[go: up one dir, main page]

Browse free open source Python Algorithms and projects below. Use the toggles on the left to filter open source Python Algorithms by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Endpoint Protection Software for Businesses | HYPERSECURE Icon
    Endpoint Protection Software for Businesses | HYPERSECURE

    DriveLock protects systems, data, end devices from data loss and misuse.

    The HYPERSECURE endpoint protection platform is a comprehensive suite of products and services enhanced by European third-party solutions. It ensures our customers’ IT security, regulatory compliance, and digital sovereignty.
    Learn More
  • 1
    Clipper

    Clipper

    Polygon and line clipping and offsetting library (C++, C#, Delphi)

    This library is now obsolete and no longer being maintained. It has been superceded by my Clipper2 library - https://github.com/AngusJohnson/Clipper2.
    Leader badge">
    Downloads: 6,364 This Week
    Last Update:
    See Project
  • 2
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing a Practical Algorithm for Real-world Face Restoration. It leverages rich and diverse priors encapsulated in a pretrained face GAN (e.g., StyleGAN2) for blind face restoration. Add V1.3 model, which produces more natural restoration results, and better results on very low-quality / high-quality inputs.
    Downloads: 83 This Week
    Last Update:
    See Project
  • 3
    ImageAI

    ImageAI

    A python library built to empower developers

    ImageAI is an easy-to-use Computer Vision Python library that empowers developers to easily integrate state-of-the-art Artificial Intelligence features into their new and existing applications and systems. It is used by thousands of developers, students, researchers, tutors and experts in corporate organizations around the world. You will find features supported, links to official documentation as well as articles on ImageAI. ImageAI is widely used around the world by professionals, students, research groups and businesses. ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet. ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset.
    Downloads: 22 This Week
    Last Update:
    See Project
  • 4
    JavaBlock
    Free Java Flowchart simulator / interpreter
    Leader badge">
    Downloads: 142 This Week
    Last Update:
    See Project
  • Searching for a better way to ship ecommerce? We can help Icon
    Searching for a better way to ship ecommerce? We can help

    ShipHero gives you the tools that give you ecommerce fulfillment super powers.

    ShipHero is built for multi-channel commerce. With a few clicks, you can connect your stores. ShipHero will download new products, as well as sync existing ones. When changes are made to your inventory all connected stores will be updated.
    Learn More
  • 5
    TorBot

    TorBot

    Dark Web OSINT Tool

    Contributions to this project are always welcome. To add a new feature fork the dev branch and give a pull request when your new feature is tested and complete. If its a new module, it should be put inside the modules directory. The branch name should be your new feature name in the format <Feature_featurename_version(optional)>. On Linux platforms, you can make an executable for TorBot by using the install.sh script. You will need to give the script the correct permissions using chmod +x install.sh Now you can run ./install.sh to create the torBot binary. Run ./torBot to execute the program. Crawl custom domains.(Completed). Check if the link is live.(Completed). Built-in Updater.(Completed). TorBot GUI (In progress). Social Media integration.(not Started).
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural network-based models, e.g., AutoEncoders, which are implemented in both PyTorch and Tensorflow. PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models. In total, 17 benchmark datasets are used for comparison, which can be downloaded at ODDS.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    YAPF

    YAPF

    A formatter for Python files

    YAPF is a Python code formatter that automatically rewrites source to match a chosen style, using a clang-format–inspired algorithm to search for the “best” layout under your rules. Instead of relying on a fixed set of heuristics, it explores formatting decisions and chooses the lowest-cost result, aiming to produce code a human would write when following a style guide. You can run it as a command-line tool or call it as a library via FormatCode / FormatFile, making it easy to embed in editors, CI, and custom tooling. Styles are highly configurable: start from presets like pep8, google, yapf, or facebook, then override dozens of options in .style.yapf, setup.cfg, or pyproject.toml. It supports recursive directory formatting, line-range formatting, and diff-only output so you can check or fix just the lines you touched.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. These environments have a shared interface, allowing you to write general algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Pythonic Data Structures and Algorithms

    Pythonic Data Structures and Algorithms

    Minimal examples of data structures and algorithms in Python

    The Pythonic Data Structures and Algorithms repository by keon is a hands-on collection of implementations of classical data structures and algorithms written in Python. It offers working, often well-commented code for many standard algorithmic problems — from sorting/searching to graph algorithms, dynamic programming, data structures, and more — making it a valuable resource for learning and reference. For students preparing for technical interviews, self-learners brushing up on fundamentals, or developers wanting to understand algorithm internals, this repository provides ready-to-run examples, and can serve as a sandbox to experiment, benchmark, or adapt code. Because it’s in pure Python, it’s easy to read and modify, making it accessible even to those with modest programming experience. The repo helps bridge the gap between theoretical algorithm descriptions and real-world code, giving concrete, working implementations that one can study, debug, or extend.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Centralized Workload Automation and Job Scheduling Icon
    Centralized Workload Automation and Job Scheduling

    Orchestrate your entire tech stack with our no-code connectors and low-code REST API adapter

    Orchestrates any process from a single point of control. Build reliable, low-code workflows in half the time. Develop end-to-end business and IT processes faster with hundreds of drag-and-drop actions. Coordinate enterprise-wide MFT processes using dozens of prebuilt actions for common file operations.
    Learn More
  • 10
    Zipline

    Zipline

    Zipline, a Pythonic algorithmic trading library

    Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backtesting and live-trading engine powering Quantopian -- a free, community-centered, hosted platform for building and executing trading strategies. Quantopian also offers a fully managed service for professionals that includes Zipline, Alphalens, Pyfolio, FactSet data, and more. Installing Zipline is slightly more involved than the average Python package. For a development installation (used to develop Zipline itself), create and activate a virtualenv, then run the etc/dev-install script. Please note that Zipline is not a community-led project. Zipline is maintained by the Quantopian engineering team, and we are quite small and often busy.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    CloudI: A Cloud at the lowest level
    CloudI is an open-source private cloud computing framework for efficient, secure, and internal data processing. CloudI provides scaling for previously unscalable source code with efficient fault-tolerant execution of ATS, C/C++, Erlang/Elixir, Go, Haskell, Java, JavaScript/node.js, OCaml, Perl, PHP, Python, Ruby, or Rust services. The bare essentials for efficient fault-tolerant processing on a cloud!
    Downloads: 37 This Week
    Last Update:
    See Project
  • 12
    The Algorithms Python

    The Algorithms Python

    All Algorithms implemented in Python

    The Algorithms-Python project is a comprehensive collection of Python implementations for a wide range of algorithms and data structures. It serves primarily as an educational resource for learners and developers who want to understand how algorithms work under the hood. Each implementation is designed with clarity in mind, favoring readability and comprehension over performance optimization. The project covers various domains including mathematics, cryptography, machine learning, sorting, graph theory, and more. With contributions from a large global community, it continually grows and improves through collaboration and peer review. This repository is an ideal reference for students, educators, and developers seeking hands-on experience with algorithmic concepts in Python.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Modular toolkit for Data Processing MDP
    The Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. The base of available algorithms is steadily increasing and includes signal processing methods (Principal Component Analysis, Independent Component Analysis, Slow Feature Analysis), manifold learning methods ([Hessian] Locally Linear Embedding), several classifiers, probabilistic methods (Factor Analysis, RBM), data pre-processing methods, and many others.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 14
    Digraph3

    Digraph3

    A collection of python3 modules for Algorithmic Decision Theory

    This collection of Python3 modules provides a large range of implemented decision aiding algorithms useful in the field of outranking digraphs based Multiple Criteria Decision Aid (MCDA), especially best choice, linear ranking and absolute or relative rating algorithms with multiple incommensurable criteria. Technical documentation and tutorials are available under the following link: https://digraph3.readthedocs.io/en/latest/ The tutorials introduce the main objects like digraphs, outranking digraphs and performance tableaux. There is also a tutorial provided on undirected graphs. Some tutorials are problem oriented and show how to compute the winner of an election, how to build a best choice recommendation, or how to linearly rank or rate with multiple incommensurable performance criteria. Other tutorials concern more specifically operational aspects of computing maximal independent sets (MISs) and kernels in graphs and digraphs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15

    FRODO 2

    Open-Source Framework for Distributed Constraint Optimization (DCOP)

    FRODO is a Java platform to solve Distributed Constraint Satisfaction Problems (DisCSPs) and Optimization Problems (DCOPs). It provides implementations for a variety of algorithms, including DPOP (and its variants), ADOPT, SynchBB, DSA...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    The Movinator is a movie database application. It manages information about movies plus ratings assigned to movies by movie critics. Based on these ratings and user ratings, the application can also make movie recommendations.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Sorting-Visualizer

    Sorting-Visualizer

    A GUI sorting visualizer desktop application

    A GUI sorting visualizer desktop application that helps to visualize various sorting algorithms interactively. Visualizer the sorting algorithms like Bubble sort, Insertion sort, Selection sort, Gnome sort, Shaker sort and Odd even sort. Change the bar color and background by customizing. Increase or decrease speed of animation to visualize the sorting process. Download now!
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Sudoku Maker is a generator for Sudoku number puzzles. It uses a genetic algorithm internally, so it can serve as an introduction to genetic algorithms. The generated Sudokus are usually very hard to solve -- good for getting rid of a Sudoku addiction.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Python functions that Googlers have found useful.
    Leader badge">
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    3D Box rotation

    3D Box rotation

    Simple example of draw and rotate 3D box

    Simple source .java file; .bat for fast re-compile and run; and pre-compiled .jar Java program with example from scratch writed in Notepad++ without Eclipse, etc., How to draw and rotate 3D box most simple way. Rotation speed regulated in simple Loop with 10 ms sleep. Use Java version 8 (OpenJDK 8, OracleJDK 8, OracleJRE 8, ..). Higher versions have an anti-aliasing error in the BufferedImage ( Windows 10 ). Python version with tkinter and math imports. Including calculated faces, moving lights and shadows only with CPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Based on the introduction of Genetic Algorithms in the excellent book "Collective Intelligence" I have put together some python classes to extend the original concepts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    The Automatic Model Optimization Reference Implementation, AMORI, is a framework that integrates the modelling and the optimization processes by providing a plug-in interface for both. A genetic algorithm and Markov simulations are currently implemented.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Active Learning

    Active Learning

    Framework and examples for active learning with machine learning model

    Active Learning is a Python-based research framework developed by Google for experimenting with and benchmarking various active learning algorithms. It provides modular tools for running reproducible experiments across different datasets, sampling strategies, and machine learning models. The system allows researchers to study how models can improve labeling efficiency by selectively querying the most informative data points rather than relying on uniformly sampled training sets. The main experiment runner (run_experiment.py) supports a wide range of configurations, including batch sizes, dataset subsets, model selection, and data preprocessing options. It includes several established active learning strategies such as uncertainty sampling, k-center greedy selection, and bandit-based methods, while also allowing for custom algorithm implementations. The framework integrates with both classical machine learning models (SVM, logistic regression) and neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Algorithms in Python

    Algorithms in Python

    Data Structures and Algorithms in Python

    Algorithms in Python is a collection of algorithm and data structure implementations (primarily in Python) meant to serve as both learning material and reference code for engineers. It includes code for graph algorithms, heap data structures, stacks, queues, and more — each implemented cleanly so learners can trace logic and adapt for their problems. The repository is particularly useful for people preparing for competitive programming, job interviews, or building a foundational understanding of algorithmic patterns. Because it’s openly maintained, you can browse through issues, see test cases, and observe coding style in a “learning through code” fashion. It also serves as a playground where you can add problems, measure performance, and compare different algorithmic approaches. For anyone striving to move from “I know the syntax” to “I know how to use the right algorithm at the right time,” this repository is a practical asset.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    AlphaTensor

    AlphaTensor

    AI discovers faster, efficient algorithms for matrix multiplication

    AlphaTensor, developed by Google DeepMind, is the research codebase accompanying the 2022 Nature publication “Discovering faster matrix multiplication algorithms with reinforcement learning.” The project demonstrates how reinforcement learning can be used to automatically discover efficient algorithms for matrix multiplication — a fundamental operation in computer science and numerical computation. The repository is organized into four main components: algorithms, benchmarking, nonequivalence, and recombination. These contain implementations of the discovered matrix multiplication algorithms, tools to benchmark their real-world performance, proofs of nonequivalence among thousands of solutions, and methods for decomposing larger problems into smaller factorizations. Users can explore AlphaTensor’s discovered algorithms interactively using Colab notebooks or Python scripts.
    Downloads: 0 This Week
    Last Update:
    See Project