[go: up one dir, main page]

MX2017004705A - Deteccion de lluvia basada en vision con aprendizaje profundo. - Google Patents

Deteccion de lluvia basada en vision con aprendizaje profundo.

Info

Publication number
MX2017004705A
MX2017004705A MX2017004705A MX2017004705A MX2017004705A MX 2017004705 A MX2017004705 A MX 2017004705A MX 2017004705 A MX2017004705 A MX 2017004705A MX 2017004705 A MX2017004705 A MX 2017004705A MX 2017004705 A MX2017004705 A MX 2017004705A
Authority
MX
Mexico
Prior art keywords
rain
vehicle
vision
deep learning
neural network
Prior art date
Application number
MX2017004705A
Other languages
English (en)
Inventor
Elizabeth Micks Ashley
Banvait Harpreetsingh
J Jain Jinesh
Nariyambut Murali Vidya
Original Assignee
Ford Global Tech Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Tech Llc filed Critical Ford Global Tech Llc
Publication of MX2017004705A publication Critical patent/MX2017004705A/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0803Intermittent control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0833Optical rain sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0833Optical rain sensor
    • B60S1/0844Optical rain sensor including a camera
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24143Distances to neighbourhood prototypes, e.g. restricted Coulomb energy networks [RCEN]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2433Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/19Recognition using electronic means
    • G06V30/191Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06V30/19173Classification techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Automation & Control Theory (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)
  • Image Processing (AREA)

Abstract

Se describe un método para usar una cámara a bordo de un vehículo para determinar si la precipitación está cayendo cerca del vehículo. El método puede incluir obtener múltiples imágenes. Cada una de las múltiples imágenes puede ser conocida por representar de manera fotográfica una condición de "lluvia" o "no lluvia". Una red neuronal artificial se puede entrenar con las múltiples imágenes. Luego, la red neuronal artificial puede analizar una o más imágenes capturadas por una primera cámara asegurada en un primer vehículo. En función de ese análisis, la red neuronal artificial puede clasificar el primer vehículo como que está en un clima de "lluvia" o "no lluvia".
MX2017004705A 2016-04-11 2017-04-10 Deteccion de lluvia basada en vision con aprendizaje profundo. MX2017004705A (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/095,876 US10049284B2 (en) 2016-04-11 2016-04-11 Vision-based rain detection using deep learning

Publications (1)

Publication Number Publication Date
MX2017004705A true MX2017004705A (es) 2018-08-16

Family

ID=58688403

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2017004705A MX2017004705A (es) 2016-04-11 2017-04-10 Deteccion de lluvia basada en vision con aprendizaje profundo.

Country Status (6)

Country Link
US (1) US10049284B2 (es)
CN (1) CN107292386B (es)
DE (1) DE102017107264A1 (es)
GB (1) GB2551001A (es)
MX (1) MX2017004705A (es)
RU (1) RU2017109658A (es)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10521677B2 (en) * 2016-07-14 2019-12-31 Ford Global Technologies, Llc Virtual sensor-data-generation system and method supporting development of vision-based rain-detection algorithms
US10528850B2 (en) * 2016-11-02 2020-01-07 Ford Global Technologies, Llc Object classification adjustment based on vehicle communication
CN110800273B (zh) * 2017-04-24 2024-02-13 卡内基梅隆大学 虚拟传感器系统
US10282827B2 (en) * 2017-08-10 2019-05-07 Wipro Limited Method and system for removal of rain streak distortion from a video
DE102017217072B4 (de) * 2017-09-26 2023-08-31 Volkswagen Aktiengesellschaft Verfahren zum Erkennen eines Witterungsverhältnisses in einer Umgebung eines Kraftfahrzeugs sowie Steuervorrichtung und Kraftfahrzeug
CN107909070A (zh) * 2017-11-24 2018-04-13 天津英田视讯科技有限公司 一种道路积水检测的方法
CN107933507B (zh) * 2017-11-26 2019-10-15 江苏绿能汽配科技有限公司 一种智能雨刷启动方法
CN107933508B (zh) * 2017-11-26 2020-09-25 瑞安市久智电子商务有限公司 一种雨刷智能启动系统
WO2019127085A1 (en) * 2017-12-27 2019-07-04 Volkswagen (China) Investment Co., Ltd. Processing method, processing apparatus, control device and cloud server
US11328210B2 (en) 2017-12-29 2022-05-10 Micron Technology, Inc. Self-learning in distributed architecture for enhancing artificial neural network
US10889267B2 (en) * 2018-03-05 2021-01-12 Tesla, Inc. Electromagnetic windshield wiper system
CN108375808A (zh) * 2018-03-12 2018-08-07 南京恩瑞特实业有限公司 Nriet基于机器学习的大雾预报方法
US10522038B2 (en) 2018-04-19 2019-12-31 Micron Technology, Inc. Systems and methods for automatically warning nearby vehicles of potential hazards
EP3629240B1 (en) 2018-09-07 2023-08-23 Panasonic Intellectual Property Corporation of America Generative adversarial networks for local noise removal from an image
CN112970029B (zh) * 2018-09-13 2024-06-07 辉达公司 用于自主机器应用中传感器视盲检测的深度神经网络处理
US11508049B2 (en) * 2018-09-13 2022-11-22 Nvidia Corporation Deep neural network processing for sensor blindness detection in autonomous machine applications
CN109519077B (zh) * 2018-09-28 2020-06-16 天津大学 一种基于图像处理对雨水进行检测的车窗控制系统
DE102018126825A1 (de) * 2018-10-26 2020-04-30 Bayerische Motoren Werke Aktiengesellschaft Steuerung eines Kraftfahrzeugs
FI20186112A1 (en) * 2018-12-19 2020-06-20 Actim Oy System and method for analysing a point-of-care test result
CN109858369A (zh) * 2018-12-29 2019-06-07 百度在线网络技术(北京)有限公司 自动驾驶方法和装置
US11373466B2 (en) 2019-01-31 2022-06-28 Micron Technology, Inc. Data recorders of autonomous vehicles
US11410475B2 (en) 2019-01-31 2022-08-09 Micron Technology, Inc. Autonomous vehicle data recorders
CN109849851B (zh) * 2019-03-21 2021-02-02 中国联合网络通信集团有限公司 雨刮器控制方法及系统
CN109927675B (zh) * 2019-04-09 2022-02-08 深圳创维汽车智能有限公司 一种雨刷控制方法、装置、设备及存储介质
CN110084218A (zh) * 2019-05-06 2019-08-02 广州小鹏汽车科技有限公司 车辆的雨水分布数据处理方法和装置
CN110163184A (zh) * 2019-05-31 2019-08-23 智宇科技股份有限公司 智能化视频监控系统及方法
WO2021017445A1 (zh) * 2019-07-31 2021-02-04 浙江大学 一种针对雨天图片的卷积神经网络降雨强度分类方法及量化方法
US11755884B2 (en) 2019-08-20 2023-09-12 Micron Technology, Inc. Distributed machine learning with privacy protection
US11636334B2 (en) 2019-08-20 2023-04-25 Micron Technology, Inc. Machine learning with feature obfuscation
US11392796B2 (en) 2019-08-20 2022-07-19 Micron Technology, Inc. Feature dictionary for bandwidth enhancement
CN110562201A (zh) * 2019-09-19 2019-12-13 广州小鹏汽车科技有限公司 雨刮器的控制方法、控制装置和车辆
CN110562202B (zh) * 2019-09-19 2021-07-13 广州小鹏汽车科技有限公司 雨刮器的控制方法、控制装置和车辆
DE102019130922A1 (de) * 2019-11-15 2021-05-20 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren für ein Fahrzeug
US11961335B1 (en) 2020-06-26 2024-04-16 Harris County Toll Road Authority Dual mode electronic toll road system
CN112380930B (zh) * 2020-10-30 2022-04-29 浙江预策科技有限公司 一种雨天识别方法和系统
DE102020215859A1 (de) * 2020-12-15 2022-06-15 Conti Temic Microelectronic Gmbh Korrektur von Bildern einer Kamera bei Regen, Lichteinfall und Verschmutzung
CN113673361B (zh) * 2021-07-28 2024-07-05 东风汽车集团股份有限公司 一种雨雾识别方法、清扫系统和计算机可读存储介质
EP4198573A1 (en) * 2021-12-14 2023-06-21 Tusimple, Inc. System and method for detecting rainfall for an autonomous vehicle
JP2024139833A (ja) * 2023-03-28 2024-10-10 株式会社デンソー 画像処理装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660437B2 (en) * 1992-05-05 2010-02-09 Automotive Technologies International, Inc. Neural network systems for vehicles
FR2693557B1 (fr) * 1992-07-09 1994-09-30 Rhea Procédé et dispositif pour l'évaluation des précipitations sur une zone de terrain.
US5453676A (en) * 1994-09-30 1995-09-26 Itt Automotive Electrical Systems, Inc. Trainable drive system for a windshield wiper
JPH09240433A (ja) * 1996-03-08 1997-09-16 Yazaki Corp ワイパー制御装置
JPH10239452A (ja) * 1997-02-27 1998-09-11 Nippon Telegr & Teleph Corp <Ntt> 降雨降雪予測装置
US5923027A (en) * 1997-09-16 1999-07-13 Gentex Corporation Moisture sensor and windshield fog detector using an image sensor
US6690268B2 (en) * 2000-03-02 2004-02-10 Donnelly Corporation Video mirror systems incorporating an accessory module
JP4818609B2 (ja) * 2002-08-21 2011-11-16 ジェンテックス コーポレイション 外部車両照明の自動制御のための画像取得及び処理方法
JP4353127B2 (ja) 2005-04-11 2009-10-28 株式会社デンソー レインセンサ
JPWO2008117392A1 (ja) * 2007-03-26 2010-07-08 Vpec株式会社 電力システム
CN101470900B (zh) * 2007-12-25 2011-05-25 东风汽车有限公司 车用智能控制方法及装置
DE102008062977A1 (de) * 2008-12-23 2010-06-24 Adc Automotive Distance Control Systems Gmbh Optisches Modul mit multifokaler Optik zur Erfassung von Fern- und Nahbereich in einem Bild
WO2010084521A1 (ja) 2009-01-20 2010-07-29 本田技研工業株式会社 ウインドシールド上の雨滴を同定するための方法及び装置
CN101751782A (zh) * 2009-12-30 2010-06-23 北京大学深圳研究生院 一种基于多源信息融合的十字路口交通事件自动检测系统
KR20120064474A (ko) 2010-12-09 2012-06-19 엘지이노텍 주식회사 카메라 모듈을 이용한 우적 감지 장치 및 방법
GB201104168D0 (en) * 2011-03-11 2011-04-27 Life On Show Ltd Information capture system
FR2976866B1 (fr) * 2011-06-27 2013-07-05 Peugeot Citroen Automobiles Sa Procede d'aide a la conduite d'un vehicule
WO2013034167A1 (en) 2011-09-07 2013-03-14 Valeo Schalter Und Sensoren Gmbh Method and camera assembly for detecting raindrops on a windscreen of a vehicle
US20140347487A1 (en) 2011-09-07 2014-11-27 Valeo Schalter Und Sensoren Gmbh Method and camera assembly for detecting raindrops on a windscreen of a vehicle
TWI478834B (zh) * 2012-04-13 2015-04-01 Pixart Imaging Inc 雨刷控制裝置、光學雨滴偵測裝置及其偵測方法
US8824742B2 (en) * 2012-06-19 2014-09-02 Xerox Corporation Occupancy detection for managed lane enforcement based on localization and classification of windshield images
CN102722989B (zh) * 2012-06-29 2014-05-07 山东交通学院 基于模糊神经网络的高速公路微气象交通预警方法
DE102012215287A1 (de) 2012-08-29 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Fahrzeugs
CN103150903B (zh) * 2013-02-07 2014-10-29 中国科学院自动化研究所 一种自适应学习的视频车辆检测方法
JP2014160031A (ja) * 2013-02-20 2014-09-04 Aisin Aw Co Ltd 走行案内システム、走行案内方法及びコンピュータプログラム
US9045112B2 (en) 2013-03-15 2015-06-02 Honda Motor Co., Ltd. Adjustable rain sensor setting based on proximity vehicle detection
CN103543638B (zh) * 2013-10-10 2015-10-21 山东神戎电子股份有限公司 一种自动雨刷控制方法
KR101528518B1 (ko) * 2013-11-08 2015-06-12 현대자동차주식회사 차량 및 그 제어방법
US9335178B2 (en) * 2014-01-28 2016-05-10 GM Global Technology Operations LLC Method for using street level images to enhance automated driving mode for vehicle
DE102014207994A1 (de) 2014-04-29 2015-10-29 Conti Temic Microelectronic Gmbh Vorrichtung zum Erkennen von Niederschlag für ein Kraftfahrzeug
US9443142B2 (en) * 2014-07-24 2016-09-13 Exelis, Inc. Vision-based system for dynamic weather detection
CN104268638A (zh) * 2014-09-11 2015-01-07 广州市香港科大霍英东研究院 一种基于elman神经网络的光伏发电系统功率预测方法
CN104463196B (zh) * 2014-11-11 2017-07-25 中国人民解放军理工大学 一种基于视频的天气现象识别方法
CN104477132A (zh) * 2015-01-02 2015-04-01 江苏新瑞峰信息科技有限公司 一种汽车自动雨刮控制系统
US9465987B1 (en) * 2015-03-17 2016-10-11 Exelis, Inc. Monitoring and detecting weather conditions based on images acquired from image sensor aboard mobile platforms
CN204821319U (zh) * 2015-08-04 2015-12-02 内蒙古麦酷智能车技术有限公司 一种无人驾驶汽车雨雪天自适应系统
CN105196910B (zh) * 2015-09-15 2018-06-26 浙江吉利汽车研究院有限公司 一种雨雾天气下的安全驾驶辅助系统及其控制方法
JP6565619B2 (ja) * 2015-11-11 2019-08-28 株式会社デンソー 雨滴検出装置、車両ワイパ装置及び雨滴検出方法

Also Published As

Publication number Publication date
US20170293808A1 (en) 2017-10-12
US10049284B2 (en) 2018-08-14
RU2017109658A (ru) 2018-09-24
CN107292386A (zh) 2017-10-24
GB2551001A (en) 2017-12-06
CN107292386B (zh) 2022-11-15
DE102017107264A1 (de) 2017-10-12
GB201704559D0 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
MX2017004705A (es) Deteccion de lluvia basada en vision con aprendizaje profundo.
MX2017014963A (es) Deteccion y clasificacion de semaforos mediante el uso de vision informatica y aprendizaje profundo.
MX2017012904A (es) Aparato y metodo de clasificacion de precipitacion con multiples sensores, aparato y metodo.
CN107292870B (zh) 基于图像对齐与检测网络模型的轨道塞钉故障检测方法与系统
CN102629385B (zh) 一种基于多摄像机信息融合的目标匹配与跟踪系统及方法
EP3690482C0 (en) METHOD AND LEARNING DEVICE FOR INTEGRATING AN IMAGE ACQUIRED BY A CAMERA AND A POINT CLOUD MAP ACQUIRED BY RADAR OR LIDAR INTO A NEURAL NETWORK AND TEST METHOD AND TEST DEVICE USING THEM
WO2016003555A3 (en) Device, method, apparatus, and computer-readable medium for solar site assessment
EP3456597A3 (en) Methods and systems for detecting weather conditions using vehicle onboard sensors
EP2551793A3 (en) Obstacle detection system
SG11201908245QA (en) Vehicle insurance image processing method, apparatus, server, and system
EP2905665A3 (en) Information processing apparatus, diagnosis method, and program
MY190242A (en) Vehicle inspection methods and systems
MX2018000835A (es) Deteccion de vehiculos en condiciones de iluminacion baja.
EP2905724A3 (en) Object detection system and method
EP2806373A3 (en) Image processing system and method of improving human face recognition
IL227860B (en) Classification of objects in a scanned environment
EP2835763A3 (en) A hybrid method and system of video and vision based access control for parking stall occupancy determination
SG11202103814PA (en) Vehicle positioning method based on deep neural network image recognition
WO2015148369A3 (en) Invariant object representation of images using spiking neural networks
MY176768A (en) Object monitoring system, object monitoring method, and monitoring target extraction program
RU2017134785A (ru) Способ, система и машиночитаемые носители хранения данных для обнаружения листвы с использованием данных дальности
CN103236181A (zh) 一种基于机器视觉的交通信号灯状态监控系统及方法
Rodrigues et al. Phytoplankton community structures in shelf and oceanic waters off southeast Brazil (20–25 S), as determined by pigment signatures
IN2014MU03302A (es)
WO2015024257A8 (en) Unstructured road boundary detection