MX2018000340A - Generacion de datos de entrenamiento para deteccion de filtracion de vehiculo automatica. - Google Patents
Generacion de datos de entrenamiento para deteccion de filtracion de vehiculo automatica.Info
- Publication number
- MX2018000340A MX2018000340A MX2018000340A MX2018000340A MX2018000340A MX 2018000340 A MX2018000340 A MX 2018000340A MX 2018000340 A MX2018000340 A MX 2018000340A MX 2018000340 A MX2018000340 A MX 2018000340A MX 2018000340 A MX2018000340 A MX 2018000340A
- Authority
- MX
- Mexico
- Prior art keywords
- arrival
- images
- image
- departure
- generation
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/007—Leak detector calibration, standard leaks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2431—Multiple classes
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/60—Editing figures and text; Combining figures or text
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/54—Surveillance or monitoring of activities, e.g. for recognising suspicious objects of traffic, e.g. cars on the road, trains or boats
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/586—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of parking space
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
- G06V20/653—Three-dimensional objects by matching three-dimensional models, e.g. conformal mapping of Riemann surfaces
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/275—Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/80—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
- G06T2207/30264—Parking
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Image Analysis (AREA)
- Mechanical Engineering (AREA)
- Traffic Control Systems (AREA)
- Architecture (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Image Processing (AREA)
- Emergency Alarm Devices (AREA)
Abstract
Un controlador de vehículo recibe imágenes de una cámara a la llegada y a la partida. Se puede rastrear una ubicación del vehículo y las imágenes capturadas por la cámara pueden etiquetarse con una ubicación. Una imagen de partida puede compararse con una imagen de llegada capturada más cercana a la misma ubicación que la imagen de llegada. Una imagen residual en función de una diferencia entre las imágenes de llegada y de partida se evalúa en busca de anomalías. Se determinan los atributos de la anomalía como textura, color, y similares, y la anomalía se clasifica en función de los atributos. Si la clasificación indica un fluido de automóvil, se genera una alerta. Un algoritmo de aprendizaje automático para generar clasificaciones a partir de datos de imágenes se puede entrenar usando imágenes de llegada y de partida obtenidas mediante la reproducción de un modelo tridimensional o mediante la adición de filtraciones de fluido simuladas a imágenes bidimensionales.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/404,031 US10296816B2 (en) | 2017-01-11 | 2017-01-11 | Generating training data for automatic vehicle leak detection |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| MX2018000340A true MX2018000340A (es) | 2018-11-09 |
Family
ID=61190382
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MX2018000340A MX2018000340A (es) | 2017-01-11 | 2018-01-09 | Generacion de datos de entrenamiento para deteccion de filtracion de vehiculo automatica. |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10296816B2 (es) |
| CN (1) | CN108304861B (es) |
| DE (1) | DE102018100192A1 (es) |
| GB (1) | GB2560234B (es) |
| MX (1) | MX2018000340A (es) |
| RU (1) | RU2017140787A (es) |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112435215B (zh) * | 2017-04-11 | 2024-02-13 | 创新先进技术有限公司 | 一种基于图像的车辆定损方法、移动终端、服务器 |
| US10900857B2 (en) * | 2018-06-06 | 2021-01-26 | Ford Global Technologies, Llc | Methods and systems for fluid leak determination |
| US20190392656A1 (en) * | 2018-06-22 | 2019-12-26 | GM Global Technology Operations LLC | Method and apparatus for leak detection |
| GB2576358B (en) * | 2018-08-16 | 2022-12-28 | Centrica Plc | Sensing fluid flow for estimating fluid flow state |
| US12063423B1 (en) * | 2018-09-24 | 2024-08-13 | Nova Modum Inc | Enhanced interactive web features for displaying and editing digital content |
| US10713542B2 (en) * | 2018-10-24 | 2020-07-14 | The Climate Corporation | Detection of plant diseases with multi-stage, multi-scale deep learning |
| CN113039563B (zh) | 2018-11-16 | 2024-03-12 | 辉达公司 | 学习生成用于训练神经网络的合成数据集 |
| GB2582904B (en) * | 2019-03-26 | 2021-04-14 | Atsr Ltd | Method and apparatus for controlling access to a vehicle |
| JP7536517B2 (ja) * | 2019-10-08 | 2024-08-20 | キヤノン株式会社 | 教師データの生成方法、学習済の学習モデル、及びシステム |
| US11424037B2 (en) * | 2019-11-22 | 2022-08-23 | International Business Machines Corporation | Disease simulation in medical images |
| JP7746990B2 (ja) * | 2020-06-10 | 2025-10-01 | コニカミノルタ株式会社 | 反射成分抑制画像生成装置、反射成分抑制推論モデル生成装置、反射成分抑制画像生成方法、及びプログラム |
| US11995925B2 (en) * | 2020-12-10 | 2024-05-28 | Ford Global Technologies, Llc | Vision system for a vehicle coolant system |
| US11971953B2 (en) | 2021-02-02 | 2024-04-30 | Inait Sa | Machine annotation of photographic images |
| WO2022167299A1 (en) | 2021-02-02 | 2022-08-11 | Inait Sa | Machine annotation of photographic images |
| DE102021103367A1 (de) | 2021-02-12 | 2022-08-18 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Erzeugung realistischer bildbasierter Daten zum Entwickeln und Testen von Fahrerassistenzsystemen |
| US11544914B2 (en) | 2021-02-18 | 2023-01-03 | Inait Sa | Annotation of 3D models with signs of use visible in 2D images |
| EP4295310A1 (en) | 2021-02-18 | 2023-12-27 | Inait SA | Annotation of 3d models with signs of use visible in 2d images |
| US11756311B2 (en) * | 2021-05-18 | 2023-09-12 | Toyota Motor Engineering & Manufacturing North America, Inc. | Parking spot and person detection |
| CN114298989A (zh) * | 2021-12-17 | 2022-04-08 | 洛阳热感科技有限公司 | 基于yolov5的热红外气体泄漏检测方法、检测装置和检测系统 |
| US20240420293A1 (en) * | 2023-06-16 | 2024-12-19 | Qualcomm Incorporated | Degraded image frame correction |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR1528877A (fr) * | 1967-05-03 | 1968-06-14 | Renault | Dispositif hydraulique de commande d'une transmission automatique étagée à trois rapports de marche avant à passage sous couple et une marche arrière |
| JPH09304281A (ja) | 1996-05-09 | 1997-11-28 | Tokyo Electric Power Co Inc:The | 油検知装置 |
| KR100716361B1 (ko) * | 2005-08-30 | 2007-05-11 | 현대자동차주식회사 | 엘피아이 차량의 인젝터 누기 감지방법 |
| US8605947B2 (en) | 2008-04-24 | 2013-12-10 | GM Global Technology Operations LLC | Method for detecting a clear path of travel for a vehicle enhanced by object detection |
| US7891340B2 (en) | 2008-04-30 | 2011-02-22 | Ford Global Technologies, Llc | Feed-forward control in a fuel delivery system and leak detection diagnostics |
| JP2010060422A (ja) * | 2008-09-03 | 2010-03-18 | Toshiba Corp | 液漏れ検出装置及び液漏れ検出方法 |
| US8228381B2 (en) | 2008-09-03 | 2012-07-24 | Walter Accurso | Video and data capturing system and method |
| US8564502B2 (en) * | 2009-04-02 | 2013-10-22 | GM Global Technology Operations LLC | Distortion and perspective correction of vector projection display |
| JP2013110571A (ja) | 2011-11-21 | 2013-06-06 | Sony Corp | 撮像システムおよび撮像装置 |
| DE102011088167A1 (de) | 2011-12-09 | 2013-06-13 | Robert Bosch Gmbh | Detektion eines Ladungsverlusts bei einem Kraftfahrzeug |
| US8855849B1 (en) * | 2013-02-25 | 2014-10-07 | Google Inc. | Object detection based on known structures of an environment of an autonomous vehicle |
| US9174508B2 (en) * | 2013-03-15 | 2015-11-03 | Levant Power Corporation | Active vehicle suspension |
| EP2992365B1 (en) * | 2013-04-29 | 2018-04-04 | Intelliview Technologies Inc. | Object detection |
| US10093247B2 (en) | 2013-05-23 | 2018-10-09 | GM Global Technology Operations LLC | Enhanced front curb viewing system |
| CN104641221A (zh) | 2013-07-17 | 2015-05-20 | 松下知识产权经营株式会社 | 分光装置 |
| US9915545B2 (en) | 2014-01-14 | 2018-03-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart necklace with stereo vision and onboard processing |
| EP2908202B1 (en) | 2014-02-14 | 2019-03-27 | Accenture Global Services Limited | Unmanned vehicle (UV) control system |
| WO2015143569A1 (en) * | 2014-03-28 | 2015-10-01 | Intelliview Technologies Inc. | Leak detection |
| DE102014209197B4 (de) | 2014-05-15 | 2024-09-19 | Continental Autonomous Mobility Germany GmbH | Vorrichtung und Verfahren zum Erkennen von Niederschlag für ein Kraftfahrzeug |
| KR101622622B1 (ko) | 2014-10-13 | 2016-05-31 | 엘지전자 주식회사 | 차량 하부 이미지 제공 장치 및 이를 구비한 차량 |
| US9898830B2 (en) | 2015-03-17 | 2018-02-20 | Hitachi, Ltd. | Oil leakage detector and oil leakage detection method |
| CN105182537B (zh) | 2015-09-28 | 2017-10-27 | 大连楼兰科技股份有限公司 | 智能眼镜维保过程中的漏液识别方法 |
| US9987752B2 (en) * | 2016-06-10 | 2018-06-05 | Brain Corporation | Systems and methods for automatic detection of spills |
| DE102016210632A1 (de) | 2016-06-15 | 2017-12-21 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Überprüfen eines Medienverlustes eines Kraftfahrzeuges sowie Kraftfahrzeug und System zum Ausführen eines solchen Verfahrens |
| JP6346251B2 (ja) * | 2016-11-25 | 2018-06-20 | ファナック株式会社 | 油漏れ検出装置 |
| US10372996B2 (en) * | 2016-12-15 | 2019-08-06 | Ford Global Technologies, Llc | Automatic vehicle leak detection |
-
2017
- 2017-01-11 US US15/404,031 patent/US10296816B2/en active Active
- 2017-11-23 RU RU2017140787A patent/RU2017140787A/ru not_active Application Discontinuation
-
2018
- 2018-01-05 CN CN201810010060.XA patent/CN108304861B/zh active Active
- 2018-01-05 GB GB1800198.2A patent/GB2560234B/en active Active
- 2018-01-05 DE DE102018100192.4A patent/DE102018100192A1/de not_active Withdrawn
- 2018-01-09 MX MX2018000340A patent/MX2018000340A/es unknown
Also Published As
| Publication number | Publication date |
|---|---|
| DE102018100192A1 (de) | 2018-07-12 |
| CN108304861B (zh) | 2023-07-25 |
| CN108304861A (zh) | 2018-07-20 |
| RU2017140787A (ru) | 2019-05-23 |
| GB201800198D0 (en) | 2018-02-21 |
| GB2560234B (en) | 2022-09-28 |
| GB2560234A (en) | 2018-09-05 |
| US10296816B2 (en) | 2019-05-21 |
| US20180197048A1 (en) | 2018-07-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MX2018000340A (es) | Generacion de datos de entrenamiento para deteccion de filtracion de vehiculo automatica. | |
| Maepa et al. | Support vector machine and artificial neural network modelling of orogenic gold prospectivity mapping in the Swayze greenstone belt, Ontario, Canada | |
| Zou et al. | Teaching–learning-based optimization with learning experience of other learners and its application | |
| EP4610929A3 (en) | Neural network for generating synthetic medical images | |
| WO2019239211A3 (en) | System and method for generating simulated scenes from open map data for machine learning | |
| MX2021006830A (es) | Mapeo de anomalias de campo utilizando imagenes digitales y modelos de aprendizaje por maquina. | |
| MX2017004705A (es) | Deteccion de lluvia basada en vision con aprendizaje profundo. | |
| WO2020056431A8 (en) | System and method for three-dimensional (3d) object detection | |
| MY202173A (en) | Apparatus, method, and system of insight-based cognitive assistant for enhancing user's expertise in learning, review, rehearsal, and memorization | |
| AR109037A1 (es) | Generación de mapas de píxeles de datos sin imágenes y métricas de diferencias en mapas de píxeles | |
| WO2019050247A3 (ko) | 클래스 인식을 위한 뉴럴 네트워크 학습 방법 및 디바이스 | |
| MX2017012837A (es) | Deteccion de obstaculos traseros y estimacion de distancia. | |
| MX2017010913A (es) | Modelado fisico para sensores de radar y ultrasonicos. | |
| SG10201808077YA (en) | System for visualizing a three dimensional (3d) model as printed from a 3d printer | |
| EP2937815A3 (en) | Methods and systems for object detection using laser point clouds | |
| AU2017302833A8 (en) | Database construction system for machine-learning | |
| EP2860672A3 (en) | Scalable cross domain recommendation system | |
| WO2022179896A3 (en) | Actor-critic approach for generating synthetic images | |
| RU2015107561A (ru) | Способ обнаружения положения и местонахождения посредством виртуальных опорных изображений | |
| CO2021004152A2 (es) | Aparato y método para inteligencia visual combinada | |
| BR112018072348A2 (pt) | sistema para possibilitar o registro de atlas no imageamento médico, estação de trabalho, mídia legível por computador, e método para possibilitar o registro de atlas no imageamento médico | |
| GB2565246A (en) | Inferencing and learning based on sensorimotor input data | |
| WO2015083091A3 (en) | Classifying human crowd noise data | |
| Tao et al. | Multi-source adaptation learning with global and local regularization by exploiting joint kernel sparse representation | |
| Park et al. | FCN based gas leakage segmentation and improvement using transfer learning |