[go: up one dir, main page]

Python Algorithms for Mac

View 1458 business solutions

Browse free open source Python Algorithms for Mac and projects below. Use the toggles on the left to filter open source Python Algorithms for Mac by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • E-commerce Fulfillment For Scaling Brands Icon
    E-commerce Fulfillment For Scaling Brands

    Ecommerce and omnichannel brands seeking scalable fulfillment solutions that integrate with popular sales channels

    Flowspace delivers fulfillment excellence by pairing powerful software and on-the-ground logistics know-how. Our platform provides automation, real-time control, and reliability beyond traditional 3PL capabilities—so you can scale smarter, faster, and easier.
    Learn More
  • 1
    Clipper

    Clipper

    Polygon and line clipping and offsetting library (C++, C#, Delphi)

    This library is now obsolete and no longer being maintained. It has been superceded by my Clipper2 library - https://github.com/AngusJohnson/Clipper2.
    Leader badge">
    Downloads: 5,973 This Week
    Last Update:
    See Project
  • 2
    Real-ESRGAN

    Real-ESRGAN

    Real-ESRGAN aims at developing Practical Algorithms

    Real-ESRGAN is a highly popular open-source project that provides practical algorithms for general image and video restoration using deep learning-based super-resolution techniques. It extends the original Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) approach by training on synthetic degradations to make results more robust on real-world images, effectively enhancing resolution, reducing noise/artifacts, and reconstructing fine detail in low-quality imagery. The repository includes inference and training scripts, a model zoo with different pretrained models (including general and anime-oriented variants), and support for batch and arbitrary scaling, making it adaptable for diverse enhancement tasks. It emphasizes usability with utilities that handle alpha channels, gray/16-bit images, and tiled inference for large inputs, and can be run via Python scripts or portable executables.
    Downloads: 61 This Week
    Last Update:
    See Project
  • 3
    ImageAI

    ImageAI

    A python library built to empower developers

    ImageAI is an easy-to-use Computer Vision Python library that empowers developers to easily integrate state-of-the-art Artificial Intelligence features into their new and existing applications and systems. It is used by thousands of developers, students, researchers, tutors and experts in corporate organizations around the world. You will find features supported, links to official documentation as well as articles on ImageAI. ImageAI is widely used around the world by professionals, students, research groups and businesses. ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet. ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 4
    FuzzyWuzzy

    FuzzyWuzzy

    Fuzzy string matching in Python

    We’ve made it our mission to pull in event tickets from every corner of the internet, showing you them all on the same screen so you can compare them and get to your game/concert/show as quickly as possible. Of course, a big problem with most corners of the internet is labeling. One of our most consistently frustrating issues is trying to figure out whether two ticket listings are for the same real-life event (that is, without enlisting the help of our army of interns). To pick an example completely at random, Cirque du Soleil has a show running in New York called “Zarkana”. When we scour the web to find tickets for sale, mostly those tickets are identified by a title, date, time, and venue. We’ve built up a library of “fuzzy” string matching routines to help us along. And good news! We’re open sourcing it. The library is called “Fuzzywuzzy”, the code is pure python, and it depends only on the (excellent) difflib python library.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Network Performance Monitoring | Statseeker Icon
    Network Performance Monitoring | Statseeker

    Statseeker is a powerful network performance monitoring solution for businesses

    Using just a single server or virtual machine, Statseeker can be up and running within minutes, and discovering your entire network in less than an hour, without any significant effect on your bandwidth availability.
    Learn More
  • 5
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. These environments have a shared interface, allowing you to write general algorithms.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 6
    The Algorithms Python

    The Algorithms Python

    All Algorithms implemented in Python

    The Algorithms-Python project is a comprehensive collection of Python implementations for a wide range of algorithms and data structures. It serves primarily as an educational resource for learners and developers who want to understand how algorithms work under the hood. Each implementation is designed with clarity in mind, favoring readability and comprehension over performance optimization. The project covers various domains including mathematics, cryptography, machine learning, sorting, graph theory, and more. With contributions from a large global community, it continually grows and improves through collaboration and peer review. This repository is an ideal reference for students, educators, and developers seeking hands-on experience with algorithmic concepts in Python.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Active Learning

    Active Learning

    Framework and examples for active learning with machine learning model

    Active Learning is a Python-based research framework developed by Google for experimenting with and benchmarking various active learning algorithms. It provides modular tools for running reproducible experiments across different datasets, sampling strategies, and machine learning models. The system allows researchers to study how models can improve labeling efficiency by selectively querying the most informative data points rather than relying on uniformly sampled training sets. The main experiment runner (run_experiment.py) supports a wide range of configurations, including batch sizes, dataset subsets, model selection, and data preprocessing options. It includes several established active learning strategies such as uncertainty sampling, k-center greedy selection, and bandit-based methods, while also allowing for custom algorithm implementations. The framework integrates with both classical machine learning models (SVM, logistic regression) and neural networks.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Elementary Algorithms

    Elementary Algorithms

    Book of elementary algorithms and data structures

    This book introduces elementary algorithms and data structure. It includes side-by-side comparison of purely functional realization and their imperative counterpart. From 2020/12, I started re-writing this book. The PDF can be downloaded for preview (EN, 中文). The 1st edition in Chinese (中文) was published in 2017. I recently switched my focus to the Mathematics of programming, the new book is also available in (github). To build the book in PDF format from the sources, you need the following software pre-installed, TeXLive, The book is built with XeLaTeX, a Unicode friendly version of TeX. You need the GNU make tool, in Debian/Ubuntu like Linux, it can be installed through the apt-get command.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    YAPF

    YAPF

    A formatter for Python files

    YAPF is a Python code formatter that automatically rewrites source to match a chosen style, using a clang-format–inspired algorithm to search for the “best” layout under your rules. Instead of relying on a fixed set of heuristics, it explores formatting decisions and chooses the lowest-cost result, aiming to produce code a human would write when following a style guide. You can run it as a command-line tool or call it as a library via FormatCode / FormatFile, making it easy to embed in editors, CI, and custom tooling. Styles are highly configurable: start from presets like pep8, google, yapf, or facebook, then override dozens of options in .style.yapf, setup.cfg, or pyproject.toml. It supports recursive directory formatting, line-range formatting, and diff-only output so you can check or fix just the lines you touched.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Marketing automation for any business | ActiveCampaign Icon
    Marketing automation for any business | ActiveCampaign

    Your team of AI agents handles email, SMS, WhatsApp and more for you

    Active Intelligence revolutionizes how you work. You guide direction while AI handles execution, acts on insights, and shows you the path forward. It's how marketing should be.
    Learn More
  • 10
    JavaBlock
    Free Java Flowchart simulator / interpreter
    Leader badge">
    Downloads: 35 This Week
    Last Update:
    See Project
  • 11
    Evolving Objects

    Evolving Objects

    This project have been merged within Paradiseo.

    See the new project page: https://nojhan.github.io/paradiseo/ (Archived project page: http://eodev.sourceforge.net/)
    Downloads: 9 This Week
    Last Update:
    See Project
  • 12
    AlphaTensor

    AlphaTensor

    AI discovers faster, efficient algorithms for matrix multiplication

    AlphaTensor, developed by Google DeepMind, is the research codebase accompanying the 2022 Nature publication “Discovering faster matrix multiplication algorithms with reinforcement learning.” The project demonstrates how reinforcement learning can be used to automatically discover efficient algorithms for matrix multiplication — a fundamental operation in computer science and numerical computation. The repository is organized into four main components: algorithms, benchmarking, nonequivalence, and recombination. These contain implementations of the discovered matrix multiplication algorithms, tools to benchmark their real-world performance, proofs of nonequivalence among thousands of solutions, and methods for decomposing larger problems into smaller factorizations. Users can explore AlphaTensor’s discovered algorithms interactively using Colab notebooks or Python scripts.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll open source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Evolutionary Algorithm

    Evolutionary Algorithm

    Evolutionary Algorithm using Python

    Evolutionary Algorithm is an educational Python project that demonstrates evolutionary computation techniques such as genetic algorithms, evolution strategies, and neuroevolution in a clear and accessible way. Rather than being a single monolithic library, this repository provides a series of self-contained examples showing how different population-based search methods solve optimization problems and adapt candidate solutions over generations. Users can explore basic genetic algorithm setups, match phrase examples, pathfinding challenges, and microbial GA variants, as well as evolution strategy approaches like NES. The project also links classical evolutionary approaches with neural networks, illustrating how evolution can be used for model training in reinforcement learning and supervised contexts.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning. FATE became open-source in February 2019. FATE TSC was established to lead FATE open-source community, with members from major domestic cloud computing and financial service enterprises. FedAI is a community that helps businesses and organizations build AI models effectively and collaboratively, by using data in accordance with user privacy protection, data security, data confidentiality and government regulations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    MADDPG

    MADDPG

    Code for the MADDPG algorithm from a paper

    MADDPG (Multi-Agent Deep Deterministic Policy Gradient) is the official code release from OpenAI’s paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The repository implements a multi-agent reinforcement learning algorithm that extends DDPG to scenarios where multiple agents interact in shared environments. Each agent has its own policy, but training uses centralized critics conditioned on the observations and actions of all agents, enabling learning in cooperative, competitive, and mixed settings. The code is built on top of TensorFlow and integrates with the Multiagent Particle Environments (MPE) for benchmarking. Researchers can use it to reproduce the experiments presented in the paper, which demonstrate how agents learn behaviors such as coordination, competition, and communication. Although archived, MADDPG remains a widely cited baseline in multi-agent reinforcement learning research and has inspired further algorithmic developments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural network-based models, e.g., AutoEncoders, which are implemented in both PyTorch and Tensorflow. PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models. In total, 17 benchmark datasets are used for comparison, which can be downloaded at ODDS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Rank-BM25

    Rank-BM25

    A Collection of BM25 Algorithms in Python

    A collection of algorithms for querying a set of documents and returning the ones most relevant to the query. The most common use case for these algorithms is, as you might have guessed, to create search engines.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Reinforcement-learning

    Reinforcement-learning

    Implementation of Reinforcement Learning Algorithms. Python, OpenAI

    Reinforcement-learning is a widely used educational repository that provides implementations, exercises, and solutions for a broad range of reinforcement learning algorithms, designed to complement foundational texts and courses in the field. The project collects popular approaches such as dynamic programming, Monte Carlo methods, temporal difference learning, Q-learning, SARSA, deep Q-networks, and policy gradient techniques, often demonstrated with Python and OpenAI Gym environments so users can experiment with agents learning in simulated tasks. For each algorithm category, the repository pairs conceptual descriptions with runnable code and often illustrated exercises that help solidify understanding by bridging theory with practice. It’s structured to serve learners progressing from basic tabular methods to function approximation and deep learning extensions, making it suitable for students, researchers, or practitioners exploring reinforcement learning fundamentals.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Modular toolkit for Data Processing MDP
    The Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. The base of available algorithms is steadily increasing and includes signal processing methods (Principal Component Analysis, Independent Component Analysis, Slow Feature Analysis), manifold learning methods ([Hessian] Locally Linear Embedding), several classifiers, probabilistic methods (Factor Analysis, RBM), data pre-processing methods, and many others.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 21
    Python functions that Googlers have found useful.
    Leader badge">
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22

    FRODO 2

    Open-Source Framework for Distributed Constraint Optimization (DCOP)

    FRODO is a Java platform to solve Distributed Constraint Satisfaction Problems (DisCSPs) and Optimization Problems (DCOPs). It provides implementations for a variety of algorithms, including DPOP (and its variants), ADOPT, SynchBB, DSA...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    MRA

    MRA

    A general recommender system with basic models and MRA

    Multi-categorization Recommendation Adjusting (MRA) is to optimize the results of recommendation based on traditional(basic) recommendation models, through introducing objective category information and taking use of the feature that users always get the habits of preferring certain categories. Besides this, there are two advantages of this improved model: 1) it can be easily applied to any kind of existing recommendation models. And 2) a controller is set in this improved model to provide controllable adjustment range, which thereby makes it possible to provide optional modes of recommendation aiming different kinds of users.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Digraph3

    Digraph3

    A collection of python3 modules for Algorithmic Decision Theory

    This collection of Python3 modules provides a large range of implemented decision aiding algorithms useful in the field of outranking digraphs based Multiple Criteria Decision Aid (MCDA), especially best choice, linear ranking and absolute or relative rating algorithms with multiple incommensurable criteria. Technical documentation and tutorials are available under the following link: https://digraph3.readthedocs.io/en/latest/ The tutorials introduce the main objects like digraphs, outranking digraphs and performance tableaux. There is also a tutorial provided on undirected graphs. Some tutorials are problem oriented and show how to compute the winner of an election, how to build a best choice recommendation, or how to linearly rank or rate with multiple incommensurable performance criteria. Other tutorials concern more specifically operational aspects of computing maximal independent sets (MISs) and kernels in graphs and digraphs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Belkerda

    Belkerda

    a customizable number-guessing system

    Belkerda is a simple Python AI program that takes a user's input, builds a log of random numbers, picks a random entry, and displays it. If it is correct, then it reenters that number back into the log several times, overwriting the original, random numbers. If it is not, however, it overwrites a lower amount of entries.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next