside Pressure For CMP Radial Uniformity Optimization Based On Center-To-Edge Model | |
| Wang et al. | Pad surface roughness and slurry particle size distribution effects on material removal rate in chemical mechanical planarization | |
| CN103226627A (en) | Method and device for simulating chip surface topography | |
| Vasilev et al. | Pad roughness evolution during break-in and its abrasion due to the pad-wafer contact in oxide CMP | |
| CN102853781B (en) | Fairing capability evaluation method for polishing disc used for optical processing | |
| CN102553941B (en) | Off-line self-learning method of plate-shaped regulating efficiency coefficient of cold rolling mill | |
| CN107052984A (en) | Optimization method for flatness of wafer edge region in chemical mechanical planarization process | |
| Ouyang et al. | An analytical model of multiple ILD thickness variation induced by interaction of layout pattern and CMP process | |
| Kim et al. | Mathematical modeling based on contact mechanism due to elastic and plastic deformation of pad asperities during CMP | |
| TWI897769B (en) | Method, device, apparatus and computer-readable storage medium for predicting wafer and surface nanomorphology thereof | |
| Wang et al. | A neural-Taguchi-based quasi time-optimization control strategy for chemical-mechanical polishing processes | |
| Shi et al. | CMP pad wear and polish-rate decay modeled by asperity population balance with fluid effect | |
| Klocke et al. | Corrective polishing of complex ceramics geometries | |
| Hsu et al. | Advanced cmp process control by using machine learning image analysis | |
| US20230037856A1 (en) | Mask blanks substrate and method for manufacturing the same | |
| JPH02293057A (en) | Method and device for regulating roller gap | |
| Chen et al. | Numerical Analysis in Double-Sided Polishing: Mechanism Exploration of Edge Roll-Off | |
| Hsiang-Meng et al. | CMP Process Optimization Engineering by Machine Learning |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |