BRPI0903187A2 - prognostic markers of clinical response in dengue virus infected patients - Google Patents
prognostic markers of clinical response in dengue virus infected patients Download PDFInfo
- Publication number
- BRPI0903187A2 BRPI0903187A2 BRPI0903187A BRPI0903187A2 BR PI0903187 A2 BRPI0903187 A2 BR PI0903187A2 BR PI0903187 A BRPI0903187 A BR PI0903187A BR PI0903187 A2 BRPI0903187 A2 BR PI0903187A2
- Authority
- BR
- Brazil
- Prior art keywords
- genes
- dengue
- gene
- identify
- occurs
- Prior art date
Links
- 230000004044 response Effects 0.000 title claims abstract description 26
- 241000725619 Dengue virus Species 0.000 title claims abstract description 21
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 216
- 230000014509 gene expression Effects 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 36
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 22
- 238000003753 real-time PCR Methods 0.000 claims abstract description 11
- 238000002965 ELISA Methods 0.000 claims abstract description 5
- 238000000684 flow cytometry Methods 0.000 claims abstract description 5
- 238000004393 prognosis Methods 0.000 claims abstract description 5
- 238000001262 western blot Methods 0.000 claims abstract description 5
- 206010012310 Dengue fever Diseases 0.000 claims description 105
- 208000025729 dengue disease Diseases 0.000 claims description 60
- 208000009714 Severe Dengue Diseases 0.000 claims description 54
- 208000001490 Dengue Diseases 0.000 claims description 51
- 238000002493 microarray Methods 0.000 claims description 44
- 210000004027 cell Anatomy 0.000 claims description 19
- 208000015181 infectious disease Diseases 0.000 claims description 17
- 208000024891 symptom Diseases 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 11
- 238000003757 reverse transcription PCR Methods 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 11
- 239000002299 complementary DNA Substances 0.000 claims description 9
- 150000007523 nucleic acids Chemical class 0.000 claims description 9
- 210000002381 plasma Anatomy 0.000 claims description 7
- 108091034117 Oligonucleotide Proteins 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 6
- 201000009892 dengue shock syndrome Diseases 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 108020004707 nucleic acids Proteins 0.000 claims description 6
- 102000039446 nucleic acids Human genes 0.000 claims description 6
- 238000003745 diagnosis Methods 0.000 claims description 5
- 238000000636 Northern blotting Methods 0.000 claims description 4
- 101150008356 Trio gene Proteins 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 208000015220 Febrile disease Diseases 0.000 claims description 3
- 210000002966 serum Anatomy 0.000 claims description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 2
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 2
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 2
- 210000001124 body fluid Anatomy 0.000 claims description 2
- 239000010839 body fluid Substances 0.000 claims description 2
- 210000000416 exudates and transudate Anatomy 0.000 claims description 2
- 210000001616 monocyte Anatomy 0.000 claims description 2
- 230000014616 translation Effects 0.000 claims 3
- 239000000463 material Substances 0.000 claims 2
- 208000003322 Coinfection Diseases 0.000 claims 1
- 230000001413 cellular effect Effects 0.000 claims 1
- 230000009274 differential gene expression Effects 0.000 claims 1
- 230000002458 infectious effect Effects 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 210000002540 macrophage Anatomy 0.000 claims 1
- 238000012423 maintenance Methods 0.000 claims 1
- 238000000018 DNA microarray Methods 0.000 abstract description 15
- 238000011161 development Methods 0.000 abstract description 6
- 201000002950 dengue hemorrhagic fever Diseases 0.000 description 44
- 239000000523 sample Substances 0.000 description 29
- 238000003556 assay Methods 0.000 description 18
- 238000011529 RT qPCR Methods 0.000 description 16
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- 238000010804 cDNA synthesis Methods 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 108020004635 Complementary DNA Proteins 0.000 description 8
- 108020004394 Complementary RNA Proteins 0.000 description 8
- 239000003184 complementary RNA Substances 0.000 description 8
- 230000006907 apoptotic process Effects 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000012353 t test Methods 0.000 description 7
- 101001014059 Homo sapiens Metallothionein-2 Proteins 0.000 description 6
- 101001136981 Homo sapiens Proteasome subunit beta type-9 Proteins 0.000 description 6
- 102100031347 Metallothionein-2 Human genes 0.000 description 6
- 102100035764 Proteasome subunit beta type-9 Human genes 0.000 description 6
- 238000000692 Student's t-test Methods 0.000 description 6
- 230000001154 acute effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000036541 health Effects 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000015788 innate immune response Effects 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 108010085238 Actins Proteins 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 238000009098 adjuvant therapy Methods 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 238000011179 visual inspection Methods 0.000 description 4
- 101150084750 1 gene Proteins 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 102100028966 HLA class I histocompatibility antigen, alpha chain F Human genes 0.000 description 3
- 101000986080 Homo sapiens HLA class I histocompatibility antigen, alpha chain F Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 102100031826 Marginal zone B- and B1-cell-specific protein Human genes 0.000 description 3
- 238000001790 Welch's t-test Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 231100000517 death Toxicity 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010195 expression analysis Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000003633 gene expression assay Methods 0.000 description 3
- 230000004547 gene signature Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 101150028074 2 gene Proteins 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 101710088194 Dehydrogenase Proteins 0.000 description 2
- 101100218845 Escherichia coli (strain K12) bioH gene Proteins 0.000 description 2
- 206010015866 Extravasation Diseases 0.000 description 2
- 101150111673 HLA-F gene Proteins 0.000 description 2
- 101000980823 Homo sapiens Leukocyte surface antigen CD53 Proteins 0.000 description 2
- 101000611943 Homo sapiens Programmed cell death protein 4 Proteins 0.000 description 2
- 101000734643 Homo sapiens Programmed cell death protein 5 Proteins 0.000 description 2
- 101150019338 MT2A gene Proteins 0.000 description 2
- 102100026553 Mannose-binding protein C Human genes 0.000 description 2
- 101710169164 Marginal zone B- and B1-cell-specific protein Proteins 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 102100040992 Programmed cell death protein 4 Human genes 0.000 description 2
- 102100034807 Programmed cell death protein 5 Human genes 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 230000001640 apoptogenic effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 101150029327 bioB gene Proteins 0.000 description 2
- 101150085692 bioC gene Proteins 0.000 description 2
- 101150023452 bioD gene Proteins 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 101150036876 cre gene Proteins 0.000 description 2
- 238000011985 exploratory data analysis Methods 0.000 description 2
- 230000036251 extravasation Effects 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 101150053856 psmb9 gene Proteins 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000000528 statistical test Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 206010043554 thrombocytopenia Diseases 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 108010086241 2',5'-Oligoadenylate Synthetase Proteins 0.000 description 1
- 102000007445 2',5'-Oligoadenylate Synthetase Human genes 0.000 description 1
- BGFTWECWAICPDG-UHFFFAOYSA-N 2-[bis(4-chlorophenyl)methyl]-4-n-[3-[bis(4-chlorophenyl)methyl]-4-(dimethylamino)phenyl]-1-n,1-n-dimethylbenzene-1,4-diamine Chemical compound C1=C(C(C=2C=CC(Cl)=CC=2)C=2C=CC(Cl)=CC=2)C(N(C)C)=CC=C1NC(C=1)=CC=C(N(C)C)C=1C(C=1C=CC(Cl)=CC=1)C1=CC=C(Cl)C=C1 BGFTWECWAICPDG-UHFFFAOYSA-N 0.000 description 1
- 101150090724 3 gene Proteins 0.000 description 1
- 101150094765 70 gene Proteins 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 description 1
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- -1 CX3CR Proteins 0.000 description 1
- 101100004280 Caenorhabditis elegans best-2 gene Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108090000059 Complement factor D Proteins 0.000 description 1
- 102000003706 Complement factor D Human genes 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 1
- 108010037897 DC-specific ICAM-3 grabbing nonintegrin Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101900234631 Escherichia coli DNA polymerase I Proteins 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 241000710781 Flaviviridae Species 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000756632 Homo sapiens Actin, cytoplasmic 1 Proteins 0.000 description 1
- 101001018978 Homo sapiens MAP kinase-interacting serine/threonine-protein kinase 2 Proteins 0.000 description 1
- 101001056128 Homo sapiens Mannose-binding protein C Proteins 0.000 description 1
- 101001057158 Homo sapiens Melanoma-associated antigen D1 Proteins 0.000 description 1
- 101000587438 Homo sapiens Serine/arginine-rich splicing factor 5 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 101000830600 Homo sapiens Tumor necrosis factor ligand superfamily member 13 Proteins 0.000 description 1
- 206010021138 Hypovolaemic shock Diseases 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 102100024221 Leukocyte surface antigen CD53 Human genes 0.000 description 1
- 102100033610 MAP kinase-interacting serine/threonine-protein kinase 2 Human genes 0.000 description 1
- 101710110798 Mannose-binding protein C Proteins 0.000 description 1
- 102100027247 Melanoma-associated antigen D1 Human genes 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 102000010168 Myeloid Differentiation Factor 88 Human genes 0.000 description 1
- 108010077432 Myeloid Differentiation Factor 88 Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 108010004684 Pituitary adenylate cyclase-activating polypeptide Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102100029703 Serine/arginine-rich splicing factor 5 Human genes 0.000 description 1
- 108700031126 Tetraspanins Proteins 0.000 description 1
- 102000043977 Tetraspanins Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 102100024585 Tumor necrosis factor ligand superfamily member 13 Human genes 0.000 description 1
- 101710190247 Tumor protein D52 Proteins 0.000 description 1
- 102100040418 Tumor protein D52 Human genes 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 101150018830 best-2 gene Proteins 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000029404 copper ion homeostasis Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000004665 defense response Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012997 ficoll-paque Substances 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 238000010211 hemagglutination inhibition (HI) assay Methods 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000007233 immunological mechanism Effects 0.000 description 1
- 230000002134 immunopathologic effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 206010040560 shock Diseases 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
MARCADOPES PROGNóSTICOS DE PESPOSTA CLìNICA DE PACIENTES INFECTADOS COM VìRUS DA DENGUE A invenção se refere a um método para fornecer o prognóstico de resposta clínica de pacientes infectados com o vírus da dengue conduzido através da análise da expressão de um grupo de genes, bem como polimorfismo alélico e níveis de proteínas codificadas por eles através do seguintes métodos: microarranjos de DNA, nortbern blot, PCR, PCR quantitativa, western blot, ELISA e citometria de fluxo, O uso de qualquer dos métodos acima referidos, ou outros relacionados, é a base para desenvolvimento de kíts preditores de resposta clínica, desta forma facilitando o manejo clínico.PROGNOSTIC MARKINGS OF CLINICAL RESPONSE OF PATIENTS INFECTED WITH DENGUE VIRUS The invention relates to a method to provide the prognosis of clinical response of patients infected with the dengue virus conducted by analyzing the expression of a group of genes, as well as allelic polymorphism and levels of proteins encoded by them using the following methods: DNA microarrays, nortbern blot, PCR, quantitative PCR, western blot, ELISA and flow cytometry. The use of any of the above methods, or others related, is the basis for development of kites predictive of clinical response, thus facilitating clinical management.
Description
MARCADORES PROGNOSTICOS DE RESPOSTA CLINICA DE PACIENTES INFECTADOS COM VÍRUS DA DENGUEPROGNOSTIC MARKERS OF CLINICAL RESPONSE OF DENGUE VIRUS INFECTED PATIENTS
CAMPO DA INVENÇÃOFIELD OF INVENTION
Esta invenção diz respeito a prognósticos para a resposta clinica de pacientes infectados pelo virus da dengue, baseados no nivel de expressão dos genes listados nas Tabelas 2-7, ou em suas proteínas codificadas, bem como polimorfismo alélico, em amostras biológicas.This invention relates to prognoses for the clinical response of dengue virus infected patients based on the expression level of the genes listed in Tables 2-7, or their encoded proteins, as well as allelic polymorphism, in biological samples.
FUNDAMENTOS DA INVENÇÃOBACKGROUND OF THE INVENTION
O vírus da dengue é um membro da família Flaviviridae, gênero flavivírus com quatro sorotipos antigenicamente distintos (DENV-1 a DENV-4). A infecção pelo vírus da dengue é um problema de saúde pública mundial, com uma incidência estimada em 50-100 milhões de casos de febre do dengue (FD ou dengue clássica), resultando em 500.000 casos clínicos de febre hemorrágica do dengue com risco de vida (FHD ou dengue hemorrágica) e 24.000 mortes por ano (Green e Rothman 2006). A FHD é caracterizada por vasculopatia, o que leva a um extravasamento plasmático súbito que reduz o volume sangüíneo e pode resultar em choque hipovolêmico, o que é conhecido como Síndrome de Choque do Dengue (SCD). Não há nenhuma terapia antiviral para o tratamento da infecção por dengue nem meios para impedir o desenvolvimento da FHD.Dengue virus is a member of the family Flaviviridae, genus flavivirus with four antigenically distinct serotypes (DENV-1 to DENV-4). Dengue virus infection is a worldwide public health problem with an estimated incidence of 50-100 million cases of dengue fever (FD or classical dengue) resulting in 500,000 clinical cases of life-threatening dengue hemorrhagic fever. (DHF or dengue hemorrhagic fever) and 24,000 deaths per year (Green and Rothman 2006). DHF is characterized by vasculopathy, which leads to sudden plasma leakage that reduces blood volume and can result in hypovolemic shock, which is known as Dengue Shock Syndrome (SCD). There is no antiviral therapy for the treatment of dengue infection and no means to prevent the development of DHF.
Durante a fase aguda da infecção, os pacientes com FD e FHD têm quadros clínicos muito similares. No entanto, a defervescência (depois de 2 a 7 dias do início dos sintomas) é acompanhada por sinais de perturbações circulatórias em pacientes com FHD (OMS 1999). Por isso, acreditamos que a assinatura genética diferenciando as duas diferentes formas clínicas de dengue poderia ser uma ferramenta poderosa a ser usada em áreas endêmicas para prever a resposta do paciente, facilitando o manejo clinico.During the acute phase of infection, patients with PD and DHF have very similar clinical pictures. However, defervescence (2 to 7 days after symptom onset) is accompanied by signs of circulatory disturbance in patients with DHF (WHO 1999). Therefore, we believe that genetic signature differentiating the two different clinical forms of dengue could be a powerful tool to be used in endemic areas to predict patient response, facilitating clinical management.
O conceito atualmente aceito como subjacente à imunopatologia da FHD se apóia na seqüência de infecção e indução de anticorpos não-neutralizantes (Endy, Nisalak et al. 2004; Pangf Cardosa et al. 2007), bem como na ativação de clones de célula T reativa-cruzada (MANGADA, Endy et al. 2002; Mongkolsapaya, Dejnirattisai et al. 2003; MANGADA Rothman e 2005; Mongkolsapaya, Duangchinda et al. 2006) ambos adquiridos após a infecção primária. Alguns dos "marcadores" de gravidade encontrados no sangue periférico, que foram correlacionados com o extravasamento plasmático na FHD incluem citocinas inflamatórias, quimiocinas e moléculas de aderência expressas em níveis elevados (Green, Vaughn et al. 1999; Juffrie, van der Meer et al. 2000; Mustafa, Elbishbishi et al. 2001; Suharti, van Gorp et al. 2002; Hatfield, Hung et al. 2003; Nguyen, Lei et al. 2004; Cardier, Marino et al. 2005; Tseng, Lo et al. 2005), a ativação de complemento (Avirutnan, Punyadee et al. 2006), além de aumentar a freqüência das células ativadas (Green, Vaughn et al. 1999; Azeredo, De Oliveira-Pinto et al. 2006) e ocorrência de apoptose (Mongkolsapaya, et al Dejnirattisai. 2003; Myint, Endy et al. 2006). Estas descobertas contribuíram para o avanço da compreensão dos mecanismos imunológicos envolvidos no desenvolvimento da FHD, mas não foi provado que nenhuma delas seja confiável ou útil como marcador biológico para uso clínico. O microarranjo de DNA tem sido utilizado como uma ferramenta para localizar "assinaturas genéticas" e prever com sucesso a resposta clinica do paciente com câncer (van de Vijver, He et al. 2002; Chen, Yu et al. 2007), bem como para infecções bacterianas e virais (Ramilo, Allman et al. 2007; Scherer, Magness et al. 2007). Van de Vijver et al (2002) relataram o uso de perfil prognóstico de 70 genes, previamente associado com o risco de metástase distante precoce em pacientes jovens com câncer de mama cujos linfonodos foram negativos para a presença de células cancerosas, como um instrumento de orientação para a terapia adjuvante nesses doentes (van de Vijver, He et al. 2002). Desta forma, melhora-se a seleção de pacientes que iriam se beneficiar com o tratamento adjuvante sistêmico, reduzindo as taxas tanto de tratamento excessivo como de subtratamento.The concept currently accepted as underlying the immunopathology of DHF relies on the sequence of infection and induction of non-neutralizing antibodies (Endy, Nisalak et al. 2004; Pangf Cardosa et al. 2007), as well as the activation of reactive T cell clones. -cruzada (MANGADA, Endy et al. 2002; Mongkolsapaya, Dejnirattisai et al. 2003; MANGADA Rothman and 2005; Mongkolsapaya, Duangchinda et al. 2006) both acquired after primary infection. Some of the severity markers found in peripheral blood that have been correlated with plasma extravasation in DHF include inflammatory cytokines, chemokines, and high-level adhesion molecules (Green, Vaughn et al. 1999; Juffrie, van der Meer et al. 2000; Mustafa, Elbishbishi et al 2001; Suharti, van Gorp et al 2002; Hatfield, Hung et al 2003; Nguyen, Lei et al 2004; Cardier, Marino et al 2005; Tseng, Lo et al. 2005), complement activation (Avirutnan, Punyadee et al. 2006), in addition to increasing the frequency of activated cells (Green, Vaughn et al. 1999; Azeredo, De Oliveira-Pinto et al. 2006) and occurrence of apoptosis ( Mongkolsapaya, et al. Dejnirattisai (2003; Myint, Endy et al. 2006). These findings contributed to further understanding of the immunological mechanisms involved in the development of DHF, but neither has been proven to be reliable or useful as a biological marker for clinical use. DNA microarray has been used as a tool to locate "genetic signatures" and successfully predict the clinical response of the cancer patient (van de Vijver, He et al. 2002; Chen, Yu et al. 2007) as well as to bacterial and viral infections (Ramilo, Allman et al. 2007; Scherer, Magness et al. 2007). Van de Vijver et al (2002) reported the use of a 70-gene prognostic profile previously associated with the risk of early distant metastasis in young breast cancer patients whose lymph nodes were negative for cancer cells as a guiding tool. for adjuvant therapy in these patients (van de Vijver, He et al. 2002). This improves the selection of patients who would benefit from systemic adjuvant treatment, reducing both overtreatment and undertreatment rates.
No modelo de infecção de dengue, o padrão de expressão gênica foi caracterizado junto com a fase de infecção em pessoas acometidas com a forma mais grave da doença, em duas diferentes coortes de dengue: Simmons et al. (2007) mostraram uma assinatura molecular em Células Mononucleares do Sangue Periférico (PBMCs), representando as fases aguda e convalescente da Sindrome de Choque do Dengue e eles relataram que os transcritos gênicos para 24 genes estimulados por IFN foram menos abundantes em adultos (6 pacientes) com sindrome de choque do dengue do que em 8 pacientes com dengue sem SCD, enquanto que genes envolvidos em apoptose estavam expressos em maior quantidade (Simmons, Popper et al. 2007). Recentemente Ubol et al (2008) em uma coorte de crianças da Tailândia confirmaram conceitualmente os resultados mostrados neste relatório e no estudo vietnamita, associando a diminuição da resposta imune inata e o aumento da apoptose com o desenvolvimento de FHD (übol, Masrinoul et al. 2008), mas o padrão genético difere do que mostramos aqui. Uma possível razão pode ser a faixa etária utilizada, na medida em que sabe-se que fenotipicamente o repertório da resposta imune é diferente durante os primeiros anos, onde predomina a resposta inata, comparativamente aos adultos (Pettiford, Jason et al. 2002). Em contraste, Kruif et al. (2008) relataram uma associação geral da gravidade do dengue e maior quantidade de expressão dos genes envolvidos na resposta imune inata (de Kruif, Setiati et al. 2008).In the dengue infection model, the pattern of gene expression was characterized along with the phase of infection in people with the most severe form of the disease in two different dengue cohorts: Simmons et al. (2007) showed a molecular signature on Peripheral Blood Mononuclear Cells (PBMCs) representing the acute and convalescent phases of Dengue Shock Syndrome and they reported that gene transcripts for 24 IFN-stimulated genes were less abundant in adults (6 patients). ) with dengue shock syndrome than in 8 dengue patients without SCD, whereas genes involved in apoptosis were expressed in greater numbers (Simmons, Popper et al. 2007). Recently Ubol et al (2008) in a Thai cohort conceptually confirmed the results shown in this report and the Vietnamese study, associating decreased innate immune response and increased apoptosis with the development of DHF (übol, Masrinoul et al. 2008), but the genetic pattern differs from what we show here. One possible reason may be the age range used, as it is known that phenotypically the repertoire of the immune response is different during the early years, where the innate response predominates compared to adults (Pettiford, Jason et al. 2002). In contrast, Kruif et al. (2008) reported a general association of dengue severity and greater expression of genes involved in the innate immune response (de Kruif, Setiati et al. 2008).
Vários exames laboratoriais de dengue baseados em sorologia ou detecção viral estão disponíveis e são capazes de confirmar o diagnóstico de infecção de dengue. Quando utilizados separadamente, cada um desses exames têm limitações, porém, quando utilizados nas combinações corretas, é possível confirmar ou afastar com segurança o diagnóstico de infecção pelo vírus da dengue. No entanto, a maior limitação no manejo clínico de casos de dengue é a capacidade do clínico avaliar o risco de um determinado paciente infectado de dengue desenvolver os seus sintomas fatais e a sua real necessidade de ser hospitalizado. A incidência de FHD é de aproximadamente 1% e é fatal se não for tratada rapidamente. Mesmo sob assistência médica a taxa de mortalidade devido a FHD pode atingir 10 a 20%. Infelizmente a maior parte dessas mortes poderiam ser evitadas com os cuidados médicos adequados. Um dos principais culpados da falta de assistência adequada é o caos causado pelos grandes surtos. A Organização Mundial de Saúde (OMS) estabeleceu critérios clínicos para definir os casos de FHD, mas as dificuldades tanto para preencher esses critérios como para identificar precocemente os casos graves, fazem com que o manejo clínico das formas graves da doença se torne um desafio até mesmo maior (Bandyopadhyay, Lum et al. 2006; Deen, Harris et al. 2006). Por isso, a busca de novas ferramentas para prever a resposta clínica do paciente é essencial para facilitar a avaliação da necessidade de intervenções médicas.Several laboratory tests for dengue based serology or viral detection are available and are able to confirm the diagnosis of dengue infection. When used separately, each of these tests has limitations, but when used in the right combinations, the diagnosis of dengue virus infection can be safely confirmed or ruled out. However, the major limitation in the clinical management of dengue cases is the clinician's ability to assess the risk of a given dengue infected patient developing their fatal symptoms and their real need to be hospitalized. The incidence of DHF is approximately 1% and is fatal if not treated promptly. Even under medical care the death rate due to DHF can reach 10 to 20%. Unfortunately most of these deaths could be prevented with proper medical care. One of the main culprits of the lack of adequate assistance is the chaos caused by major outbreaks. The World Health Organization (WHO) has established clinical criteria for defining cases of DHF, but the difficulties both in meeting these criteria and in early identification of severe cases make clinical management of severe forms of the disease challenging even. even larger (Bandyopadhyay, Lum et al. 2006; Deen, Harris et al. 2006). Therefore, the search for new tools to predict the patient's clinical response is essential to facilitate the assessment of the need for medical interventions.
SUMÁRIO DA INVENÇÃOSUMMARY OF THE INVENTION
A presente invenção consiste num método de avaliar a resposta clínica do paciente infectado com o vírus da dengue durante a fase aguda da infecção e antes de surgirem os sinais de vasculopatia. O método consiste na análise dos níveis de expressão de um grupo de genes (Tabelas 2-7), ou proteínas codificadas por eles, assim como polimorfismos alélicos.The present invention is a method of assessing the clinical response of the dengue virus infected patient during the acute phase of infection and before signs of vasculopathy appear. The method consists of analyzing the expression levels of a group of genes (Tables 2-7), or proteins encoded by them, as well as allelic polymorphisms.
Num aspecto da invenção, a predição da resposta clínica dos pacientes infectados com o vírus da dengue é baseada na análise de expressão dos 73 genes mostrados na Tabela 6, originados pela combinação dos melhores 200 genes mais significativos (menor valor p) e 200 maiores diferenças na expressão (magnitude fold change) entre dengue clássica e dengue hemorrágica.In one aspect of the invention, the prediction of the clinical response of dengue virus infected patients is based on expression analysis of the 73 genes shown in Table 6, originated by combining the best 200 most significant genes (lowest p-value) and 200 greatest differences. in the expression (magnitude fold change) between classical dengue and hemorrhagic dengue.
Num outro aspecto da invenção, os genes na Tabela 2 são usados para caracterização e diferenciação da expressão gênica em pessoas infectadas com vírus da dengue (FD + FHD) de outras causas de doenças febris (não dengue ou ND). Ainda um aspecto da invenção, diz respeito ao uso da Análise de Discriminação Linear, como regra de classificação, e resubstituição potencializada (bolstered resubstitution), como estimador de erro, de genes na forma isolada, dupla, trio ou mais genes para predizer resposta clinica de pacientes infectados com virus da dengue.In another aspect of the invention, the genes in Table 2 are used for characterization and differentiation of gene expression in people infected with dengue virus (FD + FHD) from other causes of febrile disease (non-dengue or ND). A further aspect of the invention relates to the use of Linear Discrimination Analysis as a classification rule and bolstered resubstitution as an error estimator of single, double, triple or more genes to predict clinical response. of patients infected with dengue virus.
Em outro aspecto da invenção, a expressão de duplas de genes baseados na lista de 1981 genes (Tabela 7) é usada como classificador para predizer resposta clinica de pacientes infectados com virus da dengue.In another aspect of the invention, expression of gene pairs based on the 1981 gene list (Table 7) is used as a classifier to predict clinical response of dengue virus infected patients.
Em outro aspecto da invenção, a expressão de trio de genes baseados na lista de 1981 genes (Tabela 7) é usada como classificador para predizer resposta clinica de pacientes infectados com virus da dengue.In another aspect of the invention, gene trio expression based on the 1981 gene list (Table 7) is used as a classifier to predict clinical response of dengue virus infected patients.
Em outro aspecto da invenção, a expressão de quarteto de genes baseados na lista de 1981 genes (Tabela 7) é usada como classificador para predizer resposta clinica de pacientes infectados com virus da dengue.In another aspect of the invention, gene quartet expression based on the 1981 gene list (Table 7) is used as a classifier to predict clinical response of dengue virus infected patients.
Em ainda um outro aspecto da invenção, a avaliação da expressão gênica pode ser realizada por qualquer das técnicas destinadas a detectar RNA, cDNA, cRNA (PCR, RT-PCR, PCR quantitativa, microarranjo de DNA, Northern blotting e outros).In yet another aspect of the invention, evaluation of gene expression may be performed by any of the techniques for detecting RNA, cDNA, cRNA (PCR, RT-PCR, quantitative PCR, DNA microarray, Northern blotting, and others).
Em ainda um outro aspecto da invenção, a avaliação dos níveis dos produtos proteicos codificados pelos genes mostrados na Tabela 7 pode ser realizada por qualquer técnica destinada a detectar formas desnaturadas e nativas das proteínas (ELISA, Western blotting, dot-blotting, citometria de fluxo e outros). BREVE DESCRIÇÃO DAS FIGURASIn yet another aspect of the invention, assessment of the levels of protein products encoded by the genes shown in Table 7 can be performed by any technique for detecting denatured and native protein forms (ELISA, Western blotting, dot-blotting, flow cytometry). and others). BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 mostra medidas de ruído e eficiência. A seta indica o único arranjo, no grupo não dengue, que mostrou reduzida tanto a relação sinal/ruído quanto percentagem de chamadas presentes.FIG. 1 shows noise and efficiency measurements. The arrow indicates the only arrangement in the non-dengue group that showed reduced signal-to-noise ratio and percentage of calls present.
FIG. 2 é um gráfico de degradação de RNA.FIG. 2 is a graph of RNA degradation.
FIG. 3 mostra a análise exploratória dos dados baseados nos 1981 genes selecionados. (A) dendrograma de agrupamento hierárquico. (B) Gráfico MDS 2-D. (C) Gráfico MDS 3-D. A elipse em (B) representa os dois maiores grupos de amostras.FIG. 3 shows exploratory analysis of data based on 1981 selected genes. (A) hierarchical grouping dendrogram. (B) 2-D MDS Chart. (C) 3-D MDS Chart. The ellipse in (B) represents the two largest sample groups.
FIG. 4 mostra os 40 melhores genes diferencialmente expressos entre amostras FD e FHD. (A) Mapa de expressão com anotação do GeneBank. (B) Dendograma de agrupamento hierárquico (apenas os 40 melhores genes). (C) Gráfico MDS 3- D (apenas os 40 melhores genes).FIG. 4 shows the 40 best differentially expressed genes between FD and FHD samples. (A) GeneBank annotated expression map. (B) Hierarchical clustering dendogram (only the top 40 genes). (C) MDS 3-D chart (only the top 40 genes).
FIG. 5 mostra o classificador para o par de genes PSMB9 e MT2A, na discriminação de FD contra FHD. Menor expressão de ambos os genes é característica de FHD, enquanto maior expressão de ambos os genes é característica de FD. A probabilidade estimada de erro para este classif icador é de apenas 5.38%.FIG. 5 shows the classifier for the PSMB9 and MT2A gene pair in the discrimination of FD against FHD. Lower expression of both genes is characteristic of DHF, while higher expression of both genes is characteristic of DHF. The estimated probability of error for this classifier is only 5.38%.
FIG. 6 mostra níveis de expressão de genes para discriminação entre pacientes FD e FHD. (A) para todos os genes testados, os ensaios de pPCR foram realizados usando uma mistura de 8 pacientes FD e 8 FHD usados no ensaio de microarranjos. (B) Para todos os genes, os ensaios de qPCR foram realizados para um grupo de 8 amostras FD e 8 FHD usados no ensaio de microarranjo (coluna branca), ou um grupo de 8 amostras FD e 8 FHD independentes (coluna cinza). 0 experimento foi realizado duas vez e cada grupo foi analisado em triplicata.FIG. 6 shows gene expression levels for discrimination between FD and FHD patients. (A) For all genes tested, pPCR assays were performed using a mixture of 8 FD and 8 FHD patients used in the microarray assay. (B) For all genes, qPCR assays were performed for a group of 8 FD and 8 FHD samples used in the microarray assay (white column), or a group of 8 independent FD and 8 FHD samples (gray column). The experiment was performed twice and each group was analyzed in triplicate.
FIG. 7 fornece gráficos Vulcões mostrando os valores ρ correlacionados com a magnitude de diferença de expressão (fold change) em pacientes FD versus FHD e casos de dengue (FD+FHD) versus não dengue. Os genes destacados em vermelho e azul representam os 40 melhores genes de acordo com os valores ρ e magnitude de diferença de expressão respectivamente.FIG. 7 provides graphs Volcanoes showing the ρ values correlated with the magnitude of expression change (fold change) in FD versus FHD patients and dengue (FD + FHD) versus non-dengue patients. The genes highlighted in red and blue represent the top 40 genes according to the values ρ and magnitude of expression difference respectively.
DESCRIÇÃO DETALHADA DA INVENÇÃODETAILED DESCRIPTION OF THE INVENTION
A tecnologia de microarranjos de DNA é uma importante ferramenta para estudar a expressão de RNAm simultaneamente de todos os genes num genoma. Esta tecnologia consiste de milhares de diferentes seqüências de DNA representando diferentes genes adsorvidos em regiões conhecidas de uma matriz sólida, tais como lâmina de vidro. As lâminas podem ser hibridizadas com sondas derivadas de RNAm de células ou tecidos. Arranjos de oligonucleotidios (composto por DNA de 25-mers) se baseia na estratégia do pareamento perfeito/despareamento (match/mismatch) da sonda no chip de DNA, onde são usadas sondas que pareiam perfeitamente (match) e sondas que diferem da primeira por uma base em seu centro (mismatch) e que por isso não hibridizam ao chip de DNA. Neste tipo de microarranjo, apenas um fluorocromo é usado para marcação do RNA complementar (RNAc) e o sinal é detectado usando um equipamento de escaneamento óptico. A quantificação da sonda hibridizada é realizada comparando os sinais dos oligos "mismatch" (hibridização não especifica) e os oligos que pareiam perfeitamente (match). Microarranjos de DNA tem sido usado como ferramenta para achar "assinaturas gênicas" e predizer com sucesso a resposta clinica de pacientes com câncer (van de Vijver, He et al. 2002; Chen, Yu et al. 2007) assim como para infecções bacterianas e virais (Ramilo, Allman et al. 2007; Scherer, Magness et al. 2007). van de Vijver et al (2002) relataram o uso de perfil prognóstico usando 70 genes como ferramenta para guiar a terapia adjuvante nesses pacientes através da seleção daqueles pacientes que realmente se beneficiariam desse tratamento adjuvante sistêmico e reduzindo tanto a taxa de tratamento excessivo ou subtratamento. Os 70 genes utilizados por esses autores foram previamente associados com risco de metástase distante em pacientes jovens com câncer de mama e cujo linfonodos foram negativos para a presença de células cancerosas (van de Vijver, He et al. 2002).DNA microarray technology is an important tool for studying mRNA expression simultaneously of all genes in a genome. This technology consists of thousands of different DNA sequences representing different genes adsorbed in known regions of a solid matrix, such as a glass slide. The slides may be hybridized to cell or tissue mRNA-derived probes. Oligonucleotide arrays (composed of 25-mers DNA) is based on the probe match / mismatch strategy on the DNA chip, where perfectly matching probes and probes that differ from the first one are used. a base at its center (mismatch) and so do not hybridize to the DNA chip. In this type of microarray, only one fluorochrome is used for complementary RNA (cRNA) labeling and the signal is detected using optical scanning equipment. Quantitation of the hybridized probe is performed by comparing the signals from mismatch oligos (non-specific hybridization) and perfectly matched oligos (match). DNA microarrays have been used as a tool to find "gene signatures" and successfully predict the clinical response of cancer patients (van de Vijver, He et al. 2002; Chen, Yu et al. 2007) as well as for bacterial and bacterial infections. (Ramilo, Allman et al. 2007; Scherer, Magness et al. 2007). van de Vijver et al (2002) reported the use of prognostic profiling using 70 genes as a tool to guide adjuvant therapy in these patients by selecting those patients who would really benefit from this systemic adjuvant treatment and reducing either the overtreatment rate or undertreatment. The 70 genes used by these authors were previously associated with risk of distant metastasis in young breast cancer patients whose lymph nodes were negative for cancer cells (van de Vijver, He et al. 2002).
Há muitas evidências que fatores genéticos, envolvidos em susceptibilidade/resistência à doenças infecciosas,There is much evidence that genetic factors, involved in susceptibility / resistance to infectious diseases,
influenciam a resposta imune em humanos. Esses fatores são complexos e geneticamente controlados e não seguem um perfil de herança Mendeliana (Clementi and Di Gianantonio 2006) . Alguns desses fatores identificados por microarranjos de DNA são envolvidos com alteração da regulação gênica e algumas vezes devido a polimorfismos que interferem com a expressão gênica de várias formas, seja diretamente se ligando ao promotor, seja interferindo na cascata de sinais que interfere com a ativação gênica. Polimorfismo genético do hospedeiro relacionado com resposta imune tem sido mostrado estar correlacionado com expressão gênica alterada e susceptibilidade a desenvolver FHD, tais como o alelo TNF-308, associado com elevados níveis de TNFa, tem sido correlacionado com aumentado risco de desenvolver a forma mais grave da doença (Fernandez-Mestre, Gendzekhadze et al. 2004; Soundravally and Hoti 2007). Uma associação tem sido recentemente relatada entre o genótipo selvagem AA MBL2, altos níveis de MBL e alto risco de desenvolver trombocitopenia associado com infecção pelo vírus da dengue (Acioli-Santos, Segat et al. 2008). Por outro lado, polimorfismo no promotor de CD209 (Sakuntabhai, Turbpaiboon et al. 2005), foi associado com reduzida expressão de DC-SIGN e, possivelmente, reduzida susceptibilidade de células dendriticas a infecção pelo vírus da dengue. Portanto, a procura por alteração na expressão gênica entre diferentes quadros clínicos de dengue usando microarranjos de DNA pode elucidar em alta escala os fatores genéticos e mecanismos imunopatológicos relacionados com gravidade da dengue.influence the immune response in humans. These factors are complex and genetically controlled and do not follow a Mendelian inheritance profile (Clementi and Di Gianantonio 2006). Some of these factors identified by DNA microarrays are involved with altered gene regulation and sometimes due to polymorphisms that interfere with gene expression in various ways, either by directly binding to the promoter or by interfering with the signal cascade that interferes with gene activation. . Host gene polymorphism related to immune response has been shown to correlate with altered gene expression and susceptibility to developing DHF, such as the TNF-308 allele, associated with elevated TNFα levels, has been correlated with increased risk of developing the most severe form. of the disease (Fernandez-Mestre, Gendzekhadze et al. 2004; Soundravally and Hoti 2007). An association has recently been reported between wild type AA MBL2 genotype, high MBL levels and high risk of developing thrombocytopenia associated with dengue virus infection (Acioli-Santos, Segat et al. 2008). On the other hand, CD209 promoter polymorphism (Sakuntabhai, Turbpaiboon et al. 2005) has been associated with reduced DC-SIGN expression and possibly reduced susceptibility of dendritic cells to dengue virus infection. Therefore, the search for alteration in gene expression among different clinical conditions of dengue using DNA microarray can elucidate the genetic factors and immunopathological mechanisms related to dengue severity.
Usando essa tecnologia, o perfil de expressão gênica foi caracterizado em pessoas que desenvolveram FHD em duas diferentes coortes: Simmons at al. (2007) mostraram uma assinatura molecular em células mononucleares de sangue periférico (PBMC) representando as fases aguda e convalescente de pacientes que desenvolveram a síndrome de choque de dengue (SCD). Neste trabalho eles relataram que transcritos gênicos para 24 genes estimulados por interferon estavam menos abundante em adultos (6 pacientes) com SCD do que e 8 pacientes com pacientes FHD que não desenvolveram choque, enquanto aqueles genes envolvidos em apoptose estavam expressos em maior quantidade Recentemente Ubol et al (2008) numa coorte de crianças Tailandesas também observaram redução na expressão de genes da imunidade inata e aumento da expressão de genes envolvidos em apoptose com gravidade da infecção pelo vírus da dengue (Ubol, Masrinoul et al. 2008).Using this technology, the gene expression profile was characterized in people who developed DHF in two different cohorts: Simmons at al. (2007) showed a molecular signature on peripheral blood mononuclear cells (PBMC) representing the acute and convalescent phases of patients who developed dengue shock syndrome (SCD). In this study they reported that gene transcripts for 24 interferon-stimulated genes were less abundant in adults (6 patients) with SCD than and 8 patients with DHF patients who did not develop shock, while those genes involved in apoptosis were expressed in greater numbers. et al (2008) in a cohort of Thai children also observed reduced expression of innate immunity genes and increased expression of genes involved in severely apoptotic dengue virus infection (Ubol, Masrinoul et al. 2008).
Durante a fase aguda da infecção, pacientes afetados com a forma benigna (FD) e maligna (FHD) da doença desenvolvem o mesmo quadro clínico. No entanto, durante o período de defervescência (4 a 7 dias do início dos sintomas) é acompanhado pelos distúrbios circulatórios, cuja magnitude é diretamente proporcional a gravidade da doença (WHO 1999). Com isso, os eventos que precedem a defervescência são determinantes para resposta clínica do paciente.During the acute phase of infection, patients affected with the benign (DF) and malignant (DHF) form of the disease develop the same clinical picture. However, during the defervescence period (4 to 7 days from the onset of symptoms) it is accompanied by circulatory disorders, the magnitude of which is directly proportional to the severity of the disease (WHO 1999). Thus, the events that precede defervescence are determinant for the patient's clinical response.
A presente invenção fornece o uso da expressão diferencial de um grupo de genes como ferramenta prognostica para predizer resposta clínica de pacientes infectados com dengue baseado nos dados de expressão gênica obtida, antes de começarem os sintomas circulatórios, usando microarranjos de oligonucleotidios. Amostras de sangue heparinizado (também pode ser utilizado citrato de sódio ou EDTA como anticoagulante) coletados de pacientes (Tabela 1), cuja infecção pelo vírus da dengue foi confirmada por sorologia para IgM assim como isolamento viral ou detecção de RNA viral através de RT-PCR; foram usados. Isolamento de PBMC usando gradiente de densidade pode ser usado para minimizar o "ruído" causado pelos granulócitos. Consequentemente, moderada a pequena mudanças na expressão gênica entre as diferentes manifestações clínicas de dengue pode ser prontamente detectada. Uma vez obtidas as amostras contendo as células, o RNA mensageiro ou total pode ser extraído e amplificado para avaliação da expressão gênica. 0 RNA amplificado é então marcado para que este possa ser hibridizado num microarranjo de DNA, que por sua vez, é escaneado e os dados obtidos são processados para a obtenção dos dados de perfil de expressão gênica.The present invention provides the use of gene group differential expression as a prognostic tool to predict clinical response of dengue infected patients based on the gene expression data obtained before circulatory symptoms begin using oligonucleotide microarrays. Heparinized blood samples (sodium citrate or EDTA may also be used as anticoagulant) collected from patients (Table 1), whose dengue virus infection was confirmed by IgM serology as well as viral isolation or detection of viral RNA by RT- PCR; was used. PBMC isolation using density gradient can be used to minimize "noise" caused by granulocytes. Consequently, moderate to small changes in gene expression between different clinical manifestations of dengue can be readily detected. Once samples containing the cells are obtained, messenger or total RNA can be extracted and amplified for evaluation of gene expression. The amplified RNA is then labeled so that it can be hybridized to a DNA microarray, which in turn is scanned and the obtained data processed to obtain gene expression profile data.
A qualidade dos dados do microarranjo de DNA é avaliada usando vários critérios: inspeção visual,The quality of DNA microarray data is assessed using several criteria: visual inspection,
medida da relação ruido/eficiência, genes controles embutidos (spiked in) de amplificação (dap, thr, phe, lys) e hibridização (bioB, bioC, bioD, cre), expressão de genes constitutivos (GAPDH - gliceraldeido- 3-fosfatase desidrogenase humano- e beta actina), e gráficos de degradação de RNA.noise / efficiency ratio, amplified spiked in control genes (dap, thr, phe, lys) and hybridization (bioB, bioC, bioD, cre), constitutive gene expression (GAPDH - glyceraldehyde 3-phosphatase dehydrogenase) and beta-actin), and RNA degradation plots.
Inspeção visual baseada em arquivos de alta definição DAT não deve revelar sinais de arranhões ou manchas e as sondas oligos B2 devem ser visíveis (perfil de tabuleiro de xadrez bem como o nome do arranjo).Visual inspection based on high definition DAT files should not reveal signs of scratches or stains and oligo B2 probes should be visible (chessboard profile as well as the name of the arrangement).
Medida da relação ruído/eficiência é feita pelo programa MAS 5.0. Fator Q de ruído, background, fator de escalonamento e percentagem de sondas presentes devem ser similar entre os microarranj os.Measurement of the noise / efficiency ratio is made by the MAS 5.0 program. Noise factor Q, background, scaling factor and percentage of probes present should be similar between microarray.
A seleção dos genes preditores de resposta clínica de pacientes infectados com vírus da dengue, bem como aqueles característicos de infecção pelo vírus da dengue independente da manifestação clínica [comparação entre casos de dengue (FD + FHD) e grupo não dengue ou ND, cuja etiologia da doença febril foi desconhecida mas que foi descartada a possibilidade de ser pelo vírus da dengue], foi baseado em 26 microarranjos de oligonucleotidios distribuídos como se segue: 7 oriundos de pacientes com FD, 10 de pacientes FHD e 8 de pacientes ND. Esses microarranjos foram analisados através do programa Affymetrix MAS 5.0 (Hubbell, Liu et al. 2002) para normatizar os dados e produzir sinal e detectar as sondas presentes dentre os 54.675 transcritos gênicos em cada microarranjo. Desses, 12.299 transcritos foram considerados presentes (p<0.04) em todas os microarranjos, enquanto 20.365 transcritos foram considerados ausentes em qualquer dos microarranjos. Para manter apenas os genes mais promissores para futuras análises, foram empregados dois filtros inespecificos: (i) filtro de detecção para eliminar genes não expressos, o que manteve apenas os genes considerados presentes em pelo menos 24 dos 26 microarranjos, resultando num total de 15.848 genes. Desta forma, foram tolerados 3.549 genes (15.848 - 12.299 = 3.549) que foram considerados ausentes em um ou dois microarranjos; (ii) filtro de variância para eliminar genes de expressão constitutiva, o que manteve os maiores 1/8 dos 15.848 genes previamente citados, resultando em 1981 genes com potencial prognóstico (Tabela 7). Esses genes foram confirmados como potenciais prognósticos quando foram realizados agrupamento hierárquico e escalonamento multidimensional em 2D e 3-D (Figure 3), revelando a formação de dois grandes grupos, um grupo contendo amostras ND e metade das amostras FD; e outro grupo contendo pacientes FHD, duas amostras ND e a outra metade dos pacientes FD. A medida de dissimilaridade usada foi 1 - r, onde r é correlação de Pearson dos valores transformados em log. Os microrranjos foram coloridos de acordo com a classe diagnostica. Nota-se que as amostras FHD constituem um grupo mais coeso do que o grupo ND, representado por pacientes com doenças febris de etiologia desconhecida. Enquanto as amostras FD podem ser divididas em dois grupos, um similar e outro diferente das amostras FHD, este último estando mais próximo das amostras ND. 0 pequeno valor de estresse (13.52% no Gráfico 2-D e 7.32% no Gráfico 3-D), particularmente no Gráfico 3-D significa que a estrutura que os dados representam é intrinsecamente de baixa dimensão, o que indica que um pequeno número de assinaturas gênicas pode representar o conteúdo discriminatório dos dados.The selection of predictive genes for clinical response of dengue virus infected patients, as well as those characteristic of dengue virus infection regardless of clinical manifestation [comparison between dengue cases (FD + FHD) and non-dengue group or ND, whose etiology of febrile illness was unknown but the possibility of dengue virus was ruled out], was based on 26 oligonucleotide microarrays distributed as follows: 7 from FD patients, 10 from DHF patients and 8 from ND patients. These microarrays were analyzed using Affymetrix MAS 5.0 software (Hubbell, Liu et al. 2002) to normalize data and produce signal and detect probes present among the 54,675 gene transcripts in each microarray. Of these, 12,299 transcripts were considered present (p <0.04) in all microarrays, while 20,365 transcripts were considered absent in either microarray. In order to keep only the most promising genes for future analysis, two nonspecific filters were employed: (i) detection filter to eliminate non-expressed genes, which kept only the genes considered present in at least 24 of the 26 microarrays, resulting in a total of 15,848 genes. Thus, 3,549 genes (15,848 - 12,299 = 3,549) that were considered absent in one or two microarrays were tolerated; (ii) variance filter to eliminate constitutive expression genes, which maintained the largest 1/8 of the 15,848 genes previously cited, resulting in 1981 genes with potential prognosis (Table 7). These genes were confirmed as prognostic potentials when hierarchical clustering and 2D and 3-D multidimensional scaling were performed (Figure 3), revealing the formation of two large groups, one group containing ND samples and half of the FD samples; and another group containing DHF patients, two ND samples and the other half of DH patients. The dissimilarity measure used was 1 - r, where r is Pearson correlation of log transformed values. The microarrays were colored according to the diagnostic class. It is noted that the DHF samples constitute a more cohesive group than the ND group, represented by patients with febrile diseases of unknown etiology. While FD samples can be divided into two groups, one similar and one different from the FHD samples, the latter being closer to the ND samples. The small stress value (13.52% in Graph 2-D and 7.32% in Graph 3-D), particularly in Graph 3-D means that the structure that the data represents is intrinsically small, indicating that a small number of gene signatures may represent the discriminatory content of the data.
Em seguida foi realizado um teste estatístico entre as médias (Welch two-sample t-tests) para achar os genes que foram diferencialmente expressos entre os diferentes grupos analisados. Duas comparações foram consideradas: FD verso FHD e Dengue (FD+FHD) verso ND. Gráficos de vulcão na Figura 4 mostram que os valores ρ foram bem correlacionados com magnitude de diferença de expressão (fold change) em ambas as comparações. A lista de genes com maiores "fold-change" mostrados nos gráficos vulcão são mostrados nas Tabelas 2 e 3Next, a statistical test between the means (Welch two-sample t-tests) was performed to find the genes that were differentially expressed between the different groups analyzed. Two comparisons were considered: FD verse FHD and Dengue (FD + FHD) verse ND. Volcano plots in Figure 4 show that the ρ values correlated well with the magnitude of fold change in both comparisons. The list of the highest fold-changing genes shown in the volcano graphs are shown in Tables 2 and 3.
Δ Figura 5 mostra o mapa de expressão para os 40 mais significativos (menores valores p) genes que discriminam os grupos FD de FHD de acordo com o critério do teste Welch t, assim como o agrupamento hierárquico e gráficos MDS para os mesmos 40 genes.Δ Figure 5 shows the expression map for the 40 most significant (lowest p-values) genes that discriminate against the DH FD groups according to the Welch t test criterion, as well as hierarchical grouping and MDS plots for the same 40 genes.
Entre os 200 mais significativos genes diferencialmente expressos entre FD e FHD de acordo com o Welch two-sample t- tests foi comparado com 200 genes com maiores "fold-change" da média de expressão dos níveis de RNAm, há 7 3 genes em comum (Tabela 6) , o que representa os melhores genes mais significativos e com maior diferença na magnitude de expressão (fold-change) entre FD e FHD.Among the 200 most significant differentially expressed genes between FD and FHD according to the Welch two-sample t-tests was compared with 200 genes with the largest fold-change in average expression of mRNA levels, there are 7 3 genes in common. (Table 6), which represents the best most significant genes and with the largest difference in the magnitude of expression (fold-change) between FD and FHD.
Dentre os genes diferencialmente expressos entre FD e FHD, 19 fazem parte da categoria de resposta imune, incluindo HLA-ϋΡαβ genes, complement factor D, CX3CR, MyD88, TNFSFl7 (BCMA), TNFSF13 (APRIL). Sete genes foram incluídos no grupo de resposta a defesa, entre eles temos o gene de Resistência a mixovírus (Mx), 2', 5'-oligoadenilato sintetase (0AS1 and 0AS2) e fatores estimulados por IFN. Estes foram expressos em menor magnitude em pessoas que depois desenvolveram FHD. Este genes tem sido implicados em resposta imune inata, confirmando que esse braço da resposta imune pode ser crucial para a resposta clínica de pacientes infectados com o vírus da dengue. Alem disso, 6 genes (PDCD4, PACAP, Tumor protein D52, MAGEDl, pro- apoptotic caspase adaptor protein and TNF ligand super family) associados com apoptose estão expressos em maior quantidade em pacientes FHD. Além disso, CD53, uma tetraspanina produzida por monócitos e linfócitos B e previne essas células de sofrerem apoptose (Yunta and Lazo 2003) estava expressa em menor quantidade no grupo FHD, reforçando a premissa de que aumento de células que sofre apoptose está associado com desenvolvimento da forma mais severa da doença.Among the differentially expressed genes between FD and FHD, 19 fall into the immune response category, including HLA-βα genes, complement factor D, CX3CR, MyD88, TNFSF17 (BCMA), TNFSF13 (APRIL). Seven genes were included in the defense response group, among which were the Myxovirus Resistance (Mx) gene, 2 ', 5'-oligoadenylate synthetase (0AS1 and 0AS2) and IFN-stimulated factors. These were expressed to a lesser extent in people who later developed DHF. These genes have been implicated in innate immune response, confirming that this arm of the immune response may be crucial to the clinical response of dengue virus infected patients. In addition, 6 genes (PDCD4, PACAP, Tumor protein D52, MAGED1, pro-apoptotic caspase adapter protein and TNF ligand super family) associated with apoptosis are expressed in larger numbers in DHF patients. In addition, CD53, a tetraspanin produced by monocytes and B lymphocytes, prevents these cells from suffering apoptosis (Yunta and Lazo 2003) was less expressed in the DHF group, reinforcing the premise that apoptotic cell augmentation is associated with development. of the most severe form of the disease.
Comparando com o estudo conduzido por Simmons et al (2007) (Simmons, Popper et al. 2007), existe uma consistência nos genes propostos como sendo prognósticos para desenvolvimento de FHD. Neste estudo, alguns genes estimulados por IFN, cuja expressão estava reduzida em pacientes desenvolvendo SCD, tais como as MX, IFIT, and OAS, bem como níveis elevados de "pro-apoptotic caspase adaptor protein" e PDCD5 (programmed cell death 5) fazem parte da nossa lista de genes prognósticos.Comparing with the study conducted by Simmons et al (2007) (Simmons, Popper et al. 2007), there is consistency in the proposed genes as prognostic for developing DHF. In this study, some IFN-stimulated genes whose expression was reduced in patients developing SCD, such as MX, IFIT, and OAS, as well as high levels of pro-apoptotic caspase adapter protein and PDCD5 (programmed cell death 5). part of our list of prognostic genes.
Desta forma, com base nos 1981 genes identificados foram selecionados grupos de genes marcadores de FHD para serem utilizados em ensaios mais simples, tais como PCR quantitativa. Para isso, foi realizada uma seleção exaustiva com todas as possíveis combinações de genes isolados ou combinados em forma de dupla ou trio, através análise discriminante linear como método de classificação, implementado pela estimativa direta das médias das amostras e matrizes de covariância para cada classe diagnostica (Braga-Neto 2005); e precisão de classificação estimada pelo método de resubstituição potencializada (bolstead resubstitution, Braga-Neto 2004), que é ideal para seleção de grupo de genes numa situação com número menor de amostra (Sima, Attoor et al. 2005; Sima, Braga-Neto et al. 2005).Thus, based on the 1981 identified genes, groups of DHF marker genes were selected for use in simpler assays, such as quantitative PCR. For this, an exhaustive selection was made with all possible combinations of genes isolated or combined in double or triple form, through linear discriminant analysis as a classification method, implemented by direct estimation of sample means and covariance matrices for each diagnostic class. (Braga-Neto 2005); and classification accuracy estimated by the potentiated resubstitution method (bolstead resubstitution, Braga-Neto 2004), which is ideal for gene group selection in a smaller sample situation (Sima, Attoor et al. 2005; Sima, Braga-Neto et al., 2005).
A Tabela 5 mostra os melhores genes na forma isolada (40) ou combinada [dupla (40) ou trio (100)], ranqueados pelo erro estimado. Há 37 únicos genes entre os melhores 40 pares, enquanto há 86 únicos genes em os melhores 100 trios. A lista de trios é dominada pelos genes PSMB9, MT2A e LOC400368. A média do erro estimado para os melhores classificadores contendo 1 gene (40) = 0.1639 ± 0.0286, 2 genes (40) = 0.0686 ± 0.0096, 3 genes (100) = 0.0395 ±0.0040, o que indica que a classificação usando pares de genes é mais precisa que 1 gene, enquanto a classificação utilizando 3 genes é mais precisa do que 2 genes (a margem de erro acima se refere a um intervalo de confidência de 95%). O método de seleção acima descrito com 2 ou 3 genes tem um potencial de "selecionar" genes que não são possíveis de serem encontrados usando métodos univariados, tais como t-test. Isto pode ser visto na lista com os melhores duplas de classificadores. Por exemplo, o gene HLA-F (cuja expressão é reduzida in FHD em relação a FD).Table 5 shows the best genes in isolated (40) or combined [double (40) or trio (100)] form, ranked by the estimated error. There are 37 unique genes in the top 40 pairs, while there are 86 single genes in the top 100 triplets. The list of trios is dominated by the genes PSMB9, MT2A and LOC400368. The estimated error average for the best classifiers containing 1 gene (40) = 0.1639 ± 0.0286, 2 genes (40) = 0.0686 ± 0.0096, 3 genes (100) = 0.0395 ± 0.0040, which indicates that the classification using gene pairs is more accurate than 1 gene, whereas classification using 3 genes is more accurate than 2 genes (the above margin of error refers to a 95% confidence interval). The selection method described above with 2 or 3 genes has the potential to "select" genes that cannot be found using univariate methods such as t-test. This can be seen in the list with the best pair of classifiers. For example, the HLA-F gene (whose expression is reduced in FHD relative to FD).
A Figura 6 mostra o gráfico contendo um dos genes classificadores baseado na dupla de genes PSMB9 e MT2A. A probabilidade de erro em futuros dados para este classificador é de 5.38%. Neste caso, reduzida expressão de ambos os genes é característica de FHD, enquanto aumento de expressão é característica de FD. Para confirmar a potencialidade desses genes como preditores de gravidade de dengue, selecionamos alguns (PSMB9, MT2A, HLA-F and C3aRl) para desenvolver ensaios de RT-PCR quantitativo com amostras FD e FHD. Os genes foram amplificados e detectados usando o ensaio de expressão gênica TaqMan® com iniciadores (primers) e sondas comercialmente disponíveis (Applied Biosystems). O RNA foi extraído com auxilio do kit RNeasy (Qiagen). O RNA total foi reversamente transcrito usando o sistema de síntese da primeira fita SuperScript III para PCR quantitativo usando iniciadores aleatórios (random primers) e a PCR quantitativa foi realizada no ABI PRISM 7500 (Applied Biosystems). Beta actina foi usado como controle endógeno e todos os dados foram normalizados baseados neste gene constitutivo. As amostras usadas neste ensaio são descritas na Tabela 1 (amostras de pacientes ND, bem como os pacientes FHD 105 e 112 não foram usados). Os resultados de RT-PCR quantitativa foram comparáveis com aqueles obtidos nos ensaios de microarranjos (Figura 7). Além disso, usando um grupo de amostras independentes daquelas amostras usadas nos ensaios de microarranjos, os níveis de expressão dos genes citados acima também foram confirmados (Figura 7). Desta forma, os resultados do ensaio de PCR quantitativa confirmaram a expressão dos genes selecionados em amostras coletadas na primeira visita médica de um paciente infectado com vírus da dengue, podendo predizer se uma pessoa infectada pelo vírus da dengue pode desenvolver ou não FHD. Portanto, o objeto desta invenção representa um meio útil de guiar o manejo clínico de pacientes com dengue.Figure 6 shows the graph containing one of the classifier genes based on the PSMB9 and MT2A gene pair. The probability of error in future data for this classifier is 5.38%. In this case, reduced expression of both genes is characteristic of FHD, while increased expression is characteristic of FD. To confirm the potentiality of these genes as dengue severity predictors, we selected some (PSMB9, MT2A, HLA-F and C3aRl) to develop quantitative RT-PCR assays with FD and FHD samples. Genes were amplified and detected using the TaqMan® gene expression assay with commercially available primers and probes (Applied Biosystems). RNA was extracted with the aid of the RNeasy kit (Qiagen). Total RNA was reverse transcribed using the first SuperScript III ribbon synthesis system for quantitative PCR using random primers and quantitative PCR was performed on ABI PRISM 7500 (Applied Biosystems). Beta actin was used as an endogenous control and all data were normalized based on this constitutive gene. Samples used in this assay are described in Table 1 (ND patient samples as well as FHD 105 and 112 patients were not used). Quantitative RT-PCR results were comparable to those obtained in microarray assays (Figure 7). Furthermore, using a group of samples independent of those samples used in the microarray assays, the expression levels of the above mentioned genes were also confirmed (Figure 7). Thus, the results of the quantitative PCR assay confirmed the expression of the selected genes in samples collected at the first medical visit of a patient infected with dengue virus and can predict whether a person infected with dengue virus can develop or not DHF. Therefore, the object of this invention represents a useful means of guiding the clinical management of dengue patients.
Métodos de escolha para estabelecer níveis de expressão gênica para predição de resposta clínica de pacientes com dengue incluem microarranjos de DNA, RT-PCR, northern blot, RT-PCR competitiva, RT-PCR em tempo real, diferential display RT-PCR. Enquanto é possível conduzir essas técnicas usando reações de PCR individuais, é melhor amplificar o DNA complementar (cDNA) e analisá-lo via PCR quantitativa e então normalizar os resultados usando a expressão de algum gene constitutivo. Em seguida, as análises poderão ser feitas usando quantificação tanto absoluta quanto relativa para que o perfil de expressão gênica possa ser determinado.Methods of choice for establishing gene expression levels to predict clinical response in dengue patients include DNA microarray, RT-PCR, northern blot, competitive RT-PCR, real-time RT-PCR, differential display RT-PCR. While it is possible to conduct these techniques using individual PCR reactions, it is best to amplify the complementary DNA (cDNA) and analyze it via quantitative PCR and then normalize the results using the expression of some constitutive gene. Then the analyzes can be done using both absolute and relative quantification so that the gene expression profile can be determined.
Níveis de proteínas codificadas pelos genes preditivos de gravidade da dengue, quantificados de qualquer fluido corpóreo (sangue, plasma, soro, exudados) podem ser usadas para prognóstico de gravidade da dengue. No entanto, amostras de plasma são preferidas. Para estes tipos de amostras, qualquer ensaio imunológico (ELISA, imunofluorescência, western blot, dot blot etc) pode ser empregado. Além do mais, níveis de proteínas podem ser indiretamente avaliados através da análise da freqüência de células (PBMC, por exemplo) expressando uma dada proteína em qualquer compartimento de células por citometria de fluxo.Levels of proteins encoded by dengue severity predictive genes, quantified from any body fluid (blood, plasma, serum, exudates) can be used to predict dengue severity. However, plasma samples are preferred. For these sample types, any immunoassay (ELISA, immunofluorescence, western blot, dot blot etc) may be employed. In addition, protein levels can be indirectly assessed by analyzing cell frequency (PBMC, for example) expressing a given protein in any cell compartment by flow cytometry.
O uso de qualquer dos métodos acima mencionados e outros relacionados constitui uma fonte para desenvolvimento de kits preditores de gravidade da dengue durante a fase aguda da infecção e antes que o extravasamento plasmático ocorra em pacientes FHD.The use of any of the above and related methods is a source for the development of dengue severity predictor kits during the acute phase of infection and before plasma extravasation occurs in DHF patients.
A invenção é ilustrada pelo seguintes exemplos a seguir os quais não devem ser considerados como limitantes do escopo de proteção.The invention is illustrated by the following examples which should not be construed as limiting the scope of protection.
EXEMPLOSEXAMPLES
Os genes analisados de acordo com esta invenção são tipicamente relacionados a completa seqüência de ácidos nucléicos que codificam para produção de uma proteína ou peptídeo. No entanto, a identificação da seqüência completa não é necessária do ponto de vista analítico. Isto é, porções da seqüência ou ESTs podem ser selecionadas de acordo com os princípios bem conhecidos para as quais as sondas podem ser desenhadas para avaliar a expressão gênica para o correspondente gene.The genes analyzed according to this invention are typically related to the complete sequence of nucleic acids that encode to produce a protein or peptide. However, identification of the complete sequence is not required from an analytical point of view. That is, portions of the sequence or ESTs may be selected according to well-known principles for which probes can be designed to evaluate gene expression for the corresponding gene.
Exemplo 1 - Desenho da coorte de dengue e estratégia para estudos de genômica funcionalExample 1 - Dengue Cohort Design and Strategy for Functional Genomics Studies
Uma coorte de casos febris de casos suspeitos de infecção pelo vírus da dengue atendidos em 3 hospitais da cidade de Recife, Pernambuco, Brasil, foi estabelecido e descrito (Cordeiro, Schatzmayr et al. 2007; Cordeiro, Silva et al. 2007). Brevemente, apenas a completa explicação dos objetivos do estudo, a cada participante desta coorte (ou responsável) foi solicitado a assinatura do termo de consentimento e foi pedido uma doação seqüencial de sangue dentro de um período de 30 dias apos o inicio dos sintomas. Soro, plasma e PBMC foram separados e criopreservados. 0 diagnóstico de dengue foi realizado através de isolamento viral em células C6/36 (Igarashi 1978) e RT-PCR (Lanciotti, Calisher et al. 1992) nas amostras coletadas no dia da admissão (primeira amostra) assim como através de sorologia para identificação de IgM (Bio-Manguinhos, Fundação Oswaldo Cruz, Brasil ou PanBio, Pty., Ltd., Brisbane, Austrália) e IgG (PanBio, Pty., Ltd., Brisbane, Austrália) anti-dengue na primeira e subsequentes amostras. 0 tipo de infecção foi caracterizado baseado na cinética de produção de IgM/IgG e títulos de anticorpos em ensaio de inibição de hemaglutinação (HI) (Clarke and Casais 1958).A cohort of febrile cases of suspected dengue virus infection cases seen at 3 hospitals in the city of Recife, Pernambuco, Brazil has been established and described (Cordeiro, Schatzmayr et al. 2007; Cordeiro, Silva et al. 2007). Briefly, only the full explanation of the study objectives, each participant in this cohort (or guardian) was asked to sign the consent form and was asked for a sequential blood donation within 30 days of the onset of symptoms. Serum, plasma and PBMC were separated and cryopreserved. Dengue diagnosis was made by viral isolation in C6 / 36 cells (Igarashi 1978) and RT-PCR (Lanciotti, Calisher et al. 1992) in samples collected on the day of admission (first sample) as well as by serology for identification. IgM (Bio-Manguinhos, Oswaldo Cruz Foundation, Brazil or PanBio, Pty., Ltd., Brisbane, Australia) and anti-dengue IgG (PanBio, Pty., Ltd., Brisbane, Australia) in the first and subsequent samples. The type of infection was characterized based on IgM / IgG production kinetics and antibody titers in hemagglutination inhibition (HI) assay (Clarke and Casais 1958).
Os casos de dengue (confirmados por sorologia, RT-PCR ou isolamento viral) foram clinicamente classificados de acordo com o critério da Organização Mundial de Saúde em duas classes: febre de dengue (FD ou dengue clássica) e febre hemorrágica do dengue (FHD) (OPAS 1995). Os casos de FD foram caracterizados por febre (39°C to 40°C) durando até 7 dias acompanhado por pelo menos 2 dos sintomas, tais com odor de cabeça, dor retrorbital, mialgia, artralgia e rash. Os casos de FHD foram definidos com a mesma sintomatologia encontrada em FD, mas com evidência de hemorragia, trombocitopenia (plaquetas <1000.000/mm3) e extravasamento plasmático seguindo a defervescência.Dengue cases (confirmed by serology, RT-PCR or viral isolation) were clinically classified according to World Health Organization criteria into two classes: dengue fever (FD or classical dengue) and dengue hemorrhagic fever (DHF). (PAHO 1995). The cases of PD were characterized by fever (39 ° C to 40 ° C) lasting up to 7 days accompanied by at least 2 of the symptoms, such as head odor, retrorbital pain, myalgia, arthralgia and rash. The cases of DHF were defined with the same symptoms found in DH, but with evidence of bleeding, thrombocytopenia (platelets <1000,000 / mm3) and plasma leakage following defervescence.
Este estudo foi revisado e aprovado pelo comitê de ética do Ministério da Saúde Brasileiro CONEP : 4909; Processo n° 25000.119007/2002-03; CEP: 68/02. Além disso, o comitê de revisão institucional da Universidade Johns Hopkins (EUA) também revisou e aprovou este estudo como protocolo JHM-IRB-3: 03-08-27-01.This study was reviewed and approved by the ethics committee of the Brazilian Ministry of Health CONEP: 4909; Case No. 25000.119007 / 2002-03; Zip Code: 68/02. In addition, the Johns Hopkins University Institutional Review Committee (USA) has also reviewed and approved this study as protocol JHM-IRB-3: 03-08-27-01.
Os estudos de genômica funcional foram realizados com amostras de PBMC coletadas no momento da primeira visita médica. Amostras provenientes de 18 casos confirmados de dengue (RT-PCR, isolamento viral e/ou IgH positivos) , genótipo III, e 8 amostras controles provenientes de casos febris que foram negativos para dengue em todos os testes realizados em 3 ou mais amostras (aqui chamados de não dengue ou ND) foram usados nessa avaliação. As amostras foram divididas em três grupos: FD, FHD e ND. As amostras referentes a esses três grupos foram selecionadas para evitar diferença significante em relação a idade, gênero, histórico de infecção pelo virus da dengue e dias de sintomas. Nenhum dos pacientes apresentaram sintomas de FHD no momento que as amostras usadas nessa avaliação foram coletadas. No momento da coleta das amostras, os pacientes relataram que tiveram sintomas por menos de 8 dias (media de 5.3 dias). Entre os casos confirmados de dengue, 8 foram caracterizados como FD e 10 foram classificados como FHD (Tabela 1) . Em negrito na Tabela 1 estão indicadas as amostras usadas exclusivamente nos ensaios de qPCR. FD: febre do dengue; FHD: febre hemorrágica do dengue; ND: Non-Dengue; M: macho; F: fêmea; Pos: positivo; Neg: negativo; -: sem informação.Functional genomics studies were performed with PBMC samples collected at the time of the first medical visit. Samples from 18 confirmed dengue cases (RT-PCR, viral isolation and / or IgH positive), genotype III, and 8 control samples from febrile cases that were negative for dengue in all tests performed on 3 or more samples (here dengue or ND) were used in this assessment. The samples were divided into three groups: FD, FHD and ND. Samples from these three groups were selected to avoid significant differences regarding age, gender, history of dengue virus infection, and days of symptoms. None of the patients had symptoms of DHF at the time the samples used for this evaluation were collected. At the time of sample collection, patients reported that they had symptoms for less than 8 days (mean 5.3 days). Among confirmed dengue cases, 8 were characterized as DF and 10 were classified as DHF (Table 1). Bold in Table 1 are the samples used exclusively for qPCR assays. DF: dengue fever; DHF: dengue hemorrhagic fever; ND: Non-Dengue; M: male; F: female; Pos: positive; Neg: negative; -: no information.
Exemplo 2 - Processamento das amostras para hibridização nos chips. gênicosExample 2 - Sample processing for chip hybridization. genics
Amostras de sangue coletados dos pacientes cadastrados nesta avaliação foram coletadas em tubos vacutainers heparinizados (BD Vacutainer) e dentro 2 horas da coleta, as amostras PBMC foram separadas por gradiente de densidade usando Ficoll-Paque (Amersham Biosciences) e criopreservadas em 10% (v/v) de dimetil sulfoxide (DMSO; Sigma-Aldrich) em soro fetal bovino inativado (FBS; Hyclone). Quatro milhões de células foram descongelados e imediatamente lisadas com Trizol (Invitrogen) para extração de RNA total com clorofórmio e precipitação com álcool isopropilico de acordo com as instruções do fabricante [a expressão usando amostras frescas ou congeladas foram comparadas e se mostraram ser similares, razão pela qual células congeladas foram escolhidas para estudos de genômica funcional (dados não mostrados)].Blood samples collected from patients enrolled in this assessment were collected in heparinized vacutainer tubes (BD Vacutainer) and within 2 hours of collection, PBMC samples were separated by density gradient using Ficoll-Paque (Amersham Biosciences) and cryopreserved in 10% (v / v) dimethyl sulfoxide (DMSO; Sigma-Aldrich) in inactivated fetal bovine serum (FBS; Hyclone). Four million cells were thawed and immediately lysed with Trizol (Invitrogen) for total RNA extraction with chloroform and isopropyl alcohol precipitation according to the manufacturer's instructions [expression using fresh or frozen samples were compared and found to be similar, ratio by which frozen cells were chosen for functional genomics studies (data not shown)].
O RNA total foi, então, purificado usando o kit RNeasy MinElute Cleanup (Qiagen) de acordo com o protocolo do fabricante e quantificado por espectrofotometria a 260nm e 280nm (espectro ultravioleta). RNA total foi usado para a síntese de RNA complementar (cRNA) através do kit de marcação do alvo em dois ciclos (Affymetrix). Brevemente, RNA isolado de PBMC foi marcado com biotina e hibridizado a microarranjos de oligonucleotideos (Affymetrix) usando um método de síntese de cDNA em dois ciclos. No primeiro ciclo, a primeira fita de c DNA foi preparada usando um iniciador T7-(dT) e a transcriptase reversa Superscript II (Invitrogen) a partir de 10-100ng de RNA celular. A síntese da segunda fita foi realizada usando DNA polimerase I de Escherichia coli e cDNA de dupla fita foi usado no ensaio de transcrição in vitro (IVT) para amplificação de cRNA usando o kit Megascript T7 (Ambion). O produto deste primeiro ciclo de reações foi usado para transcrição reversa de cDNA como descrito para o primeiro ciclo. Este cDNA foi usado para IVT para síntese de cRNA marcado com biotina, que foi fragmentado e enviado para o Microarray Core Facility na Universidade Johns Hopkins para hibridização do cRNA ao chip de DNA humano U133 Plus 2.0 (Affymetrix), marcação e escaneamento.Total RNA was then purified using the RNeasy MinElute Cleanup Kit (Qiagen) according to the manufacturer's protocol and quantified by spectrophotometry at 260nm and 280nm (ultraviolet spectrum). Total RNA was used for the synthesis of complementary RNA (cRNA) through the two-cycle targeting kit (Affymetrix). Briefly, RNA isolated from PBMC was labeled with biotin and hybridized to oligonucleotide microarrays (Affymetrix) using a two-cycle cDNA synthesis method. In the first cycle, the first DNA strand was prepared using a T7- (dT) primer and Superscript II reverse transcriptase (Invitrogen) from 10-100ng cellular RNA. Second strand synthesis was performed using Escherichia coli DNA polymerase I and double strand cDNA was used in the in vitro transcription assay (IVT) for cRNA amplification using the Megascript T7 kit (Ambion). The product of this first round of reactions was used for cDNA reverse transcription as described for the first round. This cDNA was used for IVT for synthesis of biotin-tagged cRNA, which was fragmented and sent to the Microarray Core Facility at Johns Hopkins University for cRNA hybridization to the U133 Plus 2.0 human DNA chip (Affymetrix), tagging and scanning.
Exemplo 3 - Controle de qualidade dos microarranjosExample 3 - Microarray Quality Control
A qualidade dos dados dos microarranjos foi avaliada usando os seguintes critérios: inspeção visual, medidas da relação ruído/eficiência, controles embutidos, expressão de genes constitutivos, e gráficos de degradação de RNA. Inspeção visual baseada em arquivos de alta resolução DAT não revelaram arranhões ou manchas, e as sondas B2-oligo (num formato de tabuleiro de xadrez e o nome do microarranjo) foram também visíveis. Medidas de ruído/eficiência foram feitas pelo programa Affymetrix MAS 5.0 que pode ser usado para avaliar a qualidade dos microarranjos (Figure 1). Fatores Q de ruído, background, fatores de escalonamento e percentagem de genes presentes foram similares em todas os microarranjos. Os valores médios de background foram abaixo de 100 para 20 dos 26 microarranjos; os fatores de escalonamento foram dentro da ordem de 3x para 25 dos 26 microarranjos; e a percentagem de genes presentes foi em torno de 40% ou mais para 25 dos 26 microarranjos. Nenhum dos 6 microarranjos que apresentaram alto background tiveram uma taxa de genes presentes significantemente abaixo de 40%. Todos as sondas 3' e as sondas da parte intermediária para todos os genes controles embutidos (dap, thr, phe, lys) estavam presentes em todos os microarranjos, assim como para o grupo de genes procarióticos usados para o controle da hibridização (bioB, bioC, bioD, cre) e genes constitutivos GAPDH (gliceraldeido-3-fosfatase desidrogenase humano) e beta-actina.Além do mais, o gráfico de degradação de RNA mostrando a intensidade média das sondas na mesma posição numérica em todos os grupos de sondas (para todos os genes) demonstra uma consistente tendência de aumento na intensidade de sinal a partir do final 5' para o final 3' , o que é esperado devido a decréscimo na eficiência na síntese de cDNA (Figura 2).The quality of microarray data was evaluated using the following criteria: visual inspection, noise / efficiency ratios, embedded controls, constitutive gene expression, and RNA degradation plots. Visual inspection based on high resolution DAT files revealed no scratches or smudges, and B2-oligo probes (in a chessboard format and the name of the microarray) were also visible. Noise / efficiency measurements were made by the Affymetrix MAS 5.0 program which can be used to assess the quality of microarray (Figure 1). Q noise factors, background, scaling factors and percentage of genes present were similar in all microarrays. Mean background values were below 100 for 20 of the 26 microarray; the scaling factors were within the order of 3x for 25 of the 26 microarrays; and the percentage of genes present was around 40% or more for 25 of the 26 microarrays. None of the 6 high background microarray had a gene rate significantly below 40%. All 3 'probes and intermediate probes for all inline control genes (dap, thr, phe, lys) were present in all microarrays, as well as for the prokaryotic gene group used for hybridization control (bioB, bioC, bioD, cre) and constitutive genes GAPDH (human glyceraldehyde 3-phosphatase dehydrogenase) and beta-actin. In addition, the RNA degradation graph showing the average intensity of the probes at the same numerical position in all probe groups (for all genes) demonstrates a consistent upward trend in signal intensity from the 5 'end to the 3' end, which is expected due to a decrease in cDNA synthesis efficiency (Figure 2).
Exemplo 5 - Validação dos dados de Microarranjo de DNA através de PCR em tempo real quantitativoExample 5 - Validation of DNA Microarray Data by Quantitative Real-Time PCR
Quatro genes diferencialmente expressos entre DF e FHD (MT2A, PSMB9, C3aRl e HLA-F) foram selecionados para quantificação por PCR em tempo real quantitativo (qPCR). Os genes foram amplificados e detectados usando ensaios de expressão gênica TaqMan® com iniciadores e sondas comercialmente disponíveis (Applied Biosystems). Extração de RNA foi realizada usando o kit RNease (Qiagen) de acordo com as instruções do fabricante. RNA total foi reversamente transcrito a cDNA usando o sistema de síntese de primeira fita Superscript III (Invitrogen) para qPCR usando iniciadores aleatórios (radom primers) de acordo com a sugestão do fabricante. qPCR foi realizado no aparelho ABI PRISM 7500 (Applied Biosystems). 0 gene para beta actina foi selecionado como um controle endógeno e todos os dados foram normalizados contra este. A reação foi realizada em triplicata e incluiu 2 μΐ de cDNA, iniciadores (20 μΜ cada) e 6.25 μΜ da sonda especifica ou comercialmente pré-desenhada mistura para ensaio de expressão gênica (Applied Biosystems), beta-actina humana (Applied Biosystems), mistura universal para PCR TaqMan (Applied Biosystems) e água adicionados para um volume final de 25 μl. Triplicatas de controles não templates (NTC) foram incluídos cada vez que qPCR foi realizada. Os ciclos de reações foram: após incubação de 2- min a 50°C e 10 minutos a 95°C, as amostras passaram por 40 ciclos de 95°C por 15 segundos e 60°C por Imin. A linha de base e o "threshold" utilizados para a determinação do "Cycle threshold" foram ajustados manualmente através do programa Sequence Detection Software, versão 1.4 (Applied Biosystems). A eficiência de amplificação (E) da molécula-alvo foi calculada a partir da fórmula (E= 10Λ (-1/Slope) - 1) onde "slope" é inclinação da reta gerada pelos Cts obtidos de curva padrão, dado automaticamente pelo programa. Para os cálculos de quantificação relativa, foi utilizado o método baseado nos valores de Delta Ct [ABI PRISM® 7000 Sequence Detection System and AppliedBiosystems 7500 Real-Time PCR System - User Bulletin, Applied Biosystems] uma vez que os ensaios apresentam eficiência de amplificação de 100% ± 10% [Application Note 127AP05-02]. As amostras usadas nos ensaios de qPCR são descritas na Tabela 1 (amostras de pacientes ND e pacientes FHD número 105 e 112 não foram usados).Four differentially expressed genes between DF and FHD (MT2A, PSMB9, C3aR1 and HLA-F) were selected for quantitative real-time PCR (qPCR) quantitation. Genes were amplified and detected using TaqMan® gene expression assays with commercially available primers and probes (Applied Biosystems). RNA extraction was performed using the RNease kit (Qiagen) according to the manufacturer's instructions. Total RNA was reverse transcribed to cDNA using the Superscript III first strand synthesis system (Invitrogen) for qPCR using radom primers at the manufacturer's suggestion. qPCR was performed on the ABI PRISM 7500 apparatus (Applied Biosystems). The beta actin gene was selected as an endogenous control and all data were normalized against it. The reaction was performed in triplicate and included 2 μΐ cDNA, primers (20 μΜ each) and 6.25 μΜ from the specific or commercially pre-designed gene expression assay mix (Applied Biosystems), human beta-actin (Applied Biosystems), TaqMan universal PCR mix (Applied Biosystems) and water added to a final volume of 25 μl. Triplicates of non-template controls (NTC) were included each time qPCR was performed. The reaction cycles were: after incubation of 2 min at 50 ° C and 10 minutes at 95 ° C, the samples went through 40 cycles of 95 ° C for 15 seconds and 60 ° C for 1 min. The baseline and threshold used to determine the Cycle threshold were manually adjusted using Sequence Detection Software, version 1.4 (Applied Biosystems). The amplification efficiency (E) of the target molecule was calculated from the formula (E = 10Λ (-1 / Slope) - 1) where "slope" is slope of the straight line generated by Cts obtained from standard curve, automatically given by the program. . For the relative quantitation calculations, the Delta Ct-based method was used [ABI PRISM® 7000 Sequence Detection System and Applied Biosystems 7500 Real-Time PCR System - User Bulletin, Applied Biosystems] since the assays show amplification efficiency of 100% ± 10% [Application Note 127AP05-02]. Samples used in qPCR assays are described in Table 1 (samples from ND patients and DHF patients number 105 and 112 were not used).
Exemplo 6 - Análise EstatísticaExample 6 - Statistical Analysis
Controle de qualidade dos dados dos pacientes, análise estatística e gráficos foram realizados usando o programa Affymetrix MAS 5.0 (Hubbell, Liu et al. 2002) e o pacote estatístico R de acesso aberto, versão 2.5.0 (Ihaka 1996) e biblioteca adicional, em particular a biblioteca BioConductor, versão 1.16 (Gentleman, Carey et al. 2004). Dendogramas e gráficos MDS foram produzidos com as funções R "hclust" e "isoMDS", respectivamente, enquanto os mapas de expressão (heatmaps) foram obtidos com as funções "hset.emap" e "heatmap". Os valores ρ correspondentes a two-tailed Welch's two-sample t test foram obtidos com a função "t-test". Análise de categoria funcional foi realizada com o programa EASE (Expression Analysis Systematic Explorer) no website DAVID Bioinformatic (http://david.abcc.ncifcrf.gov) (Dennis, Sherman et al. 2003). O método de classificação usou análise discriminante linear implementado pela direta estimativa da média das amostras e matrizes de covariância para cada classe diagnostica (Braga-Neto 2005). A precisão da classificação foi estimada pelo método de resubstituição potencializada (bolsted resubstitution, Braga-Neto 2004), que é adequado para seleção de grupo de genes quando o número de amostra é baixo (Sima, Attoor et al. 2005; Sima, Braga-Neto et al. 2005).Quality control of patient data, statistical analysis and graphics were performed using the Affymetrix MAS 5.0 software (Hubbell, Liu et al. 2002) and the open access R statistical package, version 2.5.0 (Ihaka 1996) and additional library, in particular the BioConductor library, version 1.16 (Gentleman, Carey et al. 2004). Dendograms and MDS graphs were produced with the R functions "hclust" and "isoMDS", respectively, while expression maps (heatmaps) were obtained with the functions "hset.emap" and "heatmap". The ρ values corresponding to two-tailed Welch's two-sample t test were obtained with the "t-test" function. Functional category analysis was performed using the Expression Analysis Systematic Explorer (EASE) program on the DAVID Bioinformatic website (http://david.abcc.ncifcrf.gov) (Dennis, Sherman et al. 2003). The classification method used linear discriminant analysis implemented by direct estimation of mean samples and covariance matrices for each diagnostic class (Braga-Neto 2005). The accuracy of classification was estimated by the potentiated resubstitution method (bolsted resubstitution, Braga-Neto 2004), which is suitable for gene group selection when the sample number is low (Sima, Attoor et al. 2005; Sima, Braga- Neto et al., 2005).
Exemplo 7 - Processamento dos dados de Microarranjos de DNA Programa Affymetrix MAS 5.0 foi usado para escalonar os dados e produzir sinal e "detection calls" para os 54.675 genes em cada dos 26 microarranjos. Destes, 12.2999 foram considerados presentes (p<0.04) em todas os microarranjos, enquanto 20.365 não estavam presentes em nenhum dos microarranjos. Para manter apenas os genes promissores para futuras análises, foram empregados dois filtros não específicos: (i) filtro de detecção para eliminar genes não expressos, o que manteve apenas os genes considerados presentes em pelo menos 24 dos 2 6 microarranjos, resultando num total de 15.848 genes. Desta forma, foram tolerados 3.549 genes (15.848 - 12.299 = 3.549) que foram considerados ausentes em um ou dois microarranjos; (ii) filtro de variância para eliminar genes de expressão constitutiva, o que manteve os maiores 1/8 dos 15.848 genes previamente citados, resultando em 1981 genes com potencial prognóstico (Tabela 7).Example 7 - DNA Microarray Data Processing Affymetrix MAS 5.0 program was used to scale data and produce signal and detection calls for the 54,675 genes in each of the 26 microarrays. Of these, 12,2999 were considered present (p <0.04) in all microarrays, while 20,365 were not present in any of the microarrays. To keep only promising genes for future analysis, two nonspecific filters were employed: (i) detection filter to eliminate non-expressed genes, which kept only the genes considered present in at least 24 of the 26 microarray, resulting in a total of 15,848 genes. Thus, 3,549 genes (15,848 - 12,299 = 3,549) that were considered absent in one or two microarrays were tolerated; (ii) variance filter to eliminate constitutive expression genes, which maintained the largest 1/8 of the 15,848 genes previously cited, resulting in 1981 genes with potential prognosis (Table 7).
Exemplo 8 - Análise exploratóriaExample 8 - Exploratory Analysis
A Figura 3A mostra o dendograma para o agrupamento hierárquico dos 26 microarranjos de acordo com a expressão dos 1981 genes selecionados no estágio de pré-processamento. Foram empregados "Average linkage" e correlação de Pearson dos valores de expressão transformados em log. Foi observado que as amostras caíram em dois grandes grupos: o da direita contendo amostras ND e metade das amostras FD; enquanto o grupo da esquerda contem todas as amostras FHD, duas amostras ND (incluindo o outlier ND_199) e a outra metade dos pacientes FD. Este fato está de acordo com a intuição de que ND e FHD são os grupos mais diferentes e amostras FD formando um grupo intermediário. Isto é confirmado pelos gráficos de escalonamento multidimensional (MDS) em 2-D e 3-D para os 1981 genes, mostrados na Figura 3B e C. A medida de dissimilaridade usada foi 1 - r, onde r é a correlação de Pearson dos valores transformados em log. Microarranjos foram coloridos de acordo com a classe diagnostica. Pode-se observar que as amostras FHD constituem um grupo mais coeso do que as amostras ND, como esperado já que o grupo ND foi obtido de indivíduos com doença febril de etiologia desconhecida, enquanto as amostras FD podem ser divididas em dois grupos, um similar e um outro diferente de FHD, sendo este último mais próximo do grupo ND (esses são os dois grupos marcados na Figura 5). 0 baixo valor de stress (13.52% no gráfico 2-D e 7.32% no caso 3-D), particularmente no gráfico 3-D, significa que a estrutura delineante dos dados é intrinsecamente de baixa dimensão, o que indica que o pequeno número de assinaturas gênicas é capaz de representar o conteúdo discriminatório no dados.Figure 3A shows the dendogram for hierarchical grouping of the 26 microarrays according to the expression of the 1981 genes selected at the preprocessing stage. "Average linkage" and Pearson correlation of log transformed expression values were used. It was observed that the samples fell into two large groups: the right one containing ND samples and half of the FD samples; while the left group contains all FHD samples, two ND samples (including the ND_199 outlier) and the other half of the FD patients. This fact is in agreement with the intuition that ND and FHD are the most different groups and FD samples forming an intermediate group. This is confirmed by the 2-D and 3-D multidimensional scaling (MDS) plots for the 1981 genes, shown in Figure 3B and C. The dissimilarity measure used was 1 - r, where r is Pearson's correlation of values. turned into log. Microarrays were colored according to the diagnostic class. It can be observed that the DHF samples constitute a more cohesive group than the ND samples, as expected since the ND group was obtained from individuals with feverish disease of unknown etiology, whereas the FD samples can be divided into two groups, a similar one. and one other than DHF, the latter being closer to the ND group (these are the two groups marked in Figure 5). The low stress value (13.52% in the 2-D graph and 7.32% in the 3-D case), particularly in the 3-D graph, means that the outlining structure of the data is intrinsically small, indicating that the small number of gene signatures is able to represent discriminatory content in the data.
Exemplo 9 - Análise de expressão diferencialExample 9 - Differential Expression Analysis
Foram realizados os testes estatísticos das diferenças entre as médias (Welch two-sample t-tests) para encontrar genes diferencialmente expressos entre os diferentes grupos diagnósticos. Foram consideradas duas principais comparações: FD versus FHD e dengue (FD + FHD) versus ND. A primeira comparação corresponde as 18 amostras oriundas dos pacientes comprovadamente infectados com vírus da dengue e é a mais importante comparação para a presente invenção, pois esta discrimina entre a forma benigna (FD) e maligna (FHD) da doença. Importantes genes usados para caracterizar estas duas manifestações clínicas assim como aqueles específicos para infecção pelo vírus da dengue são mostrados nas Tabelas 2 e 3. Gráfico de vulcão na Figura 4 e a correspondente lista de genes (Tabelas 2 e 3) mostram que os valores ρ correlacionam bem com magnitude de diferença de expressão (fold-change) em ambas as situações analisadas.Statistical tests of differences between means (Welch two-sample t-tests) were performed to find differentially expressed genes between the different diagnostic groups. Two main comparisons were considered: DF versus DHF and dengue (DH + DHF) versus ND. The first comparison corresponds to 18 samples from patients with proven dengue virus infection and is the most important comparison for the present invention because it discriminates between the benign (FD) and malignant (DHF) form of the disease. Important genes used to characterize these two clinical manifestations as well as those specific for dengue virus infection are shown in Tables 2 and 3. Volcano graph in Figure 4 and the corresponding list of genes (Tables 2 and 3) show that the values ρ correlate well with magnitude of expression difference (fold-change) in both situations analyzed.
A Figura 5 mostra o mapa de expressão (heatmap) para os melhores 40 genes que discriminam as amostras FD de FHD, de acordo com critério de Welch t-test, assim como o agrupamento hierárquico e gráficos MDS para os 40 melhores genes discriminatórios entre FD e FHD. Δ Tabela 4 mostra os resultados da análise da representação de categoria funcional da lista dos melhores 40 genes discriminatórios entre FD e FHD com o programa EASE como descrito no Exemplo 6. A análise indicou o enriquecimento de certas categorias de genes. Cinco categorias apresentaram scores significantes (p<0.05) após a correção de Benferroni para múltiplos testes, incluindo aqueles envolvidos na resposta imune e defesa, resposta a estímulos bióticos, ligação a cobre/cádmio e homeostase do ion cobre (Tabela 4).Figure 5 shows the heatmap for the top 40 genes that discriminate against FD FHD samples according to Welch t-test criteria, as well as hierarchical grouping and MDS plots for the top 40 discriminatory genes between FD and FHD. Δ Table 4 shows the results of the analysis of the functional category representation of the list of the best 40 discriminatory genes between FD and FHD with the EASE program as described in Example 6. The analysis indicated the enrichment of certain gene categories. Five categories showed significant scores (p <0.05) after Benferroni correction for multiple tests, including those involved in immune response and defense, response to biotic stimuli, copper / cadmium binding, and copper ion homeostasis (Table 4).
Exemplo 10 - Identificação dos genes classificadoresExample 10 - Identification of the classifying genes
Além da seleção univariada realizada por testes t, foi realizada a seleção exaustiva (todas as possíveis combinações) de genes isolados, bem como duplas e trios a partir dos 10981 genes, usando análise de discriminação linear e resubstituição potencializada. A Tabela 5 mostra os classificadores baseados em 1, 2 ou 3 genes, ranqueados pelo erro de classificação estimado. Há 37 únicos genes entre os melhores 40 pares, enquanto há 87 únicos genes entre os melhores 100 trios classificadores. A lista dos trios de genes é dominada pelos genes PSMB9, MT2A, e LOC400368. Na verdade, apenas um trio não contém qualquer desses três, este é SFRS5, PDCD4, MKNK2, cujo erro estimado é de 0.0383. As médias para o erro estimado dos melhores classificadores são: classificador com 1 gene (40) = 0.1639 ± 0.0286, classificador com 2 genes (40) = 0.0686 ± 0.0096, classificador com 3 genes (100) = 0.0395 ± 0.0040, o que indica que a classificação com pares de genes é mais acurado do que genes individuais, enquanto a classificação com tripla de genes é mais precisa do que com pares (a margem de erro acima se refere ao intervalo de confidência de 95%). A seleção com dois e três genes têm o potencial de recuperar genes que usando métodos univariados (tais como test-t) não é possível recuperar. Isto é possível se perceber na lista dos melhores classificadores com 2 genes, por exemplo, o gene HLA-F (que é menos expresso em FHD do que FD) . A Figura 6 mostra o gráfico para o classificador com 2 genes PSMB9 e MT2A. A probabilidade estimada de erro em futuros dados é de 5.38%. Neste caso, a menor expressão de ambos os genes é assinatura de FHD, enquanto maior expressão de ambos os genes é característico de FD.In addition to the univariate selection performed by t-tests, exhaustive selection (all possible combinations) of isolated genes, as well as double and triple genes from the 10981 genes, was performed using linear discrimination analysis and potentiated replacement. Table 5 shows the classifiers based on 1, 2 or 3 genes, ranked by the estimated misclassification. There are 37 unique genes in the top 40 pairs, while there are 87 unique genes in the top 100 triplers. The list of gene triplets is dominated by the genes PSMB9, MT2A, and LOC400368. In fact, only one trio does not contain any of these three, this is SFRS5, PDCD4, MKNK2, whose estimated error is 0.0383. The averages for the estimated error of the best classifiers are: 1 gene classifier (40) = 0.1639 ± 0.0286, 2 gene classifier (40) = 0.0686 ± 0.0096, 3 gene classifier (100) = 0.0395 ± 0.0040, which indicates whereas gene pairing is more accurate than individual genes, whereas triple gene sorting is more accurate than paired (the above margin of error refers to the 95% confidence interval). Selection with two and three genes has the potential to retrieve genes that using univariate methods (such as test-t) cannot be recovered. This can be seen from the list of the best 2-gene classifiers, for example, the HLA-F gene (which is less expressed in FHD than FD). Figure 6 shows the graph for the 2 gene classifier PSMB9 and MT2A. The estimated probability of error in future data is 5.38%. In this case, the lowest expression of both genes is FHD signature, while the highest expression of both genes is characteristic of FD.
Exemplo 11 - Validação dos dados de microrranjos usando PCR em tempo real quantitativoExample 11 - Validation of Microarray Data Using Quantitative Real-Time PCR
Ensaios de PCR em tempo real quantitativo (qPCR) foram realizados para validar os resultados obtidos nos ensaios de microarranjos. Foram selecionados os seguintes genes: PSMB9, MT2A, HLA-F and C3aRl, cuja expressão foi predominante em amostras FD comparado às amostras FHD. qPCRs dos genes acima citados foram realizados usando oito amostras FD e oito FHD obtidas dos mesmos pacientes testados nos ensaios de microarranjos. De acordo com a Figura 7A, a quantificação por qPCR mostrou uma boa correlação com os dados dos microarranjos. Além disso, qPCR foi também realizado num grupo de amostra independentes das amostras utilizadas nos ensaios de microarranjos, coletadas dentro de 11 dias do inicio dos sintomas e antes do inicio dos sintomas de vasculopatia. Os resultados de qPCR também indicaram que os níveis de expressão dos genes selecionados foram mais reduzidos em FHD do que em FD, corroborando com os resultados obtidos com o modelo 2D mostrado na Figura 3. Com isso, cada um dos quatro genes foram expressos em menor quantidade em FHD e eles foram corretamente classificados nas amostras analisadas (Figura 7B). REFERÊNCIASQuantitative Real Time PCR (qPCR) assays were performed to validate the results obtained in the microarray assays. The following genes were selected: PSMB9, MT2A, HLA-F and C3aRl, whose expression was predominant in FD samples compared to FHD samples. qPCRs of the above genes were performed using eight FD and eight FHD samples obtained from the same patients tested in the microarray assays. According to Figure 7A, qPCR quantification showed a good correlation with microarray data. In addition, qPCR was also performed on a sample group independent of the samples used in the microarray assays, collected within 11 days of symptom onset and prior to onset of vasculopathy symptoms. The qPCR results also indicated that the expression levels of the selected genes were lower in FHD than in FD, corroborating the results obtained with the 2D model shown in Figure 3. Thus, each of the four genes were expressed in lower amount in DHF and they were correctly classified in the analyzed samples (Figure 7B). REFERENCES
Acioli-Santos, B., L. Segat, et al. (2008). "MBL2 Gene polymorphisms protect against development of thrombocytopenia associated with severe dengue phenotype." Hum Immunol 69(2): 122-8.Acioli-Santos, B., L. Segat, et al. (2008). "MBL2 Gene polymorphisms protect against development of thrombocytopenia associated with severe dengue phenotype." Hum Immunol 69 (2): 122-8.
Anantapreecha, S., S. Chanama, et al. (2005). "Serological and virological features of dengue fever and dengue haemorrhagic fever in Thailand from 1999 to 2002." Epidemiol Infect 133(3): 503-7. Avirutnan, P., N. Punyadee, et al. (2006). "Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NSl and complement." J Infect Dis 193(8): 1078-1088. Azeredo, E. L., L. M. De Oliveira-Pinto, et al. (2006). "NKAnantapreecha, S., S. Chanama, et al. (2005). "Serological and virological features of dengue fever and dengue haemorrhagic fever in Thailand from 1999 to 2002." Epidemiol Infect 133 (3): 503-7. Avirutnan, P., N. Punyadee, et al. (2006). "Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NSl and complement." J Infect Dis 193 (8): 1078-1088. Azeredo, E.L., L.M. De Oliveira-Pinto, et al. (2006). "NK
cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease." Clin Exp Immunol 143(2): 345-356. Bandyopadhyay, S., L. C. Lum, et al. (2006). "Classifying dengue: a review of the difficulties in using the WHOcells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease. "Clin Exp Immunol 143 (2): 345-356. Bandyopadhyay, S., LC Lum, et al. (2006)." Classifying dengue: a review of the difficulties in using the WHO
case classification for dengue haemorrhagic fever." Trop Med Int Health 11(8): 1238-1255. Braga-Neto, U. M. D., E. (2005). Classification. In Genomic Signal Processing and Statistics. EURASIP Book Series on Signal Processing and Communication. I. S. E. Dougherty, J. Chen and Z. J. Wang, Hindawi Publishing Corporation.case classification for dengue haemorrhagic fever. "Trop Med Int Health 11 (8): 1238-1255. Braga-Neto, UMD, E. (2005). Classification. In Genomic Signal Processing and Statistics. EURASIP Book Series on Signal Processing and Communication ISE Dougherty, J. Chen and ZJ Wang, Hindawi Publishing Corporation.
Braga-Neto, U. M. D., E. (2004). "Bolstered Error Estimation." Pattern Recognition 37(6): 1267-1281.Braga-Neto, U. M. D., E. (2004). "Bolstered Error Estimation." Pattern Recognition 37 (6): 1267-1281.
Cardier, J. E., E. Marino, et al. (2005). "Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: possible role of TNF- alpha in endothelial cell damage in dengue." Cytokine 30(6): 359-365.Cardier, J. E., E. Marino, et al. (2005). "Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human endothelial microvascular cells: possible role of TNF-alpha in endothelial cell damage in dengue." Cytokine 30 (6): 359-365.
Chen, H. Y., S. L. Yu, et al. (2007). "A five-gene signature and clinicai outcome in non-small-cell Iung câncer." N Engl J Med 356(1): 11-20.Chen, H. Y., S.L. Yu, et al. (2007). "A five-gene signature and clinical outcome in non-small-cell Iung cancer." N Engl J Med 356 (1): 11-20.
Clarke, D. H. and J. Casais (1958). "Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne víruses." Am J Trop Med Hyg 7(5): 561-573.Clarke, D. H. and J. Couples (1958). "Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses." Am J Trop Med Hyg 7 (5): 561-573.
Clementi, M. and E. Di Gianantonio (2006) . "Genetic susceptibility to infectious diseases." Reprod Toxicol 21(4): 345-9.Clementi, M. and E. Di Gianantonio (2006). "Genetic susceptibility to infectious diseases." Reprod Toxicol 21 (4): 345-9.
Cordeiro, Μ. T., H. G. Schatzmayr, et al. (2007). "Dengue and dengue hemorrhagic fever in the State of Pernambuco, 1995-2006." Rev Soc Bras Med Trop 40(6): 605-11. Cordeiro, Μ. T., A. M. Silva, et al. (2007).Lamb, Μ. T., H. G. Schatzmayr, et al. (2007). "Dengue and dengue hemorrhagic fever in the State of Pernambuco, 1995-2006." Rev Soc Bras Med Trop 40 (6): 605-11. Lamb, Μ. T., A.M. Silva, et al. (2007).
"Characterization of a dengue patient cohort in Recife, Brazi1." The American Journal of Tropical Medicine and Hygiene Submitted. de Kruif, Μ. D., Τ. Ε. Setiati, et al. (2008). "Differential gene expression changes in children with severe dengue virus infections." PLoS Negl Trop Dis 2(4): e215."Characterization of a dengue patient cohort in Recife, Brazi1." The American Journal of Tropical Medicine and Hygiene Submitted. from Kruif, Μ. D., Τ. Ε Setiati, et al. (2008). "Differential gene expression changes in children with severe dengue virus infections." PLoS Negl Trop Dis 2 (4): e215.
Deen, J. L., E. Harris, et al. (2006). "The WHO dengue classification and case definitions: time for a reassessment." Lancet 368(9530): 170-173.Deen, J.L., E. Harris, et al. (2006). "The WHO dengue classification and case definitions: time for a reassessment." Lancet 368 (9530): 170-173.
Dennisf G., Jr., Β. T. Sherman, et al. (2003). "DAVID: Database for Annotation, Visualization, and Integrated Discovery." Genome Biol 4(5): P3. Endy, T. P., A. Nisalak, et al. (2004). "Relationship of preexisting dengue vírus (DV) neutralizing antibody leveis to viremia and severity of disease in a prospective cohort study of DV infection in Thailand." J Infect Dis 189(6): 990-1000. Fernandez-Mestre, Μ. T., K. Gendzekhadze, et al. (2004).Dennisf G., Jr., Β. T. Sherman, et al. (2003). "DAVID: Database for Annotation, Visualization, and Integrated Discovery." Genome Biol 4 (5): P3. Endy, T. P., A. Nisalak, et al. (2004). "Relationship of preexisting dengue virus (DV) neutralizing antibody mild to viremia and severity of disease in a prospective cohort study of DV infection in Thailand." J Infect Dis 189 (6): 990-1000. Fernandez-Mestre, Μ. T., K. Gendzekhadze, et al. (2004).
"TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients." Tissue Antigens 64(4): 469-72."TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients." Tissue Antigens 64 (4): 469-72.
Gentleman, R. C., V. J. Carey, et al. (2004). "Bioconductor: open software development for computational biology and bioinformatics." Genome Biol 5(10): R80.Gentleman, R. C., V. J. Carey, et al. (2004). "Bioconductor: open software development for computational biology and bioinformatics." Biol Genome 5 (10): R80.
Green, S., S. Pichyangkul, et al. (1999). "Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever." J Infect Dis 180(5): 1429-1435.Green, S., S. Pichyangkul, et al. (1999). "Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever." J Infect Dis 180 (5): 1429-1435.
Green, S. and A. Rothman (2006). "Immunopathological mechanisms in dengue and dengue hemorrhagic fever." Curr Opin Infect Dis 19(5): 429-436. Green, S., D. W. Vaughn, et al. (1999). "Elevated plasma interleukin-10 leveis in acute dengue correlate with disease severity." J Med Virol 59(3): 329-334.Green, S. and A. Rothman (2006). "Immunopathological mechanisms in dengue and dengue hemorrhagic fever." Curr Opin Infect Dis 19 (5): 429-436. Green, S., D.W. Vaughn, et al. (1999). "Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity." J Med Virol 59 (3): 329-334.
Harris, E., E. Videa, et al. (2000). "Clinicai, epidemiologic, and virologic features of dengue in the 1998 epidemic in Nicaragua." Am J Trop Med Hyg 63(1-2): 5-11.Harris, E., E. Videa, et al. (2000). "Clinical, epidemiologic, and virologic features of dengue in the 1998 epidemic in Nicaragua." Am J Trop Med Hyg 63 (1-2): 5-11.
Hubbell, E., W. M. Liu, et al. (2002). "Robust estimators for expression analysis." Bioinformatics 18(12): 1585-92.Hubbell, E., W.M. Liu, et al. (2002). "Robust estimators for expression analysis." Bioinformatics 18 (12): 1585-92.
Igarashi, A. (1978). "Isolation of a Singh1S Aedes albopictus cell clone sensitive to Dengue and Chikungunya víruses." J Gen Virol 40(3): 531-544.Igarashi, A. (1978). "Isolation of a Singh1S Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses." J Gen Virol 40 (3): 531-544.
Ihaka, R. G., R (1996). "R: a language for data analysis and graphics." J. Comput. Grph. Stat 5: 299-314.Ihaka, R. G., R. (1996). "A: A language for data analysis and graphics." J. Comput. Grph. Stat 5: 299-314.
Juffrie, M., G. M. van Der Meer, et al. (2000). "Inflammatory mediators in dengue virus infection in children: interleukin-8 and its relationship to neutrophil degranulation." Infect Immun 68(2): 702-707.Juffrie, M., G.M. van der Meer, et al. (2000). "Inflammatory mediators in dengue virus infection in children: interleukin-8 and its relationship to neutrophil degranulation." Infect Immun 68 (2): 702-707.
Lanciotti, R. S., C. H. Calisher, et al. (1992). "Rapid detection and typing of dengue viruses from clinicai samples by using reverse transcriptase-polymerase chain reaction." J Clin Microbiol 30(3): 545-551.Lanciotti, R.S., C.H. Calisher, et al. (1992). "Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction." J Clin Microbiol 30 (3): 545-551.
Mangada, Μ. M., Τ. P. Endy, et al. (2002). "Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren." J Infect Dis 185(12): 1697-1703.Mangada, Μ. M., Τ. P. Endy, et al. (2002). "Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren." J Infect Dis 185 (12): 1697-1703.
Mangada, Μ. M. and A. L. Rothman (2005) . "Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes." J Immunol 175(4): 2676-2683. Mongkolsapaya, J., W. Dejnirattisai, et al. (2003). "Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever." Nat Med 9(7): 921-927.Mangada, Μ. M. and A. L. Rothman (2005). "Altered cytokine responses of dengue-specific CD4 + T cells to heterologous serotypes." J Immunol 175 (4): 2676-2683. Mongkolsapaya, J., W. Dejnirattisai, et al. (2003). "Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever." Nat Med 9 (7): 921-927.
Mongkolsapaya, J., T. Duangchinda, et al. (2006). "T cell responses in dengue hemorrhagic fever: are cross- reactive T cells suboptimal?" J Immunol 176(6): 3821- 3829.Mongkolsapaya, J., T. Duangchinda, et al. (2006). "T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal?" J Immunol 176 (6): 3821-3829.
Murgue, B., X. Deparis, et al. (1999). "Dengue: an evaluation of dengue severity in French Polynesia based on an analysis of 403 laboratory-confirmed cases." Trop Med Int Health 4 (11) : 765-73.Murgue, B., X. Deparis, et al. (1999). "Dengue: an evaluation of dengue severity in French Polynesia based on an analysis of 403 laboratory-confirmed cases." Trop Med Int Health 4 (11): 765-73.
Mustafa, A. S., E. A. Elbishbishi, et al. (2001). "Elevated leveis of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever." FEMS Immunol Med Microbiol 30(3): 229-233.Mustafa, A.S., E.A. Elbishbishi, et al. (2001). "Elevated levels of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever." FEMS Immunol Med Microbiol 30 (3): 229-233.
Myint, K. S., Τ. P. Endy, et al. (2006). "Cellular immune activation in children with acute dengue virus infections is modulated by apoptosis." J Infect Dis 194(5): 600-607.Myint, K. S., Τ. P. Endy, et al. (2006). "Cellular immune activation in children with acute dengue virus infections is modulated by apoptosis." J Infect Dis 194 (5): 600-607.
Nguyen, Τ. H., Η. Y. Lei, et al. (2004). "Dengue hemorrhagic fever in infants: a study of clinicai and cytokine profiles." J Infect Dis 189(2): 221-232.Nguyen, Τ. H., Η. Y. Lei, et al. (2004). "Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles." J Infect Dis 189 (2): 221-232.
Nogueira, R. M., H. G. Schatzmayr, et al. (2005). "Dengue virus type 3, Brazil, 2002." Emerg Infect Dis 11(9): 1376-81.Nogueira, R.M., H.G. Schatzmayr, et al. (2005). "Dengue virus type 3, Brazil, 2002." Emerg Infect Dis 11 (9): 1376-81.
OPAS (1995). Dengue y Dengue hemorrágico en Ias Américas: guias para su prevención y control, Washington, D.C., Organización Panamericana de Ia Salud. Pang, T., Μ. J. Cardosa, et al. (2007). "Of cascades and perfect storms: the inununopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (FHD/DSS)." Immunol Cell Biol 85(1): 43-45.PAHO (1995). Dengue and Hemorrhagic Dengue in the Americas: Guides for Prevention and Control, Washington, D.C., Pan American Health Organization. Pang, T., Μ. J. Cardosa, et al. (2007). "Of cascades and perfect storms: the inununopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (FHD / DSS)." Immunol Cell Biol 85 (1): 43-45.
Pettiford, J. N., J. Jason, et al. (2002). "Age-related differences in cell-specif ic cytokine produetion by acutely ill Malawian patients." Clin Exp Immunol 128(1): 110-7.Pettiford, J.N., J. Jason, et al. (2002). "Age-related differences in cell-specific cytokine produetion by acutely ill Malawian patients." Clin Exp Immunol 128 (1): 110-7.
Ramilo, 0., W. Allman, et al. (2007). "Gene expression patterns in blood leukoeytes discriminate patients with acute infections." Blood 109(5): 2066-2077.Ramilo, O. W. Allman, et al. (2007). "Gene expression patterns in blood leukoeytes discriminate patients with acute infections." Blood 109 (5): 2066-2077.
Sakuntabhai, A., C. Turbpaiboon, et al. (2005). "A variant in the CD209 promoter is associated with severity of dengue disease." Nat Genet 37(5): 507-13.Sakuntabhai, A., C. Turbpaiboon, et al. (2005). "A variant in the CD209 promoter is associated with severity of dengue disease." Nat Genet 37 (5): 507-13.
Seherer, C. A., C. L. Magness, et al. (2007). "Distinct gene expression profiles in peripheral blood mononuclear cells from patients infected with vaccinia vírus, yellow fever 17D vírus, or upper respiratory infections." Vaccine.Seherer, C.A., C.L. Magness, et al. (2007). "Distinct gene expression profiles in peripheral blood mononuclear cells from patients infected with vaccinia virus, yellow fever 17D virus, or upper respiratory infections." Vaccine.
Sierra, B., R. Alegre, et al. (2007). "HLA-A, -B, -C, and - DRBl allele freguencies in Cuban individuais with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue vírus infection." Hum Immunol 68(6): 531-540.Sierra, B., R. Alegre, et al. (2007). "HLA-A, -B, -C, and - DRBl allele in Cuban individuals with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue virus infection." Hum Immunol 68 (6): 531-540.
Sima, C., S. Attoor, et al. (2005). "Impact of error estimation on feature seleetion." Pattern Reeognition 38: 2472 - 2482 Sima, C., U. Braga-Neto, et al. (2005). "Superior feature-set ranking for small samples using bolstered error estimation." Bioinformatics 21(7): 1046-54.Sima, C., S. Attoor, et al. (2005). "Impact of error estimation on feature seleetion." Pattern Reeognition 38: 2472-2482 Sima, C., U. Braga-Neto, et al. (2005). "Superior feature-set ranking for small samples using bolstered error estimation." Bioinformatics 21 (7): 1046-54.
Simmons, C. P., S. Popper, et al. (2007). "Patterns of host genome-wide gene transcript abundance in the peripheralSimmons, C. P., S. Popper, et al. (2007). "Patterns of host genome-wide gene transcript abundance in the peripheral
blood of patients with acute dengue hemorrhagic fever." J Infect Dis 195(8): 1097-1107.blood from patients with acute dengue hemorrhagic fever. "J Infect Dis 195 (8): 1097-1107.
Soundravally, R. and S. L. Hoti (2007). "Immunopathogenesis of dengue hemorrhagic fever and shock syndrome: role ofSoundravally, R. and S. L. Hoti (2007). "Immunopathogenesis of dengue hemorrhagic fever and shock syndrome: role of
TAP and HPA gene polymorphism." Hum Immunol 68(12): 973- 9.TAP and HPA polymorphism gene. "Hum Immunol 68 (12): 973-9.
Suharti, C., E. C. van Gorp, et al. (2002). "The role of cytokines in activation of coagulation and fibrinolysis in dengue shock syndrome." Thromb Haemost 87(1): 42-46. Tseng, C. S., H. W. Lo, et al. (2005). "Elevated leveis of plasma VEGF in patients with dengue hemorrhagic fever." FEMS Immunol Med Microbiol 43(1): 99-102.Suharti, C., E.C. van Gorp, et al. (2002). "The role of cytokines in activation of coagulation and fibrinolysis in dengue shock syndrome." Thromb Haemost 87 (1): 42-46. Tseng, C.S., H.W. Lo, et al. (2005). "Elevated levels of VEGF plasma in patients with dengue hemorrhagic fever." FEMS Immunol Med Microbiol 43 (1): 99-102.
Ubol, S., P. Masrinoul, et al. (2008). "Differences in Global Gene Expression in Peripheral Blood Mononuclear CellsUbol, S., P. Masrinoul, et al. (2008). Differences in Global Gene Expression in Peripheral Blood Mononuclear Cells
Indicate a Significant Role of the Innate Responses in Progression of Dengue Fever but Not Dengue Hemorrhagic Fever." J Infect Dis 197(10): 1459-1467.Indicate a Significant Role of the Innate Responses in Progression of Dengue Fever but Not Dengue Hemorrhagic Fever. "J Infect Dis 197 (10): 1459-1467.
van de Vijver, M. J., Y. D. He, et al. (2002). "A gene- expression signature as a predictor of survival in breast câncer." N Engl J Med 347(25): 1999-2009. WHO (1999) . Treatment of Dengue Fever/Dengue Haemorrhagic fever in small hospitais. World Health Organization. New Delhi. Wichmann, O., S. Hongsiriwon, et al. (2004). "Risk factors and clinicai features associated with severe dengue infection in adults and children during the 2001 epidemic in Chonburi, Thailand." Trop Med Int Health 9(9): 1022-1029.van de Vijver, M.J., Y. D. He, et al. (2002). "The gene expression signature as a predictor of survival in breast cancer." N Engl J Med 347 (25): 1999-2009. WHO (1999). Treatment of Dengue Fever / Dengue Haemorrhagic fever in small hospitals. World Health Organization. New Delhi Wichmann, O., S. Hongsiriwon, et al. (2004). "Risk factors and clinical features associated with severe dengue infection in adults and children during the 2001 epidemic in Chonburi, Thailand." Trop Med Int Health 9 (9): 1022-1029.
Yunta, M. and P. A. Lazo (2003). "Apoptosis protection and survival signal by the CD53 tetraspanin antigen." Oncogene 22(8): 1219-1224. Tabela 1. Pacientes selecionados para estudo de genômica functional. <table>table see original document page 40</column></row><table> Tctbela 2. Lista de genes mostrados no "gráfico vulcão" Dengue (FD+FHD) vs. ND de acordo com "fold change" e valor p.Yunta, M. and P. A. Lazo (2003). "Apoptosis protection and survival signal by the CD53 tetraspanin antigen." Oncogene 22 (8): 1219-1224. Table 1. Patients selected for functional genomics study. <table> table see original document page 40 </column> </row> <table> Tctbela 2. List of genes shown in the "volcano chart" Dengue (FD + FHD) vs. ND according to fold change and p value.
<table>table see original document page 41</column></row><table> <table>table see original document page 42</column></row><table> <table>table see original document page 43</column></row><table> Tabela 3. Lista de genes mostrados no "gráfico vulcão" FD vs. FHD de acordo com "fold change" e valor p.<table> table see original document page 41 </column> </row> <table> <table> table see original document page 42 </column> </row> <table> <table> table see original document page 43 < / column> </row> <table> Table 3. List of genes shown in FD vs. "volcano chart" FHD according to "fold change" and p value.
<table>table see original document page 44</column></row><table> <table>table see original document page 45</column></row><table> <table>table see original document page 46</column></row><table> Tabela 4. Análise EASE da abundância funcional da lista dos 40 mais significantes genes discriminatótios entre FD e FHD. Categorias funcionais estatisticamente significantes (p<0.05) snóq correção para ririiJiltirvIici^ade -f- ^ σ ή o<table> table see original document page 44 </column> </row> <table> <table> table see original document page 45 </column> </row> <table> <table> table see original document page 46 < / column> </row> <table> Table 4. EASE analysis of functional abundance from the list of 40 most significant discriminatory genes between FD and FHD. Statistically significant functional categories (p <0.05) without correction for laughsJiltirvIici ^ ade -f- ^ σ ή o
<table>table see original document page 47</column></row><table> Tabela 5. Classificadores baseados em genes individuais, duplas ou trios ranqueados pelo erro estimado.<table> table see original document page 47 </column> </row> <table> Table 5. Classifiers based on individual, double or triplet genes ranked by the estimated error.
<table>table see original document page 48</column></row><table> <table>table see original document page 49</column></row><table> <table>table see original document page 50</column></row><table> <table>table see original document page 51</column></row><table> Tabela 6. Lista dos 73 genes diferencialmente expressos entre casos de FD e FHD que foram comuns entre aqueles 200 mais significantes genes de acordo com o teste Welch's t-test e os 200 genes com maiores "fold-change" da média de expressão dos níveis de RNAm.<table> table see original document page 48 </column> </row> <table> <table> table see original document page 49 </column> </row> <table> <table> table see original document page 50 < / column> </row> <table> <table> table see original document page 51 </column> </row> <table> Table 6. List of 73 differentially expressed genes between FD and FHD cases that were common among those 200 most significant genes according to the Welch's t-test and the 200 genes with the largest fold-change in the average expression of mRNA levels.
<table>table see original document page 52</column></row><table> <table>table see original document page 53</column></row><table> <table>table see original document page 54</column></row><table> <table>table see original document page 55</column></row><table> Tabela 7. Lista dos 1981 genes após o processamento dos dados de microarranjo.<table> table see original document page 52 </column> </row> <table> <table> table see original document page 53 </column> </row> <table> <table> table see original document page 54 < / column> </row> <table> <table> table see original document page 55 </column> </row> <table> Table 7. List of 1981 genes after microarray data processing.
<table>table see original document page 56</column></row><table> <table>table see original document page 57</column></row><table> <table>table see original document page 58</column></row><table> <table>table see original document page 59</column></row><table> <table>table see original document page 60</column></row><table> <table>table see original document page 61</column></row><table> <table>table see original document page 62</column></row><table> <table>table see original document page 63</column></row><table> <table>table see original document page 64</column></row><table> <table>table see original document page 65</column></row><table> <table>table see original document page 66</column></row><table> <table>table see original document page 67</column></row><table> <table>table see original document page 68</column></row><table> <table>table see original document page 69</column></row><table> <table>table see original document page 70</column></row><table> <table>table see original document page 0</column></row><table> <table>table see original document page 72</column></row><table> <table>table see original document page 73</column></row><table> <table>table see original document page 74</column></row><table> <table>table see original document page 75</column></row><table> <table>table see original document page 76</column></row><table> <table>table see original document page 77</column></row><table> <table>table see original document page 78</column></row><table> <table>table see original document page 79</column></row><table> <table>table see original document page 80</column></row><table> <table>table see original document page 81</column></row><table> <table>table see original document page 82</column></row><table> <table>table see original document page 83</column></row><table> <table>table see original document page 84</column></row><table> <table>table see original document page 85</column></row><table> <table>table see original document page 86</column></row><table> <table>table see original document page 87</column></row><table> <table>table see original document page 88</column></row><table> <table>table see original document page 89</column></row><table> <table>table see original document page 90</column></row><table> <table>table see original document page 91</column></row><table> <table>table see original document page 92</column></row><table> <table>table see original document page 93</column></row><table> <table>table see original document page 94</column></row><table> <table>table see original document page 95</column></row><table> <table>table see original document page 96</column></row><table> <table>table see original document page 97</column></row><table> <table>table see original document page 98</column></row><table> <table>table see original document page 99</column></row><table> <table>table see original document page 100</column></row><table> <table>table see original document page 101</column></row><table><table> table see original document page 56 </column> </row> <table> <table> table see original document page 57 </column> </row> <table> <table> table see original document page 58 < / column> </row> <table> <table> table see original document page 59 </column> </row> <table> <table> table see original document page 60 </column> </row> <table> <table> table see original document page 61 </column> </row> <table> <table> table see original document page 62 </column> </row> <table> <table> table see original document page 63 < / column> </row> <table> <table> table see original document page 64 </column> </row> <table> <table> table see original document page 65 </column> </row> <table> <table> table see original document page 66 </column> </row> <table> <table> table see original document page 67 </column> </row> <table> <table> table see original document page 68 < / column> </row> <table> <table> table see original document page 69 </column> </row> <table> <table> table see original document page 70 </column> </row> <table> <table> table see original document page 0 </column> </row> <table> <table> table see original document page 72 </column> </row> <table> <table> table see original document page 73 </column> </row> <table> <table> table see original document page 74 </column> </row> <table> <table> table see original document page 75 </column> </row> <table> <table> table see original document page 76 </column> </row> <table> <table> table see original document page 77 </column> </row> <table> <table> table see original document page 78 </column> </row> <table> <table> table see original document page 79 </column> </row> <table> <table> table see original document page 80 </column> </row> <table> <table> table see original document page 81 </column> </row> <table> <table> table see original document page 82 </column> </row> <table> <table> table see original document page 83 </column> </row> <table> <table> table see original document page 84 </column> </row> <table> <table> table see original document page 85 </column> </row> <table> <table> table see original document page 86 </column> </row> <table> <table> table see original document page 87 < / column> </row> <table> <table> table see original document page 88 </column> </row> <table> <table> table see original document page 89 </column> </row> <table> <table> table see original document page 90 </column> </row> <table> <table> table see original document page 91 </column> </row> <table> <table> table see original document page 92 < / column> </row> <table> <table> table see original document page 93 </column> </row> <table> <table> table see original document page 94 </column> </row> <table> <table> table see original document page 95 </column> </row> <table> <table> table see original document page 96 </column> </row> <table> <table> table see original document page 97 < / column> </row> <table> <table> table see original document page 98 </column> </row> <table> <table> table see original document page 99 </column> </row> <table> <table> table see original document page 100 </column> </row> <table> <table> table see original document page 101 </column> </row> <table>
Claims (50)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BRPI0903187A BRPI0903187B1 (en) | 2009-09-09 | 2009-09-09 | method for predicting the clinical response of a dengue virus infected patient during the first days after symptom onset, a method for diagnosing dengue virus infection, and a kit for determining the prognosis of the clinical response of a dengue infected patient |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BRPI0903187A BRPI0903187B1 (en) | 2009-09-09 | 2009-09-09 | method for predicting the clinical response of a dengue virus infected patient during the first days after symptom onset, a method for diagnosing dengue virus infection, and a kit for determining the prognosis of the clinical response of a dengue infected patient |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| BRPI0903187A2 true BRPI0903187A2 (en) | 2011-10-25 |
| BRPI0903187B1 BRPI0903187B1 (en) | 2018-12-18 |
Family
ID=44838049
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| BRPI0903187A BRPI0903187B1 (en) | 2009-09-09 | 2009-09-09 | method for predicting the clinical response of a dengue virus infected patient during the first days after symptom onset, a method for diagnosing dengue virus infection, and a kit for determining the prognosis of the clinical response of a dengue infected patient |
Country Status (1)
| Country | Link |
|---|---|
| BR (1) | BRPI0903187B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12275685B2 (en) | 2018-12-03 | 2025-04-15 | Board Of Regents, The University Of Texas System | Oligo-benzamide analogs and their use in cancer treatment |
-
2009
- 2009-09-09 BR BRPI0903187A patent/BRPI0903187B1/en not_active IP Right Cessation
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12275685B2 (en) | 2018-12-03 | 2025-04-15 | Board Of Regents, The University Of Texas System | Oligo-benzamide analogs and their use in cancer treatment |
Also Published As
| Publication number | Publication date |
|---|---|
| BRPI0903187B1 (en) | 2018-12-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Radwan et al. | Influence of transforming growth factor-β1 and tumor necrosis factor-α genes polymorphisms on the development of cirrhosis and hepatocellular carcinoma in chronic hepatitis C patients | |
| Nascimento et al. | Gene expression profiling during early acute febrile stage of dengue infection can predict the disease outcome | |
| Chiappini et al. | Exploration of global gene expression in human liver steatosis by high-density oligonucleotide microarray | |
| CN107532214A (en) | Method for Diagnosis of Septicemia | |
| JP2016526888A (en) | Sepsis biomarkers and their use | |
| JP2017184642A (en) | Dementia marker, evaluation method, evaluation reagent and evaluation kit for dementia using the same | |
| KR20180007291A (en) | Method of detecting a risk of cancer | |
| Kang et al. | [Retracted] The Expression of miR‐23a and miR‐146a in the Saliva of Patients with Periodontitis and Its Clinical Significance | |
| KR20150070042A (en) | Use of HLA-B*1301 allele | |
| KR101604178B1 (en) | Biomarker for predicting and diagnosing drug-induced liver injury | |
| Zhao et al. | Hypermethylation of the galectin-3 promoter is associated with poor prognosis of acute-on-chronic hepatitis B liver failure | |
| US20180305761A1 (en) | METHODS AND KITS FOR PREDICTION AND DIAGNOSIS OF HUMAN CYTOMEGALOVIRUS (hCMV) CONGENITAL TRANSMISSION | |
| CN104975082B (en) | One group of gene and its application for assessing lung cancer for prognosis | |
| Copado-Villagrana et al. | IL-18 discriminates highly frequent hepatitis E virus positive from negative blood donors in Mexico | |
| JP5522348B2 (en) | Prognostic method and kit for adult T-cell leukemia / lymphoma | |
| US20210363580A1 (en) | Method for predicting progression to active tuberculosis disease | |
| BRPI0903187A2 (en) | prognostic markers of clinical response in dengue virus infected patients | |
| TWI507412B (en) | Gastric cancer biological markers and their use, as well as gastric cancer-related detection methods | |
| WO2014167494A1 (en) | Molecular signature and its uses as diagnostic agent | |
| Sriprapun et al. | The expression of circulating hsa-miR-126-3p in dengue-infected Thai pediatric patients | |
| KR101644682B1 (en) | Biomarker for predicting and diagnosing drug-induced liver injury using transcriptomics and proteomics | |
| CN106811545A (en) | The method and reagent of a kind of neurological susceptibility for predicting hypertriglyceridemia | |
| Sun et al. | Glutathione-S-transferase M1 and T1 gene polymorphisms and susceptibility to the progression of liver fibrosis in HCV-infected patients in Taiwan | |
| Al-Zahrani et al. | Role of CD27 and SAMHD1 and their genetic susceptibility to COVID-19 | |
| RU2779085C1 (en) | Method for detecting predisposition to the development of metabolic syndrome in the form of obesity in schoolchildren aged 7-10 years |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| B06G | Technical and formal requirements: other requirements [chapter 6.7 patent gazette] |
Free format text: SOLICITA-SE A REGULARIZACAO DA PROCURACAO, UMA VEZ QUE BASEADO NO ARTIGO 216 1O DA LPI, O DOCUMENTO DE PROCURACAO DEVE SER APRESENTADO NO ORIGINAL, TRASLADO OU FOTOCOPIA AUTENTICADA. |
|
| B03A | Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette] | ||
| B06F | Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette] | ||
| B07A | Application suspended after technical examination (opinion) [chapter 7.1 patent gazette] | ||
| B06A | Patent application procedure suspended [chapter 6.1 patent gazette] | ||
| B09A | Decision: intention to grant [chapter 9.1 patent gazette] | ||
| B16A | Patent or certificate of addition of invention granted [chapter 16.1 patent gazette] |
Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 09/09/2009, OBSERVADAS AS CONDICOES LEGAIS. |
|
| B21F | Lapse acc. art. 78, item iv - on non-payment of the annual fees in time |
Free format text: REFERENTE A 15A ANUIDADE. |
|
| B24J | Lapse because of non-payment of annual fees (definitively: art 78 iv lpi, resolution 113/2013 art. 12) |
Free format text: EM VIRTUDE DA EXTINCAO PUBLICADA NA RPI 2791 DE 02-07-2024 E CONSIDERANDO AUSENCIA DE MANIFESTACAO DENTRO DOS PRAZOS LEGAIS, INFORMO QUE CABE SER MANTIDA A EXTINCAO DA PATENTE E SEUS CERTIFICADOS, CONFORME O DISPOSTO NO ARTIGO 12, DA RESOLUCAO 113/2013. |