[go: up one dir, main page]

TWI713085B - Semiconductor process result prediction method - Google Patents

Semiconductor process result prediction method Download PDF

Info

Publication number
TWI713085B
TWI713085B TW108116896A TW108116896A TWI713085B TW I713085 B TWI713085 B TW I713085B TW 108116896 A TW108116896 A TW 108116896A TW 108116896 A TW108116896 A TW 108116896A TW I713085 B TWI713085 B TW I713085B
Authority
TW
Taiwan
Prior art keywords
neural network
physical
weight
value
semiconductor
Prior art date
Application number
TW108116896A
Other languages
Chinese (zh)
Other versions
TW202044329A (en
Inventor
柏叡 彭
陳軍翰
傅思銘
查妮 艾
粘容蓉
詩淳 林
Original Assignee
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學 filed Critical 國立交通大學
Priority to TW108116896A priority Critical patent/TWI713085B/en
Publication of TW202044329A publication Critical patent/TW202044329A/en
Application granted granted Critical
Publication of TWI713085B publication Critical patent/TWI713085B/en

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

Present invention provides a semiconductor process result prediction method, which comprises inputting at least one process parameter into a neural network(NN) at least one neural network(NN) estimation value, and inputting the process parameter into a physical estimation model to estimate at least one physical estimate. Then, the process parameters are inputted to a neural network (NN) weight model and a physical weight model, respectively, to train a neural network (NN) training weight and a physical training weight. Finally, inputting the neural network (NN) estimation value, the physical estimation value, the neural network (NN) weight and the physical model weight into a semiconductor process result prediction equation to estimate a semiconductor process result prediction value. According to the method of the present invention, semiconductor process results can be estimated with fewer data points.

Description

半導體製程結果預測方法Method for predicting semiconductor process results

本發明係有關一種製程數據估測技術,特別是指一種半導體製程結果預測方法。 The present invention relates to a process data estimation technology, in particular to a method for predicting semiconductor process results.

半導體問世之後,大幅改變了電子產品使用的形式,半導體的發明令行動裝置、計算機等相關的電子產品變得更小、更輕巧,更方便被攜帶,同時半導體的發明更被譽為與印刷機、電力、盤尼西林併列為四大重要發明之一的技術。 After the advent of semiconductors, the use of electronic products has been greatly changed. The invention of semiconductors has made mobile devices, computers and other related electronic products smaller, lighter, and more convenient to carry. At the same time, the invention of semiconductors is also known as the printing machine. , Electric power, and penicillin are among the four important inventions.

半導體的體積小且可承載的功能多,故半導體可以說是相當精密的電子元件,當然製作半導體的機台以及製作過程,也是相對精密且複雜的技術,理所當然製作半導體的各項參數也相對多筆且複雜,若其中關鍵的參數產生偏差,就很有可能造成製程偏離,令半導體元件製作良率降低,嚴重者可能整批半導體元件都需被報廢,所耗費的製作成本也跟著提高。 Semiconductors are small in size and can carry many functions, so semiconductors can be said to be very precise electronic components. Of course, the machines and manufacturing processes for making semiconductors are also relatively sophisticated and complex technologies. Of course, there are relatively many parameters for making semiconductors. The pen is complicated, and if the key parameters are deviated, it is likely to cause process deviation and reduce the production yield of semiconductor devices. In severe cases, the entire batch of semiconductor devices may need to be scrapped, and the cost of manufacturing will also increase.

半導體的製作的流程簡單來說可如第一圖所示,首先圖案化主動區域,接著進行局部氧化(LOCOS),P型井以及N型井離子植入,接著對P型以及N型半導體植入臨界電壓(Vt),以依序形成兩次閘極氧化層、多晶矽閘極沉積、(poly gate)、圖案化閘極經過再氧化後,進行一次N型以及兩次P型半導體Halo/低摻雜汲極(LDD),並在N型以及P型半導體的源/汲極上重摻雜,接著在對半導體進行快速熱退火(Spike RTA)、物理氣相沉積鎳(PVD NI)以及令鎳化矽低溫退火。 The manufacturing process of semiconductors can be simply as shown in the first figure. First, pattern the active area, then perform local oxidation (LOCOS), P-well and N-well ion implantation, and then implant P-type and N-type semiconductors. Enter the threshold voltage (Vt) to sequentially form two gate oxide layers, polysilicon gate deposition, (poly gate), patterned gate after re-oxidation, and perform one N-type and two P-type semiconductor Halo/low Doped drain (LDD) and heavily doped on the source/drain of N-type and P-type semiconductors, followed by rapid thermal annealing (Spike RTA), physical vapor deposition of nickel (PVD NI) and nickel Low temperature annealing of silicide.

以半導體的蝕刻為例,請配合參照第二A圖以及第二B圖,如圖所示,根據不同的臨界電壓(Vt)、寬度(Width)、蝕刻比(d/W)、氣體的蝕刻時間(s) 等都會影響到蝕刻的深度(R)。第三A圖至第三D圖為顯微鏡下進行蝕刻後的樣品,第三A圖係在40毫託(mTorr)的壓力,電感應偶合電漿1250瓦(W ICP)功率,200標準狀態毫升/6分(sccm SF6)流速,50次的蝕刻週期時間,以及線寬為1微米(μm)的條件下所呈現的蝕刻態樣;第三B圖則為在40毫託(mTorr)的壓力,電感應偶合電漿1250瓦(W ICP)功率,200標準狀態毫升/6分(sccm SF6)流速,50次的蝕刻週期時間以及線寬為0.8微米(μm)的條件下所呈現的蝕刻態樣;第三C圖線寬為在40毫託(mTorr)的壓力,電感應偶合電漿1250瓦(W ICP)功率,200標準狀態毫升/6分(sccm SF6)流速,20次的蝕刻週期時間以及線寬為1微米(μm)的條件下所呈現的蝕刻態樣;第三D圖線寬為在40毫託(mTorr)的壓力,電感應偶合電漿1250瓦(W ICP)功率,200標準狀態毫升/6分(sccm SF6)流速,20次的蝕刻週期時間以及線寬為0.3微米(μm)的條件下所呈現的蝕刻態樣。 Take semiconductor etching as an example, please refer to the second A and second B diagrams, as shown in the figure, according to different threshold voltage (Vt), width (Width), etching ratio (d/W), gas etching Time(s) And so on will affect the depth of etching (R). The third picture A to the third picture D are the samples after etching under the microscope. The third picture is at 40 millitorr (mTorr) pressure, inductively coupled plasma 1250 watts (W ICP) power, 200 standard state ml /6 minutes (sccm SF6) flow rate, 50 etching cycle time, and line width of 1 micron (μm) under the conditions of the etching state; the third B is at 40 millitorr (mTorr) pressure , Inductively coupled plasma 1250 watts (W ICP) power, 200 standard state milliliters/6 minutes (sccm SF6) flow rate, 50 etching cycle time and line width of 0.8 microns (μm) under the conditions of the etching state Like; the third C figure line width is 40 millitorr (mTorr) pressure, inductively coupled plasma 1250 watts (W ICP) power, 200 standard state milliliters/6 minutes (sccm SF6) flow rate, 20 etching cycles Time and line width of 1 micron (μm) under the conditions of the etching state; the third D line width is 40 millitorr (mTorr) pressure, inductively coupled plasma 1250 watts (W ICP) power, 200 standard state milliliters/6 minutes (sccm SF6) flow rate, 20 etching cycle time and line width of 0.3 microns (μm) under the conditions of etching.

由上述可知,半導體體積小的製作過程不但精細,步驟也相當繁瑣,因此為了降低半導體製作的成本以及時間的耗費,在製作半導體之前使用半導體工藝模擬工具對半導體製程進行預測,已逐漸成為半導體產業中的新興方法。目前採用半導體工藝模擬工具多為物理預測的電腦輔助設計技術(Technology Computer Aided Design,TCAD)估算模型,或利用過去歷史統計資料帶入神經網路所訓練出來的人工神經網路(Artificial Neural Network,ANN)估算模型。其中TCAD估算模型係將製程參數,如蝕刻氣體、蝕刻寬度以及蝕刻時間輸入到TCAD估算模型中,TCAD估算模型即可估測出蝕刻完成半導體的各項參數,如半導體的蝕刻深度等參數。 It can be seen from the above that the manufacturing process of small semiconductors is not only delicate, but the steps are also quite cumbersome. Therefore, in order to reduce the cost and time consumption of semiconductor manufacturing, the use of semiconductor process simulation tools to predict the semiconductor process before semiconductor manufacturing has gradually become the semiconductor industry Emerging methods in. At present, the use of semiconductor process simulation tools is mostly the computer aided design technology (Technology Computer Aided Design, TCAD) estimation model of physical prediction, or the artificial neural network (Artificial Neural Network, which is trained by the neural network using past historical statistical data). ANN) estimation model. The TCAD estimation model inputs process parameters such as etching gas, etching width, and etching time into the TCAD estimation model. The TCAD estimation model can estimate various parameters of the etched semiconductor, such as the etching depth of the semiconductor.

接著請參照第四圖,以說明ANN估算模型,ANN估算模型為經過大筆的半導體資料所訓練出來的,只要輸入多筆蝕刻寬度、時間等參數進行訓練,往後只要輸入蝕刻寬度及時間等參數,就可預測出蝕刻深度,因此若ANN估算模型所能蒐集的資料越多,估測出來的半導體製程結果也就越精確,但蒐集大 筆資料對於半導體製程來說具有相當大的阻力,除了蒐集資料需要大筆經費之外,對於精密製作的半導體製程來說,所需蒐集的資料永遠不足,因此使用ANN估算模型所能估測的半導體製程果,也是相當有限。 Next, please refer to the fourth figure to explain the ANN estimation model. The ANN estimation model is trained by large amounts of semiconductor data. You only need to enter multiple etching widths, time and other parameters for training, and then you only need to enter the etching width and time. Parameter, the etching depth can be predicted. Therefore, if the ANN estimation model can collect more data, the estimated semiconductor process results will be more accurate, but the collection is larger. The pen data has considerable resistance to the semiconductor process. In addition to the large amount of money required to collect data, for the precision-made semiconductor process, the data required to be collected is always insufficient, so the ANN estimation model can estimate The semiconductor manufacturing process is also quite limited.

有鑑於此,本發明遂針對上述習知技術之缺失,提出一種半導體製程結果預測方法,以有效克服上述之該等問題。 In view of this, the present invention proposes a method for predicting semiconductor manufacturing process results in order to effectively overcome the above-mentioned problems in order to overcome the above-mentioned problems.

本發明之主要目的係在提供一種半導體製程結果預測方法,其僅需要較少資料點,即可快速估測出半導體製程結果,不但可減少製程嘗試錯誤所需的經費,同時更可減少半導體製程的耗損。 The main purpose of the present invention is to provide a method for predicting semiconductor process results, which requires less data points to quickly estimate semiconductor process results, which not only reduces the cost of process trial and error, but also reduces the semiconductor process Of depletion.

為達上述之目的,本發明係提供一種半導體製程結果預測方法,步驟包括,首先輸入至少一製程參數至一類神經網路估算模型中,以估測出至少一類神經網路估測數值,以及輸入至少一製程參數至一物理估算模型中,以估測出至少一物理估測數值。接著輸入製程參數至一類神經網路權重模型以訓練出一類神經網路訓練權重,以及輸入製程參數至一物理權重模型以訓練出一物理訓練權重,最後輸入類神經網路估測數值、物理估測數值、類神經網路訓練權重以及物理訓練權重至一半導體製程結果預測方程式中,以估算出一半導體製程結果預測值。 In order to achieve the above objective, the present invention provides a method for predicting semiconductor process results. The steps include first inputting at least one process parameter into a neural network estimation model to estimate at least one neural network estimation value, and input At least one process parameter is added to a physical estimation model to estimate at least one physical estimation value. Then input process parameters to a neural network weight model to train a neural network training weight, and input process parameters to a physical weight model to train a physical training weight, and finally input neural network estimation values, physical estimates The measured values, neural network training weights, and physical training weights are added to a semiconductor process result prediction equation to estimate a semiconductor process result prediction value.

其中半導體製程結果預測方程式如下所示:

Figure 108116896-A0305-02-0005-1
其中y AWNN為半導體製程結果預測值,y NN為類神經網路估測數值,y TCAD為物理估測數值,w NN為類神經網路訓練權重,w TCAD 為物理訓練權重,X為製程參數。 The equation for predicting semiconductor process results is as follows:
Figure 108116896-A0305-02-0005-1
Where y AWNN is the predicted value of the semiconductor process result, y NN is the estimated value of the similar neural network, y TCAD is the estimated value of the physical, w NN is the training weight of the similar neural network, w TCAD is the weight of the physical training, X is the process parameter .

其中類神經網路權重模型之產生步驟包括,蒐集實際產生半導體時,該半導體的製程結果,並將其設定為一製程結果目標數值,接著將製程結果目標數值、類神經網路估測數值以及物理估測數值輸入一類神經網路目標權重 方程式,以估算出一類神經網路目標權重,其中類神經網路目標權重方程式如下所示:

Figure 108116896-A0305-02-0006-2
其中w ANN,target為類神經網路目標權重,y exp為製程結果目標數值,y NN為類神經網路估測數值,y TCAD為物理估測數值。最後輸入製程參數與類神經網路目標權重至一神經網路模型(Neural Network)進行訓練,以產生類神經網路權重模型。 Among them, the step of generating the weight model of the neural network includes collecting the process results of the semiconductor when the semiconductor is actually produced, and setting it as a process result target value, and then setting the process result target value, the neural network estimated value, and The physical estimation value is input into a type of neural network target weight equation to estimate the weight of a type of neural network target. The neural network-like target weight equation is as follows:
Figure 108116896-A0305-02-0006-2
Among them, w ANN,target are the weights of the neural network-like target, y exp is the target value of the process result, y NN is the neural network-like estimated value, and y TCAD is the physical estimated value. Finally, input process parameters and neural network-like target weights to a neural network model (Neural Network) for training to generate a neural network-like weight model.

其中物理權重模型產生步驟包括,蒐集實際產生半導體時,半導體的製程結果,並將其設定為一製程結果目標數值,接著將製程結果目標數值、類神經網路估測數值以及物理估測數值輸入一物理目標權重方程式,以估算出一物理目標權重,其中目標權重方程式如下所示:

Figure 108116896-A0305-02-0006-3
其中w TCAD,target為物理目標權重,y exp為製程結果目標數值,y NN為類神經網路估測數值,y TCAD為物理估測數值。最後輸入製程參數與物理目標權重至一神經網路模型(Neural Network)進行訓練,以產生物理權重模型。 The physical weight model generation step includes collecting the semiconductor process results when the semiconductor is actually produced, and setting it as a process result target value, and then inputting the process result target value, neural network-like estimated value, and physical estimated value A physical target weight equation to estimate a physical target weight, where the target weight equation is as follows:
Figure 108116896-A0305-02-0006-3
Among them, w TCAD, target is the weight of the physical target, y exp is the target value of the process result, y NN is the neural network-like estimated value, and y TCAD is the physical estimated value. Finally, input process parameters and physical target weights to a neural network model (Neural Network) for training to generate a physical weight model.

其中類神經網路權重模型可表示為以下方程式:

Figure 108116896-A0305-02-0006-4
w NN為類神經網路訓練權重,X為製程參數;物理權重模型可表示為以下方程式:
Figure 108116896-A0305-02-0006-5
w TCAD 為物理訓練權重,X為製程參數。 The neural network-like weight model can be expressed as the following equation:
Figure 108116896-A0305-02-0006-4
w NN is the neural network training weight, X is the process parameter; the physical weight model can be expressed as the following equation:
Figure 108116896-A0305-02-0006-5
w TCAD is the physical training weight, and X is the process parameter.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 Detailed descriptions are given below by specific embodiments, so that it will be easier to understand the purpose, technical content, features, and effects of the present invention.

10:輸入裝置 10: Input device

12:處理裝置 12: Processing device

14:顯示裝置 14: display device

第一圖係為習知半導體製程流程圖。 The first figure is a flow chart of the conventional semiconductor manufacturing process.

第二A圖係為習知半導體蝕刻狀態示意圖。 The second diagram A is a schematic diagram of a conventional semiconductor etching state.

第二B圖係為習知不同製程參數產生的實驗數據示意圖。 The second diagram B is a schematic diagram of experimental data generated by conventionally known different process parameters.

第三A圖至第三D圖係為習知顯微鏡下蝕刻後的半導體示意圖。 The third A to the third D are schematic diagrams of the semiconductor after etching under a conventional microscope.

第四圖係為習知ANN估算模型狀態圖。 The fourth picture is the state diagram of the conventional ANN estimation model.

第五圖係為本發明方法所應用之裝置方塊圖。 The fifth figure is a block diagram of the device used in the method of the present invention.

第六圖係為本發明之方法流程圖。 The sixth figure is a flowchart of the method of the present invention.

第七圖係為本發明之ANN估算模型狀態圖。 The seventh diagram is the state diagram of the ANN estimation model of the present invention.

第八圖係為本發明之半導體製程結果預測方程式示意圖。 The eighth figure is a schematic diagram of the prediction equation of the semiconductor process result of the present invention.

第九圖係為本發明之產生類神經網路及物理權重模型示意圖。 The ninth figure is a schematic diagram of the neural network and physical weight model of the invention.

第十A圖係為本發明之類神經網路權重模型產生方法流程圖。 Figure 10A is a flow chart of the method for generating a neural network weight model of the present invention.

第十B圖係為本發明之類神經網路權重模型狀態圖。 The tenth diagram B is a state diagram of the neural network weight model of the present invention.

第十一A圖係物理權重模型產生方法流程圖。 Figure 11A is a flowchart of the method for generating a physical weight model.

第十一B圖係為本發明之物理權重模型狀態圖。 Figure 11B is a state diagram of the physical weight model of the present invention.

第十二A圖至第十二C圖係為本發明第一實施例之實驗數據圖。 Figures 12A to 12C are experimental data diagrams of the first embodiment of the present invention.

第十三A圖至第十三C圖係為本發明第二實施例之實驗數據圖。 Figures 13A to 13C are experimental data diagrams of the second embodiment of the present invention.

第十四A圖至第十四C圖係為本發明第三實施例之實驗數據圖。 Figures 14A to 14C are experimental data diagrams of the third embodiment of the present invention.

利用本發明之方法僅需輸入較少的資料點,即可快速估測出半導體製程結果,不但可減少收集大筆半導體實驗資料的經費,同時使用本發明之方 法亦可提升半導體製程的準確度,有效減少半導體製程中成本的耗損。 The method of the present invention only needs to input fewer data points to quickly estimate the results of the semiconductor process, which not only reduces the cost of collecting large amounts of semiconductor experimental data, but also uses the method of the present invention. The method can also improve the accuracy of the semiconductor manufacturing process and effectively reduce the cost loss in the semiconductor manufacturing process.

接下來詳細說明本發明之方法如何達到上述之功效,首先請參照第五圖,以說明本發明之半導體製程結果預測方法所應用之硬體裝置,其包括一輸入裝置10、一處理裝置12以及一顯示裝置14,處理裝置12分別電性連接輸入裝置10以及顯示裝置14。其中輸入裝置10可為鍵盤或可輸入資料之裝置,處理裝置12則為中央處理器,處理裝置12內載有本發明半導體製程結果預測方法之電腦程式流程,以及半導體工藝模擬工具,如類神經網路估算模型以及物理估算模型,其中類神經網路估算模型為由類神經網路資料帶入神經網路所訓練出來的人工神經網路(Artificial Neural Network,ANN)估算模型,以及物理估算模型,其可為電腦輔助設計技術(Technology Computer Aided Design,TCAD)估算模型,處理裝置12可針對輸入裝置10所輸入的製程參數等資料進行估測或進行其他資料處理,以產生半導體製程結果預測值。顯示裝置14可為顯示螢幕,以顯示處理裝置12所估測的半導體製程結果預測值或其他資訊。 The following describes in detail how the method of the present invention achieves the above-mentioned effects. First, please refer to Figure 5 to illustrate the hardware device used in the method for predicting semiconductor process results of the present invention, which includes an input device 10, a processing device 12, and A display device 14 and the processing device 12 are electrically connected to the input device 10 and the display device 14 respectively. The input device 10 can be a keyboard or a device that can input data, and the processing device 12 is a central processing unit. The processing device 12 contains the computer program flow of the method for predicting the results of the semiconductor manufacturing process of the present invention, and semiconductor process simulation tools, such as neuron-like Network estimation model and physical estimation model. Neural network estimation model is artificial neural network (ANN) estimation model trained by neural network data brought into neural network, and physical estimation model , Which can be a computer aided design (Technology Computer Aided Design, TCAD) estimation model. The processing device 12 can estimate or process other data based on the process parameters and other data input by the input device 10 to generate the predicted value of the semiconductor process result . The display device 14 can be a display screen to display the predicted value of the semiconductor process result estimated by the processing device 12 or other information.

接下來請參照第五圖與第六圖,以詳細說明如何使用本發明之方法估測出半導體程結果預測值,首先進入步驟S10,在輸入裝置10輸入至少一製程參數,本實施例舉例製程參數為蝕刻寬度、蝕刻時間以及蝕刻的氣體流量等,令處理裝置12將製程參數帶入類神經網路估算模型(ANN)中,請同時配合第七圖,如圖所示,將多筆製程參數X帶入類神經網路估算模型(ANN),以估測出至少一類神經網路估測數值y NN(

Figure 108116896-A0305-02-0008-50
),本實施例舉例為蝕刻深度類神經網路估測數值,同時處理裝置12也一併將相同的製程參數輸入物理估算模型(TACD)中,以估測出至少一物理估測數值y TCAD(
Figure 108116896-A0305-02-0008-55
),本實施例舉例為蝕刻深度物理估測數值。其中類神經網路估算模型為過去多筆的半導體的製程參數以及實際製作完成之實際半導體數值,帶入人工神經網路(Artificial Neural Network,ANN)中所訓練出來而產生的估算模型,本實施例舉例製程參數為蝕刻寬度、蝕刻時間以及蝕刻 的氣體流量等,相對的實際半導體數值就為半導體的蝕刻深度等資訊。物理估算模型則因本實施例舉例製程參數為蝕刻寬度、蝕刻時間以及蝕刻的氣體流量,故本實施例舉例物理估算模型可表示為以下方程式:
Figure 108116896-A0305-02-0009-6
其中k為傳輸概率或克努生係數(Knudsen coefficient),v t 為影響蝕刻特徵頂部的氣體流量,W為蝕刻寬度,s為蝕刻特徵底部表面的反應機率,R
Figure 108116896-A0305-02-0009-43
為蝕刻特徵底部表面的蝕刻比率,R(0)為蝕刻特徵頂部的蝕刻比率,d (t+dt)為經過t+dt時間的蝕刻寬度,d (t)為在時間t的特徵寬度,以估測出蝕刻深度物理估測數值。 Next, please refer to the fifth and sixth figures to explain in detail how to use the method of the present invention to estimate the predicted value of the semiconductor process result. First, enter step S10, and input at least one process parameter into the input device 10. This embodiment exemplifies the process The parameters are the etching width, the etching time, and the gas flow rate of the etching, etc., so that the processing device 12 will bring the process parameters into the neural network-like estimation model (ANN). Please also cooperate with the seventh figure, as shown in the figure. The parameter X is brought into the neural network estimation model (ANN) to estimate at least one neural network estimation value y NN (
Figure 108116896-A0305-02-0008-50
), the present embodiment exemplifies the etch depth neural network estimation value, and the processing device 12 also inputs the same process parameters into the physical estimation model (TACD) to estimate at least one physical estimation value y TCAD (
Figure 108116896-A0305-02-0008-55
), this embodiment exemplifies the physical estimation value of the etching depth. Among them, the neural network estimation model is the estimation model generated by training in artificial neural network (Artificial Neural Network, ANN) with the process parameters of the past many semiconductors and the actual semiconductor values actually produced. This implementation For example, the process parameters are etching width, etching time, and gas flow rate for etching. The relative actual semiconductor value is information such as the etching depth of the semiconductor. The physical estimation model of this embodiment is the etching width, etching time, and the gas flow rate of the etching. Therefore, the physical estimation model of this embodiment can be expressed as the following equation:
Figure 108116896-A0305-02-0009-6
Where k is the transmission probability or Knudsen coefficient, v t is the gas flow that affects the top of the etched feature, W is the etch width, s is the reaction probability of the bottom surface of the etched feature, R
Figure 108116896-A0305-02-0009-43
Is the etch ratio of the bottom surface of the etched feature, R (0) is the etch ratio of the top of the etched feature, d ( t + dt ) is the etch width after t + dt time, d ( t ) is the feature width at time t , The physical estimation value of the etching depth is estimated.

估測出類神經網路估測數y NN(

Figure 108116896-A0305-02-0009-56
)以及物理估測數值y TCAD(
Figure 108116896-A0305-02-0009-57
)之後,接著進入步驟S12,處理裝置12再將與上述步驟S10相同的製程參數輸入至一類神經網路權重模型中,以訓練出一類神經網路訓練權重,同時處理裝置12也一併輸入相同的製程參數至一物理權重模型中,以訓練出一物理訓練權重,其中類神經網路權重模型可表示為以下方程式:
Figure 108116896-A0305-02-0009-8
w NN為類神經網路訓練權重,X為製程參數。物理權重模型可表示為以下方程式:
Figure 108116896-A0305-02-0009-7
w TCAD 為物理訓練權重,X為製程參數。 Estimate the number y NN (
Figure 108116896-A0305-02-0009-56
) And the physical estimated value y TCAD (
Figure 108116896-A0305-02-0009-57
), then proceed to step S12, the processing device 12 inputs the same process parameters as the above step S10 into a type of neural network weight model to train a type of neural network training weight, and the processing device 12 also inputs the same The process parameters of to a physical weight model to train a physical training weight. The neural network-like weight model can be expressed as the following equation:
Figure 108116896-A0305-02-0009-8
w NN is the neural network training weight, and X is the process parameter. The physical weight model can be expressed as the following equation:
Figure 108116896-A0305-02-0009-7
w TCAD is the physical training weight, and X is the process parameter.

最後進入步驟S14,並請配合參照第八圖,處理裝置12再輸入類神經網路估測數值y NN(

Figure 108116896-A0305-02-0009-59
)、物理估測數值y TCAD(
Figure 108116896-A0305-02-0009-60
)、類神經網路訓練權重w NN以 及物理訓練權重w TCAD至一半導體製程結果預測方程式中,以估算出一半導體製程結果預測值,其中半導體製程結果預測方程式如下所示:
Figure 108116896-A0305-02-0010-9
其中y AWNN為半導體製程結果預測值,y NN為類神經網路估測數值,y TCAD為物理估測數值,w NN為類神經網路訓練權重,w TCAD 為物理訓練權重,X為製程參數。 Finally, go to step S14, and please refer to the eighth figure, the processing device 12 inputs the neural network-like estimated value y NN (
Figure 108116896-A0305-02-0009-59
), physical estimated value y TCAD (
Figure 108116896-A0305-02-0009-60
), the neural network training weight w NN and the physical training weight w TCAD into a semiconductor process result prediction equation to estimate a semiconductor process result prediction value. The semiconductor process result prediction equation is as follows:
Figure 108116896-A0305-02-0010-9
Where y AWNN is the predicted value of the semiconductor process result, y NN is the estimated value of the similar neural network, y TCAD is the estimated value of the physical, w NN is the training weight of the similar neural network, w TCAD is the weight of the physical training, X is the process parameter .

透過上述步驟可快速的估測出製作出來的半導體製程結果預測值,且根據本發明之方法,即使所能收集的到的資料量降低,同時透過不同權重的調整分配,令本發明有效提升半導體製程結果預測值的可信度。因此定義出權重比例的類神經網路權重模型以及物理權重模型,對於本發明之方法來說也佔有相當重要的一部分,故本實施例接著針對類神經網路權重模型以及物理權重模型詳細說明。 Through the above steps, the predicted value of the manufactured semiconductor process results can be quickly estimated. According to the method of the present invention, even if the amount of data that can be collected is reduced, at the same time, through the adjustment and distribution of different weights, the present invention effectively improves the semiconductor The reliability of the predicted value of the process result. Therefore, the neural network-like weight model and the physical weight model that define the weight ratio also occupy a very important part of the method of the present invention. Therefore, this embodiment will then describe the neural network-like weight model and the physical weight model in detail.

首先說明類神經網路權重模型,請參照第九圖、第十A圖以及第十B圖,以詳細說明本發明步驟S12中的類神經網路權重模型之產生步驟,如步驟S20所示,蒐集製程結果目標數值為實際產生半導體時,半導體的各項製程結果數值,如半導體的蝕刻深度,並設定為一製程結果目標數值y exp,以透過輸入裝置10在處理裝置12中輸入製程結果目標數值y exp,製程結果目標數值為實際產生半導體時,半導體的各項數值,如半導體的蝕刻深度。接著請參照步驟S22,處理裝置12將真實實驗數據之製程結果目標數值y exp,以及上述步驟S10所估算的類神經網路估測數值y NN以及物理估測數值y TCAD輸入一類神經網路目標權重方程式,以估算出一類神經網路目標權重,其中類神經網路目標權重方程式如下所示:

Figure 108116896-A0305-02-0011-10
其中w NN,target為類神經網路目標權重,y exp為製程結果目標數值,y NN為類神經網路估測數值,y TCAD為物理估測數值。 First, the neural network-like weight model will be explained. Please refer to the ninth figure, tenth figure A and tenth figure B to explain in detail the steps of generating the neural network-like weight model in step S12 of the present invention, as shown in step S20. The process result target value is collected when the semiconductor is actually produced, and the semiconductor process result value, such as the etching depth of the semiconductor, is set as a process result target value y exp to input the process result target in the processing device 12 through the input device 10 The value y exp , the target value of the process result is the various values of the semiconductor when the semiconductor is actually produced, such as the etching depth of the semiconductor. Next, referring to step S22, the processing device 12 inputs the process result target value y exp of the real experimental data, and the neural network-like estimated value y NN and the physical estimated value y TCAD estimated in step S10 into a neural network target The weight equation is used to estimate the weight of a class of neural network targets. The weight equation of the class of neural network targets is as follows:
Figure 108116896-A0305-02-0011-10
Among them, w NN and target are the target weights of the neural network, y exp is the target value of the process result, y NN is the neural network estimated value, and y TCAD is the physical estimated value.

最後進入步驟S24,處理裝置12再輸入製程參數,以及上述步驟S22所估測出的類神經網路目標權重至一神經網路模型(Neural Network)進行訓練,以產生類神經網路權重模型,如第十B圖所示。當然上述的製程參數以及類神經網路目標權重皆為複數筆,多能達到上千萬筆以上,將製程參數以及類神經網路目標權重帶入模型訓練後,產生類神經網路權重模型,往後只要輸入層輸入製程參數至類神經網路權重模型,類神經網路權重模型就能產生對應該製程參數的類神經網路訓練權重。 Finally, in step S24, the processing device 12 inputs the process parameters and the neural network-like target weight estimated in the above step S22 to a neural network model (Neural Network) for training to generate a neural network-like weight model. As shown in Figure 10B. Of course, the above-mentioned process parameters and neural network-like target weights are plural, and most can reach tens of millions of pens. After the process parameters and neural network-like target weights are brought into model training, a neural network-like weight model is generated. In the future, as long as the input layer inputs the process parameters to the neural network-like weight model, the neural network-like weight model can generate neural network-like training weights corresponding to the process parameters.

接下來請參照第九圖、第十一A圖以及第十一B圖,以詳細說明本發明步驟S12中的物理權重模型之產生步驟,首先進入步驟S30,蒐集製程結果目標數值為實際產生半導體時,半導體的各項製程結果數值,如半導體的蝕刻深度,並設定為一製程結果目標數值y exp,以透過輸入裝置10輸入製程結果目標數值y exp至處理裝置12中,其中製程結果目標數值為實際產生半導體時的半導體的數值,如半導體的蝕刻深度。接著進入步驟S32,處理裝置12將製程結果目標數值y exp,以及上述步驟S10所估算的類神經網路估測數值y NN以及物理估測數值y TCAD輸入一物理目標權重方程式,以估算出一物理目標權重,其中目標權重方程式如下所示:

Figure 108116896-A0305-02-0012-11
其中w TCAD,target為物理目標權重,y exp為製程結果目標數值,y NN為類神經網路估測數值,y TCAD為物理估測數值。 Next, please refer to the ninth figure, the eleventh figure A, and the eleventh figure B to describe in detail the steps of generating the physical weight model in step S12 of the present invention. First, go to step S30, and collect the target value of the process result as the actual semiconductor the process result value, the semiconductors such as the etching depth of the semiconductor and setting the process result target value of a braking y exp, 10 enter the process results of the target value through the input device y exp to the processing means 12, which processes the results of the target value It is the value of the semiconductor when the semiconductor is actually produced, such as the etching depth of the semiconductor. Then enter step S32, the processing device 12 inputs the process result target value y exp , the neural network-like estimated value y NN and the physical estimated value y TCAD estimated in step S10 into a physical target weight equation to estimate a Physical target weight, where the target weight equation is as follows:
Figure 108116896-A0305-02-0012-11
Among them, w TCAD, target is the weight of the physical target, y exp is the target value of the process result, y NN is the neural network-like estimated value, and y TCAD is the physical estimated value.

最後進入步驟S34,處理裝置12再輸入製程參數,與上述步驟S32所估測出的物理目標權重至一神經網路模型(Neural Network)進行訓練,以產生物理權重模型,如第十一B圖所示。當然上述的製程參數以及物理目標權重皆為複數筆,能達到上千萬筆以上,將製程參數以及類神經網路目標權重帶入神經網路模型訓練後,產生物理權重模型,往後只要輸入層輸入製程參數至物理權重模型,物理權重模型就能產生對應該製程參數的物理訓練權重。 Finally, step S34 is entered, the processing device 12 inputs the process parameters, and the physical target weights estimated in step S32 above are trained on a neural network model (Neural Network) to generate a physical weight model, as shown in Figure 11B Shown. Of course, the above-mentioned process parameters and physical target weights are plural, which can reach more than tens of millions of pens. After the process parameters and neural network-like target weights are brought into the neural network model training, the physical weight model is generated. The layer inputs the process parameters to the physical weight model, and the physical weight model can generate physical training weights corresponding to the process parameters.

接下來請參照第十二A圖、第十二B圖以及第十二C圖,以比較ANN以及本發明半導體製程結果預測方法(AWNN)的估測數值。其中第十二A圖為使用15個蒐集數據量來訓練ANN估測模組的實驗數據圖,可以看出傳統的ANN估測模組可以適應深寬比效應(aspect ratio dependent etching effect,ARDE)問題中的訓練集。第十二B圖則比較了使用傳統ANN估測模組與本發明半導體製程結果預測方法(AWNN)情況下的訓練集。接著實際估測數據則如第十二C圖所示,其為本發明AWNN與ANN實際估測的情況,由圖可知,AWNN所預測出來的數值與實際半導體數值,相較於傳統的ANN模型估測的數值與實際半導體數值來說,AWNN所預測出來的數值與實際半導體數值是更為接近的,故認為本發明AWNN的估測效果會比過去傳統ANN模型估測所估測的數值還要精準。 Next, please refer to Fig. 12A, Fig. 12B, and Fig. 12C to compare the estimated values of ANN and the method for predicting semiconductor process results (AWNN) of the present invention. The twelfth picture A is the experimental data diagram of using 15 collected data to train the ANN estimation module. It can be seen that the traditional ANN estimation module can adapt to the aspect ratio dependent etching effect (ARDE) The training set in question. Figure 12B compares the training set in the case of using the traditional ANN estimation module and the semiconductor process result prediction method (AWNN) of the present invention. Then the actual estimated data is shown in Figure 12C, which is the actual estimated situation of the AWNN and ANN of the present invention. It can be seen from the figure that the predicted value of AWNN and the actual semiconductor value are compared with the traditional ANN model. In terms of the estimated value and the actual semiconductor value, the value predicted by AWNN is closer to the actual semiconductor value. Therefore, it is believed that the estimated effect of the AWNN of the present invention will be better than that estimated by the traditional ANN model in the past. Be precise.

請參照十三A圖、第十三B圖以及第十三C圖,其中第十三A圖為使用30個蒐集數據量來訓練ANN估測模組的實驗數據圖。第十三B圖則比較了使 用傳統ANN估測模組與本發明半導體製程結果預測方法(AWNN)情況下的訓練集。實際估測數據則如第十三C圖所示,其為本發明AWNN與ANN實際估測的情況,由圖可知,本發明AWNN在蒐集數據量30時,AWNN所預測出來的數值與實際半導體數值是比傳統的ANN模型估測的數值還要接近的,可以知道本發明AWNN的估測效果會比過去傳統ANN模型估測,所估測的數值還要精準。 Please refer to Figure 13A, Figure 13B, and Figure 13C, where Figure 13A is an experimental data map using 30 collected data to train the ANN estimation module. The thirteenth plan B compares The training set in the case of using the traditional ANN estimation module and the semiconductor process result prediction method (AWNN) of the invention. The actual estimated data is as shown in Figure 13C, which is the actual estimated situation of the AWNN and ANN of the present invention. It can be seen from the figure that when the AWNN of the present invention collects 30 data, the value predicted by AWNN is the same as the actual semiconductor The value is closer than the value estimated by the traditional ANN model. It can be known that the estimated effect of the AWNN of the present invention will be more accurate than that estimated by the traditional ANN model in the past.

請參照第十四A圖、第十四B圖以及第十四C圖,其中十四A圖為使用45個蒐集數據量來訓練ANN估測模組的實驗數據圖。第十四B圖則比較了使用傳統ANN估測模組與本發明半導體製程結果預測方法(AWNN)情況下的訓練集。如第十四C圖所示,其為本發明AWNN與ANN實際估測的情況,由圖可知,本發明AWNN在蒐集數據量45時,所預測出來的數值與實際半導體數值是比傳統的ANN模型估測的數值還要接近的,由此可以知道本發明AWNN的估測效果比過去傳統ANN模型估測所估測的數值還要精準。 Please refer to Figure 14A, Figure 14B, and Figure 14C, where Figure 14A is an experimental data map using 45 collected data to train the ANN estimation module. Figure 14B compares the training set in the case of using the traditional ANN estimation module and the semiconductor process result prediction method (AWNN) of the present invention. As shown in Figure 14C, it is the actual estimation situation of the AWNN and ANN of the present invention. It can be seen from the figure that when the AWNN of the present invention collects a data volume of 45, the predicted value and the actual semiconductor value are higher than the traditional ANN The value estimated by the model is even closer, so it can be known that the estimation effect of the AWNN of the present invention is more accurate than the value estimated by the traditional ANN model estimation in the past.

綜上所述,根據本發明之方法估測半導體製程結果,不但可估測出具精準度的半導體製程結果,且估測時需要較少資料點,能有效減省資料收集的經費,同時提升半導體製程的準確度,以減少半導體製程的耗損。 In summary, according to the method of the present invention to estimate the semiconductor process results, not only can the accuracy of the semiconductor process results be estimated, but also fewer data points are required for the estimation, which can effectively reduce the cost of data collection and improve the semiconductor The accuracy of the process to reduce the loss of the semiconductor process.

唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。 Only the above are merely preferred embodiments of the present invention, and are not used to limit the scope of the present invention. Therefore, all equivalent changes or modifications made in accordance with the characteristics and spirit of the application scope of the present invention shall be included in the patent application scope of the present invention.

Claims (9)

一種半導體製程結果預測方法,包括下列步驟:輸入至少一製程參數至一類神經網路估算模型中,以估測出至少一類神經網路估測數值,以及輸入至少一該製程參數至一物理估算模型中,以估測出至少一物理估測數值;輸入該製程參數至一類神經網路權重模型以訓練出一類神經網路訓練權重,以及輸入該製程參數至一物理權重模型以訓練出一物理訓練權重;以及輸入該類神經網路估測數值、該物理估測數值、該類神經網路訓練權重以及該物理訓練權重至一半導體製程結果預測方程式中,以估算出一半導體製程結果預測值,其中該半導體製程結果預測方程式如下所示:
Figure 108116896-A0305-02-0014-12
其中該y AWNN為該半導體製程結果預測值,該y NN為該類神經網路估測數值,該y TCAD為該物理估測數值,該w NN為該類神經網路訓練權重,該w TCAD 為該物理訓練權重,該X為該製程參數。
A method for predicting semiconductor manufacturing process results includes the following steps: inputting at least one process parameter into a neural network estimation model to estimate at least one neural network estimation value, and inputting at least one process parameter into a physical estimation model In, to estimate at least one physical estimation value; input the process parameter to a type of neural network weight model to train a type of neural network training weight, and input the process parameter to a physical weight model to train a physical training Weight; and input the neural network estimation value, the physical estimation value, the neural network training weight and the physical training weight into a semiconductor process result prediction equation to estimate a semiconductor process result prediction value, The prediction equation of the semiconductor process results is as follows:
Figure 108116896-A0305-02-0014-12
The y AWNN is the predicted value of the semiconductor process result, the y NN is the estimated value of the neural network, the y TCAD is the estimated physical value, the w NN is the training weight of the neural network, and the w TCAD Is the physical training weight, and the X is the process parameter.
如請求項1所述之半導體製程結果預測方法,其中該類神經網路權重模型之產生步驟包括:蒐集實際產生半導體時,該半導體的製程結果,並將其設定為一製程結果目標數值;將該製程結果目標數值、該類神經網路估測數值以及該物理估測數值輸入一類神經網路目標權重方程式,以估算出一類神經網路目標權重;以及輸入該製程參數與該類神經網路目標權重至一神經網路模型(Neural Network)進行訓練,以產生該類神經網路權重模型。 The method for predicting semiconductor process results according to claim 1, wherein the step of generating the neural network weight model includes: collecting the process results of the semiconductor when the semiconductor is actually produced, and setting it as a process result target value; The process result target value, the neural network estimated value, and the physical estimated value are input into a neural network target weight equation to estimate a neural network target weight; and input the process parameters and the neural network Target weight to a neural network model (Neural Network) for training to generate this type of neural network weight model. 如請求項2所述之半導體製程結果預測方法,其中該類神經網路目標權重方程式如下所示:
Figure 108116896-A0305-02-0015-44
其中該w NN,target為該類神經網路目標權重,該y exp為該製程結果目標數值,該y NN為該類神經網路估測數值,該y TCAD為該物理估測數值。
The method for predicting semiconductor manufacturing process results as described in claim 2, wherein the target weight equation of this type of neural network is as follows:
Figure 108116896-A0305-02-0015-44
The w NN, target is the target weight of the neural network, the y exp is the target value of the process result, the y NN is the estimated value of the neural network, and the y TCAD is the estimated physical value.
如請求項1所述之半導體製程結果預測方法,其中該物理權重模型之產生步驟包括:蒐集實際產生半導體時,該半導體的製程結果,並將其設定為一製程結果目標數值;將該製程結果目標數值、該類神經網路估測數值以及該物理估測數值輸入一物理目標權重方程式,以估算出一物理目標權重;以及輸入該製程參數與該物理目標權重至一神經網路模型(Neural Network)進行訓練,以產生該物理權重模型。 The method for predicting a semiconductor process result according to claim 1, wherein the step of generating the physical weight model includes: collecting the process result of the semiconductor when the semiconductor is actually produced, and setting it as a process result target value; the process result The target value, the neural network estimated value and the physical estimated value are input into a physical target weight equation to estimate a physical target weight; and input the process parameter and the physical target weight to a neural network model (Neural Network) for training to generate the physical weight model. 如請求項4所述之半導體製程結果預測方法,其中該物理目標權重方程式如下所示:
Figure 108116896-A0305-02-0015-14
其中該w TCAD,target為該物理目標權重,該y exp為該製程結果目標數 值,該y NN為該類神經網路估測數值,該y TCAD為該物理估測數值。
The method for predicting semiconductor manufacturing process results according to claim 4, wherein the physical target weight equation is as follows:
Figure 108116896-A0305-02-0015-14
The w TCAD,target is the weight of the physical target, the y exp is the target value of the process result, the y NN is the estimated value of this type of neural network, and the y TCAD is the estimated value of the physical.
如請求項1所述之半導體製程結果預測方法,其中該類神經網路權重神經網路模型可表示為以下方程式:
Figure 108116896-A0305-02-0016-15
w NN為該類神經網路訓練權重,該X為該製程參數;該物理權重神經網路模型可表示為以下方程式:
Figure 108116896-A0305-02-0016-16
w TCAD 為該物理訓練權重,該X為該製程參數。
The method for predicting semiconductor manufacturing process results according to claim 1, wherein this type of neural network weight neural network model can be expressed as the following equation:
Figure 108116896-A0305-02-0016-15
The w NN is the training weight of this type of neural network, and the X is the process parameter; the physical weight neural network model can be expressed as the following equation:
Figure 108116896-A0305-02-0016-16
The w TCAD is the physical training weight, and the X is the process parameter.
如請求項1所述之半導體製程結果預測方法,其中該製程參數可為蝕刻寬度以及蝕刻時間。 The method for predicting a semiconductor process result according to claim 1, wherein the process parameter may be an etching width and an etching time. 如請求項1所述之半導體製程結果預測方法,其中該類神經網路估算模型為人工神經網路(Artificial Neural Network,ANN)估算模型。 The method for predicting semiconductor manufacturing process results according to claim 1, wherein the neural network estimation model is an artificial neural network (ANN) estimation model. 如請求項1所述之半導體製程結果預測方法,其中該物理估算模型為電腦輔助設計技術(Technology Computer Aided Design,TCAD)估算模型。 The method for predicting semiconductor manufacturing process results according to claim 1, wherein the physical estimation model is a Technology Computer Aided Design (TCAD) estimation model.
TW108116896A 2019-05-16 2019-05-16 Semiconductor process result prediction method TWI713085B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108116896A TWI713085B (en) 2019-05-16 2019-05-16 Semiconductor process result prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108116896A TWI713085B (en) 2019-05-16 2019-05-16 Semiconductor process result prediction method

Publications (2)

Publication Number Publication Date
TW202044329A TW202044329A (en) 2020-12-01
TWI713085B true TWI713085B (en) 2020-12-11

Family

ID=74668363

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116896A TWI713085B (en) 2019-05-16 2019-05-16 Semiconductor process result prediction method

Country Status (1)

Country Link
TW (1) TWI713085B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114841378B (en) * 2022-07-04 2022-10-11 埃克斯工业(广东)有限公司 Wafer characteristic parameter prediction method and device, electronic equipment and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200419631A (en) * 2002-10-01 2004-10-01 Tokyo Electron Ltd Method and system for analyzing data from a plasma process
TWI221435B (en) * 2001-01-20 2004-10-01 Guo-Jen Wang Method for optimizing timing control process parameters in chemical mechanical polishing
TW200540674A (en) * 2004-06-03 2005-12-16 Univ Nat Cheng Kung Quality prognostics system and method for manufacturing processes
TW201917803A (en) * 2017-10-20 2019-05-01 行政院原子能委員會核能硏究所 Thin film thickness measuring method and system thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI221435B (en) * 2001-01-20 2004-10-01 Guo-Jen Wang Method for optimizing timing control process parameters in chemical mechanical polishing
TW200419631A (en) * 2002-10-01 2004-10-01 Tokyo Electron Ltd Method and system for analyzing data from a plasma process
TW200540674A (en) * 2004-06-03 2005-12-16 Univ Nat Cheng Kung Quality prognostics system and method for manufacturing processes
TW201917803A (en) * 2017-10-20 2019-05-01 行政院原子能委員會核能硏究所 Thin film thickness measuring method and system thereof

Also Published As

Publication number Publication date
TW202044329A (en) 2020-12-01

Similar Documents

Publication Publication Date Title
Dhillon et al. TCAD-augmented machine learning with and without domain expertise
CN106444365B (en) Control method for wafer etching and wafer manufacturing method
Choi et al. Neural approach for modeling and optimizing Si-MOSFET manufacturing
TWI831028B (en) METHODS AND SYSTEMS FOR FORMING COMPLEMENTARY FIELD EFFECT TRANSISTORS (CFETs) USING SELF-LIMITING MANUFACTURING TECHNIQUES
CN118504423B (en) Intelligent manufacturing method and equipment for etching process of semiconductor device and storage medium
CN111247768B (en) Unique identifier based on quantum effects
Butola et al. A machine learning approach to modeling intrinsic parameter fluctuation of gate-all-around Si nanosheet MOSFETs
TW200525393A (en) Automatic design apparatus and method, reticle set and semiconductor integration circuit manufactured therewith
KR20210068589A (en) Systems and methods for manufacturing microelectronic devices
CN103559368B (en) Chemical Mechanical Polishing Simulation Method and Its Removal Rate Calculation Method
TWI713085B (en) Semiconductor process result prediction method
TW201715423A (en) Semiconductor process simulation method, semiconductor process simulation device and computing device for performing semiconductor process simulation
CN102194735B (en) A kind of method that forms through hole
US6787464B1 (en) Method of forming silicide layers over a plurality of semiconductor devices
Armstrong et al. TCAD for Si, SiGe and GaAs integrated circuits
TWI727049B (en) Method of manufacturing a semiconductor device
TW201730577A (en) Semiconductor manufacturing system
Kaharudin et al. Implementation of Taguchi modeling for higher drive current (ION) in vertical DG-MOSFET device
US9235664B2 (en) Systems and methods for executing unified process-device-circuit simulation
US6660539B1 (en) Methods for dynamically controlling etch endpoint time, and system for accomplishing same
CN117521571A (en) A method for predicting the fluctuation effect of metal work function of semiconductor field effect transistors
Jang et al. Extraction of device structural parameters through DC/AC performance using an MLP neural network algorithm
CN115688611A (en) A real-time training method of small space model based on semiconductor device structure
CN114967361B (en) Method for selecting a photolithography process and semiconductor processing system
US10019540B2 (en) System and method for layout-related variation analysis