[go: up one dir, main page]

WO2018124735A1 - Method for diagnosing colon tumor via bacterial metagenomic analysis - Google Patents

Method for diagnosing colon tumor via bacterial metagenomic analysis Download PDF

Info

Publication number
WO2018124735A1
WO2018124735A1 PCT/KR2017/015557 KR2017015557W WO2018124735A1 WO 2018124735 A1 WO2018124735 A1 WO 2018124735A1 KR 2017015557 W KR2017015557 W KR 2017015557W WO 2018124735 A1 WO2018124735 A1 WO 2018124735A1
Authority
WO
WIPO (PCT)
Prior art keywords
derived
colon
extracellular vesicles
bacteria
bacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2017/015557
Other languages
French (fr)
Korean (ko)
Inventor
김윤근
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MD Healthcare Inc
Original Assignee
MD Healthcare Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170180144A external-priority patent/KR101940426B1/en
Application filed by MD Healthcare Inc filed Critical MD Healthcare Inc
Priority to JP2019535378A priority Critical patent/JP6914552B2/en
Priority to CN201780081381.2A priority patent/CN110382720A/en
Priority to US16/472,986 priority patent/US20190330687A1/en
Priority to EP17887675.1A priority patent/EP3564390B1/en
Publication of WO2018124735A1 publication Critical patent/WO2018124735A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation

Definitions

  • the present invention relates to a method for diagnosing colon tumors by analyzing bacterial metagenome, and more specifically, by performing bacterial metagenomic analysis using a sample derived from a subject, by analyzing the increase or decrease in the content of specific bacterial-derived extracellular vesicles. And a method for diagnosing colorectal tumors such as colorectal cancer.
  • Colon cancer or colorectal cancer is a malignant tumor of the cecum, colon and rectum that occurs on the mucous membrane of the innermost surface of the large intestine.
  • colon cancer or colorectal cancer is a malignant tumor of the cecum, colon and rectum that occurs on the mucous membrane of the innermost surface of the large intestine.
  • the frequency of eating habits has been increasing rapidly as westernized aspects of the diet recently, and the mortality rate of colorectal cancer in recent 10 years is about 80%.
  • the rate of increase is increasing.
  • the age of onset occurs most frequently in the sixties, and by site, it occurs slightly more in the rectum than in the colon.
  • Colorectal cancer can occur at any age, but over 90% of people with colorectal cancer are older than 40 years of age, and their incidence doubles every 10 years.
  • colon cancers are known to originate from colon polyp or colon adenoma. Polyps are initially an abnormal growth of the epithelium in the lining of the large intestine, protruding and appearing in 15-20% of adults. It is a common disease. In addition to colorectal polyps, family members of colorectal cancer are at increased risk for colon cancer, even if they have had ulcerative colitis for a long time. In addition, colorectal cancer is a representative cancer known to be associated with food, and is known to cause low intake of fiber, high intake of animal fat, or excessive intake of refined sugar (sugar) due to westernization of diet. .
  • cancer cells can be detected by biopsy through colonoscopy.
  • Most colon cancers are asymptomatic and therefore difficult to diagnose.
  • conventional diagnostic methods are often found when solid cancers such as colorectal cancer are advanced, it is necessary to predict colon cancer and causative factors in advance in order to prevent medical costs and death due to colorectal cancer.
  • Providing a method of prevention is an effective way.
  • Microbiota refers to a microbial community including bacteria, archaea and eukarya that exist in a given settlement.Intestinal microbiota is an important role in human physiology. It is known to have a great effect on human health and disease through interaction with human cells.
  • the symbiotic bacteria secrete nanometer-sized vesicles to exchange information about genes and proteins in other cells.
  • the mucous membrane forms a physical protective film that particles larger than 200 nanometers (nm) in size can't pass through, so that the symbiotic bacteria cannot pass through the mucosa, but bacterial-derived vesicles are usually less than 100 nanometers in size. It freely speaks to the mucous membrane and is absorbed by our body.
  • Metagenomics also called environmental genomics, can be said to be an analysis of metagenomic data obtained from samples taken from the environment (Korean Patent Publication No. 2011-0073049). Recently, it has become possible to list the bacterial composition of the human microflora by a method based on 16s ribosomal RNA (16s rRNA) sequencing. Next generation sequencing of 16s rDNA sequencing gene of 16s ribosomal RNA is performed. , NGS) platform to analyze.
  • the present inventors In order to diagnose colon tumors such as colorectal polyps and colorectal cancer, the present inventors extracted a gene from bacterial vesicles using urine and stool, which are samples derived from a subject, and performed a metagenome analysis on the colon polyps and colon. Bacterial-derived extracellular vesicles that can act as causative factors of colorectal tumors, such as cancer, have been identified, and thus the present invention has been completed.
  • an object of the present invention is to provide an information providing method for diagnosing colon tumors through metagenomic analysis of genes present in bacterial extracellular vesicles.
  • the present invention provides a method for providing information for diagnosing colon tumor, comprising the following steps:
  • the present invention provides a method for diagnosing colon tumor, comprising the following steps:
  • the present invention provides a method for predicting the risk of developing colon tumor, comprising the following steps:
  • colorectal cancer may be diagnosed by comparing the increase and decrease of the bacterial-derived extracellular vesicles in a sample derived from normal and colon cancer patients by sequencing the PCR product in step (c). have.
  • step (c) Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, Fusobacteria, Proteobacteria, and Euryarchaeota extracellular vesicles derived from (phylum) bacteria ,
  • One or more order bacterial derived extracellular vesicles selected from the group consisting of:
  • Peptococcaceae Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, Bdellovibrionaceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, One or more family or small family cells from the group consisting of Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Paraprevo
  • rc4-4 Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriicus, Achromobacus, Achromobacsium, Achromobacsium Bdellovibrio, Alkanindiges, Roseateles, Shuttleworthia, Rhizobium, Morganella, Acinetobacter, Pseudomonas, Enterococcus, Lactococcus, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacteria, Comamocobacterium, Comamocobacterium, Lacosebacteria, Mycobacterium terpenia The increase or decrease in the content of
  • the colorectal cancer through the step of comparing the increase and decrease of the content of bacterial-derived extracellular vesicles in the colon-derived patient and colorectal cancer-derived sample by sequencing the PCR product Diagnosis can be made.
  • step (c) Spirochaetes phylum bacteria-derived extracellular vesicles
  • One or more class bacterial-derived extracellular vesicles selected from the group consisting of Spirochaetes, and Acidobacteria-6,
  • One or more order bacterial extracellular vesicles selected from the group consisting of Spirochaetales, and Myxococcales,
  • the increase or decrease in the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Treponema, Dialister, Oscillospira, and Eubacterium can be compared.
  • the colon polyps are diagnosed by comparing the increase or decrease of the bacterial-derived extracellular vesicles in the sample from the normal and colon polyps patient by sequencing the PCR product. Can be.
  • step (c) at least one phylum bacteria-derived extracellular vesicles selected from the group consisting of Actinobacteria, Proteobacteria, and Euryarchaeota,
  • One or more class bacterial-derived extracellular vesicles selected from the group consisting of Betaproteobacteria, Solibacteres, Gammaproteobacteria, Clostridia, Methanobacteria, and 4C0d-2,
  • One or more order bacterial-derived extracellular vesicles selected from the group consisting of Burkholderiales, Sphingomonadales, Solibacterales, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, and Methanobacteriales,
  • Rhizobiaceae Group consisting of Rhizobiaceae, Sphingomonadaceae, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Deofolioaceae, Deofolioaceae Extracellular vesicles derived from abnormal families, or
  • Sphingomonas Alkanindiges, Roseateles, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacter, Clonastriia Triacerocitra, Clonastriia Viracerosia, Clonastriia psi
  • the increase or decrease in the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, and Methanobrevibacter can be compared.
  • the subject sample may be feces or urine.
  • Extracellular vesicles secreted by the bacteria present in the environment can be absorbed into the body and directly affect inflammation and cancer development, and colon polyps and colorectal cancer are difficult to diagnose effectively because they are difficult to diagnose early.
  • Predicting the risk of colon tumors such as colorectal polyps and colorectal cancer through metagenomic analysis of bacterial or bacterial-derived extracellular vesicles using a human-derived sample according to the present invention, early diagnosis and prediction of risk groups of colon tumors and appropriate management By delaying the onset time or preventing the onset, and after the onset can be diagnosed early can reduce the incidence of colon tumors and increase the treatment effect.
  • metagenome analysis predicts causative factors in patients diagnosed with colorectal polyps or colorectal cancer, thereby avoiding exposure to causative factors and improving colon polyps and colorectal cancer, or preventing recurrence.
  • Figure 1 is for evaluating the distribution of bacteria-derived extracellular vesicles in the body
  • Figure 1a after the administration of oral intestinal bacteria (Bacteria) and bacteria-derived vesicles (EV) in the mouth hourly (0, 5min, 3h, 6h, and 12h) is a photograph taken of their distribution
  • Figure 1b is a 12 hours after oral administration of intestinal bacteria (Bacteria) and bacteria-derived extracellular vesicles (EV) to the urine and various organs (heart, Lung, liver, kidney, spleen, adipose tissue, and muscles), and the photographs of the distribution of the bacterial and extracellular vesicles.
  • Figure 2 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacterial-derived vesicles from colon cancer patients and normal feces.
  • EVs bacteria-derived vesicles
  • FIG. 3 shows the distribution of bacterial-derived vesicles (EVs) with significant diagnostic performance at a class level by separating bacterial-derived vesicles from colon cancer patients and normal stool.
  • EVs bacterial-derived vesicles
  • EVs bacteria-derived vesicles
  • EVs bacteria-derived vesicles
  • FIG. 6 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level by separating bacterial-derived vesicles from colon cancer patients and normal stool.
  • EVs bacteria-derived vesicles
  • FIG. 7 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating the bacteria-derived vesicles from colon cancer patients and normal urine, and performing a metagenome analysis.
  • EVs bacteria-derived vesicles
  • FIG. 8 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at a class level by separating bacterial-derived vesicles from colorectal cancer patients and normal urine.
  • EVs bacteria-derived vesicles
  • FIG. 9 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order level by separating the bacteria-derived vesicles in colon cancer patients and normal urine, and performing a metagenome analysis.
  • EVs bacteria-derived vesicles
  • FIG. 10 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level after separation of bacteria-derived vesicles from colon cancer patients and normal urine.
  • EVs bacteria-derived vesicles
  • 11 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separating the bacteria-derived vesicles in colon cancer patients and normal urine.
  • EVs bacteria-derived vesicles
  • FIG. 7 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating the bacteria-derived vesicles in the urine of colon cancer patients and colon polyps patients .
  • EVs bacteria-derived vesicles
  • EVs bacteria-derived vesicles
  • FIG. 9 is a result showing the distribution of bacteria-derived vesicles (EVs) of significant diagnostic performance at the order (neck) by separating the bacteria-derived vesicles in the urine of colorectal cancer patients and colon polyps patients, performing a metagenome analysis .
  • EVs bacteria-derived vesicles
  • FIG. 10 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating the bacteria-derived vesicles in the urine of colorectal cancer patients and colon polyps patients, and performing a metagenome analysis. .
  • EVs bacteria-derived vesicles
  • 11 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separating the bacteria-derived vesicles in the urine of patients with colorectal cancer and colon polyps. .
  • EVs bacteria-derived vesicles
  • EVs bacteria-derived vesicles
  • FIG. 13 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the class level by separating the bacteria-derived vesicles in the stool of colon cancer patients and colon polyps patients, and performing a metagenomic analysis .
  • EVs bacteria-derived vesicles
  • EVs bacteria-derived vesicles
  • EVs bacteria-derived vesicles
  • 16 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separation of bacteria-derived vesicles in the bowel cancer patients and colon polyps patients stool. .
  • EVs bacteria-derived vesicles
  • 17 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order level by separating the bacteria-derived vesicles in the urine of colorectal cancer patients and colon polyps patients after performing a metagenome analysis .
  • EVs bacteria-derived vesicles
  • 19 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacterial-derived vesicles from colon polyps and normal feces.
  • EVs bacteria-derived vesicles
  • EVs bacteria-derived vesicles
  • 21 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order level by separating bacterial-derived vesicles from colon polyps and normal feces, and performing a metagenome analysis.
  • EVs bacteria-derived vesicles
  • EVs bacteria-derived vesicles
  • EVs bacteria-derived vesicles
  • Figure 24 shows the distribution of bacterial-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacterial-derived vesicles from colon polyps and normal urine.
  • EVs bacterial-derived vesicles
  • FIG. 25 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at a class level after separation of bacterial-derived vesicles from colon polyps and normal urine.
  • EVs bacteria-derived vesicles
  • FIG. 26 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the neck level after separation of bacteria-derived vesicles from colon polyps and normal urine.
  • EVs bacteria-derived vesicles
  • FIG. 27 shows the distribution of bacterial-derived vesicles (EVs) with significant diagnostic performance at the family level after separation of bacterial-derived vesicles from colon polyps and normal urine.
  • EVs bacterial-derived vesicles
  • FIG. 28 shows the distribution of bacterial-derived vesicles (EVs) with significant diagnostic performance at genus level after isolation of bacterial-derived vesicles from colon polyps and normal urine.
  • EVs bacterial-derived vesicles
  • the present invention relates to a method for diagnosing colorectal tumors such as colon polyps and colorectal cancer through bacterial metagenome analysis, and the present inventors extract genes from extracellular vesicles derived from bacteria using a sample derived from a subject, Bacterial-derived extracellular vesicles that could act as causative factors of colorectal tumors such as colon polyps and colorectal cancer were identified.
  • the present invention comprises the steps of (a) extracting DNA from the extracellular vesicles isolated from the subject sample;
  • It provides an information providing method for diagnosing colon tumors comprising comparing the increase and decrease of the content of bacterial-derived extracellular vesicles in a sample derived from normal people and colon polyps through sequencing of the PCR product.
  • diagnosisd colorectal cancer means to determine whether or not colon cancer is likely to develop, whether or not colon cancer is relatively high, or whether colorectal cancer has already occurred in a patient.
  • the method of the present invention can be used to prevent or delay the onset of the disease through special and appropriate management as a patient at high risk of developing colorectal cancer for any particular patient.
  • the methods of the present invention can be used clinically to determine treatment by early diagnosis of colon cancer and selecting the most appropriate treatment regimen.
  • the term "diagnosing colon polyps" means determining whether a colon polyp is likely to develop, whether the colon polyp is relatively high, or whether a polyp has already occurred.
  • the method of the present invention can be used to prevent or delay the onset of the disease through special and appropriate management as a patient at high risk of developing colon polyps for any particular patient.
  • the methods of the present invention can be used clinically to determine treatment by early diagnosis of colon polyps and selecting the most appropriate treatment regimen.
  • metagenome used in the present invention, also referred to as “metagenome”, refers to the total of the genome including all viruses, bacteria, fungi, etc. in an isolated area such as soil, animal intestine, It is mainly used as a concept of genome explaining the identification of many microorganisms at once using sequencer to analyze microorganisms which are not cultured.
  • metagenome does not refer to one species of genome or genome, but refers to a kind of mixed dielectric as the genome of all species of one environmental unit. This is a term from the point of view of defining a species in the course of the evolution of biology in terms of functional species as well as various species that interact with each other to create a complete species.
  • rapid sequencing is used to analyze all DNA and RNA, regardless of species, to identify all species in one environment, and to identify interactions and metabolism.
  • metagenome analysis was preferably performed using bacterial-derived extracellular vesicles isolated from serum.
  • meta-genomic analysis was performed on genes present in the extracellular vesicles in feces and urine of normal people, colon polyps, and colon cancer patients. Analyzes at the order, family, and genus levels, respectively, identified bacterial vesicles that could actually cause colon cancer and colon polyps development.
  • the present invention as a result of analyzing the bacteria-derived vesicles metagenome present in the stool at the gate level, Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, and Fusobacteria door-derived vesicles derived from colon cancer patients There was a significant difference between and normal (see Example 4).
  • the bacterium-derived vesicle metagenome present in the feces at the river level Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Vesicles derived from Coriobacteriia, Oscillatoriophycideae, and Fusobacteriia bacterium showed significant differences between colon cancer patients and normal individuals (see Example 4).
  • the result of analyzing the bacterial-derived vesicle metagenome present in the stool at the neck level RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, and Bdellovibrionales neck bacterial-derived vesicles showed significant differences between colon cancer patients and normal individuals (see Example 4).
  • the bacterium-derived vesicles metagenome present in the feces at an excessive level Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphellomoaceae, Barton Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, and Bdellovibrionaceae were significantly different between colon cancer patients and normal colon cancer patients (see Example 4).
  • bacteria-derived vesicle metagenome present in the feces at the genus level, rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriimonas, Dermacoccus, Achromobacter, Novosphingobium, Sneathia, Agrobacterium, Blastomonas, Bdellovibrio, Alkanindiges, Roseateles, and the subcutaneous intestines of the genus There was a difference (see Example 4).
  • the bacterium-derived vesicles metagenome present in the urine was analyzed at the neck level. There was a significant difference between cancer patients and normal subjects (see Example 5).
  • the bacteria-derived vesicles metagenome present in the urine at an excessive level Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Turicibacteraceae, Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Clostridiaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, and Rikenellaceae and bacterial-derived vesicles showed significant differences between colon cancer patients and normal individuals (see Example 5).
  • the bacteria-derived vesicle metagenome present in the urine at the genus level Rhizobium, Proteus, Morganella, Acinetobacter, Pseudomonas, SMB53, Enterococcus, Lactococcus, Turicibacter, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacterium, Comamonas, Gordonia, Paraprevotella, Mycobacterium, Roseburia, Dialister, Slackia, Escherichia, Phascolarctobacterium, Sutterella, Virgibacillus, Eggerthella, Halomonasoc, Citrobacteriococcus, Miobacteriumobacero Derived vesicles were significantly different between colorectal cancer patients and normal subjects (see Example 5).
  • the vesicles derived from Spirochaetes, and Acidobacteria-6 strong bacteria were significant between colon cancer patients and colon polyps patients. There was a difference (see Example 6).
  • Eubacterium neck bacteria-derived vesicles had a significant difference between colon cancer patients and colon polyps patients (execution See Example 7).
  • bacteria-derived vesicles metagenome present in the feces at the genus level as a result of analyzing the bacteria-derived vesicles metagenome present in the feces at the genus level, Sphingomonas, Alkanindiges, and Roseateles bacteria-derived vesicles significant differences between the colon polyps and normal people (See Example 8).
  • the bacterium-derived vesicle metagenome present in the urine as a result of the analysis, Gammaproteobacteria, Clostridia, Methanobacteria, and 4C0d-2 strong bacteria-derived vesicles between the colon polyps and normal people There was a significant difference (see Example 9).
  • the bacterial-derived vesicle metagenome present in the urine as a result of neck analysis, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, and Methanobacteriales vesicles derived from the neck bacteria and normal colon colon patients There was a significant difference between them (see Example 9).
  • the bacterium-derived vesicle metagenome present in the urine at an exaggerated level Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Rhizobiaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, and Rikenellaceae showed significant differences between colonic and normal patients (see Example 9).
  • the bacteria-derived vesicle metagenome present in the urine at the genus level Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Differences between the normal vesicles of the genus of the genus of the genus of the strains of the genus (See Example 9).
  • the present invention through the results of the above embodiment, by performing a metagenomic analysis on the bacterial-derived extracellular vesicles isolated from feces and urine bacteria significantly changed in colorectal cancer patients compared to normal and colon polyps patients Derived vesicles were identified, and metagenome analysis confirmed that colon cancer can be diagnosed by analyzing the increase or decrease in the content of bacterial derived vesicles at each level.
  • the present invention is a bacterial-derived vesicle with a significantly changed content in colorectal patients compared to the normal by performing a metagenome analysis on the bacterial-derived extracellular vesicles isolated from feces and urine through the results as described above
  • the metagenomic analysis confirmed that colon polyps could be diagnosed by analyzing the increase and decrease of the content of bacterial-derived vesicles at each level.
  • the fluorescently labeled 50 ⁇ g of bacteria and bacteria-derived vesicles were administered in the same manner as above 12 hours.
  • Blood, Heart, Lung, Liver, Kidney, Spleen, Adipose tissue, and Muscle were extracted from mice.
  • the intestinal bacteria (Bacteria) were not absorbed in each organ, whereas the intestinal bacteria-derived extracellular vesicles (EVs) were urine, heart, lung as shown in FIG. And distribution in liver, kidney, spleen, adipose tissue, and muscle.
  • first stool and urine were put in a 10 ml tube and centrifuged (3,500 xg, 10min, 4 ° C) to settle the suspended solids to recover only the supernatant, followed by a new 10 ml. Transferred to the tube. After removing the bacteria and foreign substances from the recovered supernatant using a 0.22 ⁇ m filter, transfer to centripreigugal filters (50 kD) and centrifuged at 1500 xg, 4 °C for 15 minutes to discard the material smaller than 50 kD and 10 ml Concentrated until.
  • centripreigugal filters 50 kD
  • PCR was performed using the 16S rDNA primer shown in Table 1 to amplify the gene and perform sequencing (Illumina MiSeq sequencer). Output the result as a Standard Flowgram Format (SFF) file, convert the SFF file into a sequence file (.fasta) and a nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and window (20 bps) The part with the average base call accuracy of less than 99% (Phred score ⁇ 20) was removed.
  • SFF Standard Flowgram Format
  • the Operational Taxonomy Unit performed UCLUST and USEARCH for clustering according to sequence similarity. Specifically, the clustering is based on 94% genus, 90% family, 85% order, 80% class, and 75% sequence similarity. OTU's door, river, neck, family and genus level classifications were performed, and bacteria with greater than 97% sequence similarity were analyzed using BLASTN and GreenGenes' 16S DNA sequence database (108,453 sequences) (QIIME).
  • Example 3 By the method of Example 3, vesicles were isolated from stool of 29 colon cancer patients and 358 normal patients, and then metagenome sequencing was performed. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
  • Bacterial-derived vesicles in feces at the order level were analyzed by RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibactles, Corio
  • the diagnostic performance for colorectal cancer was significant (see Table 4 and Figure 4).
  • Bacterial-derived vesicles in feces at genus level were analyzed by rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytopomonas, When diagnostic models were developed with one or more biomarkers of bacteria of the genus Lactobacillus, Fimbriimonas, Dermacoccus, Achromobacter, Novosphingobium, Sneathia, Agrobacterium, Blastomonas, Bdellovibrio, Alkanindiges, Roseateles, and Shuttleworthia, diagnostic performance for colorectal cancer was significant. (See Table 6 and FIG. 6).
  • Example 3 By the method of Example 3, the vesicles were isolated from the urine of 38 patients with colorectal cancer and 38 normal people and then subjected to metagenome sequencing. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
  • Example 3 By the method of Example 3, vesicles were isolated from the stool of 29 colon cancer patients and 27 colon polyp patients, and then metagenome sequencing was performed. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
  • the diagnostic performance for colon cancer was significant when the diagnostic model was developed for biomarkers of spirochaetes and Acidobacteria-6. See FIG. 13).
  • Example 7 With colon polyps Isolated from Urine Colon Cancer Patients Germ-derived parcel Metagenome Analysis-based Colorectal Cancer Diagnosis Model
  • Example 3 By the method of Example 3, the vesicles were isolated from the urine of 26 patients with colorectal cancer and 38 patients with colorectal polyps, and then metagenome sequencing was performed. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
  • Example 8 Normal people Colon polyp Separated from feces Germ-derived parcel Metagenome Analytics based Colon polyp Diagnostic Model
  • Example 3 By the method of Example 3, vesicles were isolated from stool of 27 colon cancer patients and 358 normal patients, and then metagenome sequencing was performed. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
  • Example 9 The normal person Colon polyp Isolated from urine Germ-derived parcel Metagenome Analytics based Colon polyp Diagnostic Model
  • Example 3 By the method of Example 3, the vesicles were isolated from the urine of 38 patients with colorectal cancer and 38 normal people and then subjected to metagenome sequencing. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
  • the method for diagnosing colon tumors through bacterial metagenomic analysis is performed by performing bacterial metagenomic analysis using a sample derived from a subject to analyze the increase or decrease in the content of specific bacterial-derived extracellular vesicles, such as colon polyps and colon cancer. It can be used to predict and diagnose the risk of developing a tumor. Extracellular vesicles secreted by the bacteria present in the environment can be absorbed into the body and directly affect inflammation and cancer development, and colon polyps and colorectal cancer are difficult to diagnose effectively because they are difficult to diagnose early.
  • Predicting the risk of colon tumors such as colorectal polyps and colorectal cancer through metagenomic analysis of bacterial or bacterial-derived extracellular vesicles using a human-derived sample according to the present invention By delaying the onset time or preventing the onset, and after the onset can be diagnosed early can reduce the incidence of colon tumors and increase the treatment effect.
  • the bacterial metagenomic analysis according to the present invention in patients diagnosed with colorectal polyps or colon cancer improves the progression of colon polyps and colorectal cancer or prevents recurrence by predicting the causative factors and avoiding exposure to the causative factors. It is available.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for predicting the incidence of a colon tumor, such as a colon polyp and colon cancer, and a causative factor thereof through metagenomic analysis of a bacterium-derived vesicle present in a human body-derived substance. More particularly, the present invention relates to a method for diagnosing a causative factor of a colon tumor and the risk of the incidence thereof by sequencing a metagenome present in a bacterium-derived vesicle present in excrement or urine. There are trillions of bacteria in an intestine, and the bacteria secrete vesicles out of the cells thereof for the purpose of information exchange. The bacteria are not absorbed into epithelial cells in a colon, but the vesicles secreted therefrom pass through the mucous membrane, are absorbed into the colonic epithelial cells, are distributed throughout the body via blood, and then are excreted through a liver and a kidney. The bacteria-derived vesicles may increase or decrease the occurrence of inflammation and cancer, and the present invention can be useful as a method for diagnosing the risk of the incidence of a colon tumor or a causative factor thereof by sequencing a genetic metagenome of a bacterium-derived vesicle present in a human body-derived substance. Further, an early diagnosis can still be made even after the incidence of a colon polyp or the onset of colon cancer, and the incidence of colon cancer can be lowered, and the treatment effect can be enhanced.

Description

세균 메타게놈 분석을 통한 대장종양 진단 방법Colon Tumor Diagnosis Method Using Bacterial Metagenome Analysis

본 발명은 세균 메타게놈 분석을 통해 대장종양을 진단하는 방법에 관한 것으로서, 보다 구체적으로는 피검체 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균유래 세포밖 소포의 함량 증감을 분석함으로써 대장용종 및 대장암 등의 대장종양을 진단하는 방법에 관한 것이다.The present invention relates to a method for diagnosing colon tumors by analyzing bacterial metagenome, and more specifically, by performing bacterial metagenomic analysis using a sample derived from a subject, by analyzing the increase or decrease in the content of specific bacterial-derived extracellular vesicles. And a method for diagnosing colorectal tumors such as colorectal cancer.

대장암 (大腸癌, 영어: colon cancer) 혹은 대장직장종양(colorectal cancer)은 맹장, 결장과 직장에 생기는 악성 종양으로 대장의 가장 안쪽 표면인 점막에서 발생한 암이다. 2006년 발표에 따르면 우리나라에서는 위암에 이어 두 번째로 흔히 발생하는 암으로 근래에 식생활의 양상이 서구화되어 가면서 그 발생 빈도가 가파르게 증가하고 있고, 최근 10년 사이 대장암에 의한 사망률은 약 80%정도 증가하여 그 상승속도가 계속 높아지고 있는 추세이다. 호발 연령은 60대에 가장 빈번하게 발생하며, 부위별로 보면 직장에 발생하는 경우가 결장에 발생하는 경우보다 약간 더 많다. 모든 나이에서 대장암이 발생할 수 있지만 대장암 환자의 90%이상의 경우 나이가 40세 이상이고, 매 10년마다 그 발생률이 두 배씩 증가한다. Colon cancer (colon cancer) or colorectal cancer is a malignant tumor of the cecum, colon and rectum that occurs on the mucous membrane of the innermost surface of the large intestine. According to the announcement in 2006, the second most common cancer after stomach cancer in Korea, the frequency of eating habits has been increasing rapidly as westernized aspects of the diet recently, and the mortality rate of colorectal cancer in recent 10 years is about 80%. The rate of increase is increasing. The age of onset occurs most frequently in the sixties, and by site, it occurs slightly more in the rectum than in the colon. Colorectal cancer can occur at any age, but over 90% of people with colorectal cancer are older than 40 years of age, and their incidence doubles every 10 years.

모든 대장암은 대장용종(colon polyp) 혹은 대장선종(colon adenoma)에서 시작된다고 알려져 있고, 용종은 처음에 대장 내벽에서 상피가 비정상적인 성장을 하여 돌출하는 것을 말하며, 성인의 15~20%에서 나타나는 아주 흔한 질병이다. 대장용종 이외에도 가족 중에 대장암에 걸린 사람이 있는 경우, 오랜 기간 동안 궤양성대장염에 시달린 경우에도 대장암이 위험이 증가한다. 또한, 대장암은 음식과 연관되어 있다고 알려져 있는 대표적인 암으로서, 식생활의 서구화로 섬유소 섭취가 적다든지, 동물성 지방 섭취가 많다든지, 혹은 정제된 당분 (설탕)의 과다 섭취 등이 유발요소로 알려져 있다. All colon cancers are known to originate from colon polyp or colon adenoma. Polyps are initially an abnormal growth of the epithelium in the lining of the large intestine, protruding and appearing in 15-20% of adults. It is a common disease. In addition to colorectal polyps, family members of colorectal cancer are at increased risk for colon cancer, even if they have had ulcerative colitis for a long time. In addition, colorectal cancer is a representative cancer known to be associated with food, and is known to cause low intake of fiber, high intake of animal fat, or excessive intake of refined sugar (sugar) due to westernization of diet. .

초기 대장암의 경우에는 특별한 증상이 나타나지 않으나 증상이 없는 경우에도 눈에 띄지 않는 장출혈로 혈액이 손실되어 빈혈이 생길 수 있고, 간혹 식욕부진과 체중감소가 나타나기도 한다. 암이 진행된 경우에는 배가 아프거나 설사 또는 변비가 생기는 등 배변습관의 변화가 나타나기도 하고 항문에서 피가 나오는 직장출혈의 증세가 나타나기도 하며, 혈액은 밝은 선홍색을 띄거나 검은 색으로 나타날 수 있다. 대장암이 진행이 된 경우에는 배에서 평소에 만져지지 않던 덩어리가 만져질 수 있다. 가장 주의해야 할 증상으로는 배변 습관의 변화, 혈변, 동통 및 빈혈이며, 특히 40세 이상의 성인에서 이와 같은 변화가 있을 때에는 철저히 조사할 필요가 있다.Early colorectal cancer does not show any particular symptoms, but even without symptoms, invisible bowel bleeding may cause anemia due to blood loss, and sometimes anorexia and weight loss may occur. If the cancer is advanced, changes in bowel habits such as stomach ache, diarrhea or constipation may occur, rectal bleeding from the anus may occur, and the blood may appear bright red or black. If colon cancer has progressed, the lumps that were not usually touched on the stomach may be touched. The most important symptoms to look for are changes in bowel habits, bloody stools, pain and anemia, especially when these changes occur in adults over 40 years of age.

대장암의 확진은 대장 내시경 검사를 통한 조직검사를 통해 암세포를 발견해야 가능하다. 대부분 대장암은 조기에는 증상이 없으므로 진단이 상당히 어렵고, 현재 비침습적인 방법으로 대장암을 예측하는 방법은 전무하다. 기존 진단방법으로는 대장암 등의 고형암이 진행된 경우에 발견되는 경우가 많기 때문에, 대장암으로 인한 의료비용과 사망을 예방하기 위해선 대장종양 발생 및 원인인자를 미리 예측하여, 고위험군에서 대장암 발생을 예방하는 방법을 제공하는 것이 효율적인 방법이다.To confirm colon cancer, cancer cells can be detected by biopsy through colonoscopy. Most colon cancers are asymptomatic and therefore difficult to diagnose. Currently, there is no way to predict colon cancer in a non-invasive way. As conventional diagnostic methods are often found when solid cancers such as colorectal cancer are advanced, it is necessary to predict colon cancer and causative factors in advance in order to prevent medical costs and death due to colorectal cancer. Providing a method of prevention is an effective way.

한편, 인체에 공생하는 미생물은 100조에 이르러 인간 세포보다 10배 많으며, 미생물의 유전자수는 인간 유전자수의 100배가 넘는 것으로 알려지고 있다. 미생물총(microbiota 혹은 microbiome)은 주어진 거주지에 존재하는 세균(bacteria), 고세균(archaea), 진핵생물(eukarya)을 포함한 미생물 군집(microbial community)을 말하고, 장내 미생물총은 사람의 생리현상에 중요한 역할을 하며, 인체 세포와 상호작용을 통해 인간의 건강과 질병에 큰 영향을 미치는 것으로 알려져 있다. 우리 몸에 공생하는 세균은 다른 세포로의 유전자, 단백질 등의 정보를 교환하기 위하여 나노미터 크기의 소포(vesicle)를 분비한다. 점막은 200 나노미터(nm) 크기 이상의 입자는 통과할 수 없는 물리적인 방어막을 형성하여 점막에 공생하는 세균인 경우에는 점막을 통과하지 못하지만, 세균 유래 소포는 크기가 대개 100 나노미터 크기 이하라서 비교적 자유롭게 점막을 통화하여 우리 몸에 흡수된다.On the other hand, the symbiosis of the human body reaches 100 trillion times 10 times more than human cells, the number of genes of the microorganism is known to be more than 100 times the number of human genes. Microbiota (microbiota or microbiome) refers to a microbial community including bacteria, archaea and eukarya that exist in a given settlement.Intestinal microbiota is an important role in human physiology. It is known to have a great effect on human health and disease through interaction with human cells. The symbiotic bacteria secrete nanometer-sized vesicles to exchange information about genes and proteins in other cells. The mucous membrane forms a physical protective film that particles larger than 200 nanometers (nm) in size can't pass through, so that the symbiotic bacteria cannot pass through the mucosa, but bacterial-derived vesicles are usually less than 100 nanometers in size. It freely speaks to the mucous membrane and is absorbed by our body.

환경 유전체학이라고도 불리는 메타게놈학은 환경에서 채취한 샘플에서 얻은 메타게놈 자료에 대한 분석학이라고 할 수 있다(국내공개특허 제2011-0073049호). 최근 16s 리보솜 RNA(16s rRNA) 염기서열을 기반으로 한 방법으로 인간의 미생물총의 세균 구성을 목록화하는 것이 가능해졌으며, 16s 리보솜 RNA의 유전자인 16s rDNA 염기서열을 차세대 염기서열분석 (next generation sequencing, NGS) platform을 이용하여 분석한다. 그러나 대장종양 발병에 있어서, 대변과 같은 인체 유래물에서 세균 및 세균 유래 소포를 분리하여 세균 유래 소포에 존재하는 메타게놈 분석을 통해 대장용종 및 대장암 등의 대장종양의 원인인자를 동정하여 대장종양을 진단하는 방법에 대해서는 보고된 바가 없다. Metagenomics, also called environmental genomics, can be said to be an analysis of metagenomic data obtained from samples taken from the environment (Korean Patent Publication No. 2011-0073049). Recently, it has become possible to list the bacterial composition of the human microflora by a method based on 16s ribosomal RNA (16s rRNA) sequencing. Next generation sequencing of 16s rDNA sequencing gene of 16s ribosomal RNA is performed. , NGS) platform to analyze. However, in the development of colorectal tumors, bacteria and bacteria-derived vesicles are separated from human-derived stool such as stool, and meta-genomic analysis of colon-derived vesicles is identified to identify the causative factors of colon tumors such as colon polyps and colon cancer. No method of diagnosing this has been reported.

본 발명자들은 대장용종 및 대장암 등의 대장종양을 진단하기 위하여, 피검체 유래 샘플인 소변 및 대변을 이용해 세균 유래 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 그 결과 대장용종 및 대장암 등의 대장종양의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였는바, 이에 기초하여 본 발명을 완성하였다.In order to diagnose colon tumors such as colorectal polyps and colorectal cancer, the present inventors extracted a gene from bacterial vesicles using urine and stool, which are samples derived from a subject, and performed a metagenome analysis on the colon polyps and colon. Bacterial-derived extracellular vesicles that can act as causative factors of colorectal tumors, such as cancer, have been identified, and thus the present invention has been completed.

이에, 본 발명은 세균 유래 세포밖 소포에 존재하는 유전자에 대한 메타게놈 분석을 통해 대장종양을 진단하기 위한 정보제공방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide an information providing method for diagnosing colon tumors through metagenomic analysis of genes present in bacterial extracellular vesicles.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 하기의 단계를 포함하는, 대장종양 진단을 위한 정보제공방법을 제공한다 : In order to achieve the object of the present invention as described above, the present invention provides a method for providing information for diagnosing colon tumor, comprising the following steps:

(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(a) extracting DNA from extracellular vesicles isolated from a subject sample;

(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And

(c) 상기 PCR 산물의 서열분석을 통하여 정상인과 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는(c) comparing the increase and decrease of the bacterial-derived extracellular vesicles in the normal-derived colorectal cancer-derived sample by sequencing the PCR product; or

상기 PCR 산물의 서열분석을 통하여 대장용종환자와 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는Comparing the increase and decrease of the bacterial-derived extracellular vesicles in the colon-derived patient and the colon cancer-derived sample by sequencing the PCR product; or

상기 PCR 산물의 서열분석을 통하여 정상인과 대장용종환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.Comparing the increase and decrease of the content of bacterial-derived extracellular vesicles in the sample derived from normal people and colon polyps through the sequencing of the PCR product.

그리고, 본 발명은 하기의 단계를 포함하는, 대장종양 진단방법을 제공한다 :In addition, the present invention provides a method for diagnosing colon tumor, comprising the following steps:

(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(a) extracting DNA from extracellular vesicles isolated from a subject sample;

(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And

(c) 상기 PCR 산물의 서열분석을 통하여 정상인과 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는(c) comparing the increase and decrease of the bacterial-derived extracellular vesicles in the normal-derived colorectal cancer-derived sample by sequencing the PCR product; or

상기 PCR 산물의 서열분석을 통하여 대장용종환자와 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는Comparing the increase and decrease of the bacterial-derived extracellular vesicles in the colon-derived patient and the colon cancer-derived sample by sequencing the PCR product; or

상기 PCR 산물의 서열분석을 통하여 정상인과 대장용종환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.Comparing the increase and decrease of the content of bacterial-derived extracellular vesicles in the sample derived from normal people and colon polyps through the sequencing of the PCR product.

또한, 본 발명은 하기의 단계를 포함하는, 대장종양의 발병 위험도 예측방법을 제공한다 :In addition, the present invention provides a method for predicting the risk of developing colon tumor, comprising the following steps:

(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(a) extracting DNA from extracellular vesicles isolated from a subject sample;

(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And

(c) 상기 PCR 산물의 서열분석을 통하여 정상인과 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는(c) comparing the increase and decrease of the bacterial-derived extracellular vesicles in the normal-derived colorectal cancer-derived sample by sequencing the PCR product; or

상기 PCR 산물의 서열분석을 통하여 대장용종환자와 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는Comparing the increase and decrease of the bacterial-derived extracellular vesicles in the colon-derived patient and the colon cancer-derived sample by sequencing the PCR product; or

상기 PCR 산물의 서열분석을 통하여 정상인과 대장용종환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.Comparing the increase and decrease of the content of bacterial-derived extracellular vesicles in the sample derived from normal people and colon polyps through the sequencing of the PCR product.

본 발명의 일구현예로, 상기 (c) 단계에서 상기 PCR 산물의 서열분석을 통하여 정상인과 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통하여 대장암을 진단할 수 있다.In one embodiment of the present invention, colorectal cancer may be diagnosed by comparing the increase and decrease of the bacterial-derived extracellular vesicles in a sample derived from normal and colon cancer patients by sequencing the PCR product in step (c). have.

본 발명의 일구현예로, 상기 (c) 단계에서 Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, Fusobacteria, Proteobacteria, 및 Euryarchaeota로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포, In one embodiment of the present invention, in the step (c) Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, Fusobacteria, Proteobacteria, and Euryarchaeota extracellular vesicles derived from (phylum) bacteria ,

Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Coriobacteriia, Oscillatoriophycideae, Fusobacteriia, Gammaproteobacteria, Clostridia, 및 Methanobacteria로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포, One or more species of cells derived from the group consisting of Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Coriobacteriia, Oscillatoriophycideae, Fusobacteriia, Gammaproteobacteria, Clostridia, and Methanobacteria Out parcel,

RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, Bdellovibrionales, Desulfobacterales, Stramenopiles, Pseudomonadales, Clostridiales, Desulfovibrionales, 및 Methanobacteriales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, Bd One or more order bacterial derived extracellular vesicles selected from the group consisting of:

Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, Bdellovibrionaceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, Bdellovibrionaceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, One or more family or small family cells from the group consisting of Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, and Rikenellaceae

rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriimonas, Dermacoccus, Achromobacter, Novosphingobium, Sneathia, Agrobacterium, Blastomonas, Bdellovibrio, Alkanindiges, Roseateles, Shuttleworthia, Rhizobium, Morganella, Acinetobacter, Pseudomonas, Enterococcus, Lactococcus, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacterium, Comamonas, Gordonia, Paraprevotella, Mycobacterium, Roseburia, Slackia, Escherichia, Phascolarctobacterium, Sutterella, Virgibacillus, Eggerthella, Citrobacter, Roseomonas, Serratia, Methanobrevibacter, 및 Bilophila로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriicus, Achromobacus, Achromobacsium, Achromobacsium Bdellovibrio, Alkanindiges, Roseateles, Shuttleworthia, Rhizobium, Morganella, Acinetobacter, Pseudomonas, Enterococcus, Lactococcus, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacteria, Comamocobacterium, Comamocobacterium, Lacosebacteria, Mycobacterium terpenia The increase or decrease in the content of one or more genus bacterial-derived extracellular vesicles selected from the group consisting of Sutterella, Virgibacillus, Eggerthella, Citrobacter, Roseomonas, Serratia, Methanobrevibacter, and Bilophila can be compared.

본 발명의 일구현예로, 상기 (c) 단계에서, 상기 PCR 산물의 서열분석을 통하여 대장용종환자와 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통하여 대장암을 진단할 수 있다.In one embodiment of the present invention, in the step (c), the colorectal cancer through the step of comparing the increase and decrease of the content of bacterial-derived extracellular vesicles in the colon-derived patient and colorectal cancer-derived sample by sequencing the PCR product Diagnosis can be made.

본 발명의 일구현예로, 상기 (c) 단계에서 Spirochaetes 문(phylum) 세균 유래 세포밖 소포,In one embodiment of the present invention, in step (c) Spirochaetes phylum bacteria-derived extracellular vesicles,

Spirochaetes, 및 Acidobacteria-6로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,One or more class bacterial-derived extracellular vesicles selected from the group consisting of Spirochaetes, and Acidobacteria-6,

Spirochaetales, 및 Myxococcales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,One or more order bacterial extracellular vesicles selected from the group consisting of Spirochaetales, and Myxococcales,

Spirochaetaceae, 및 S24-7로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는Extracellular vesicles derived from one or more family bacteria selected from the group consisting of Spirochaetaceae, and S24-7, or

Treponema, Dialister, Oscillospira, 및 Eubacterium로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.The increase or decrease in the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Treponema, Dialister, Oscillospira, and Eubacterium can be compared.

본 발명의 일구현예로, 상기 (c) 단계에서, 상기 PCR 산물의 서열분석을 통하여 정상인과 대장용종환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통하여 대장용종을 진단할 수 있다.In one embodiment of the present invention, in step (c), the colon polyps are diagnosed by comparing the increase or decrease of the bacterial-derived extracellular vesicles in the sample from the normal and colon polyps patient by sequencing the PCR product. Can be.

본 발명의 일구현예로, 상기 (c) 단계에서 Actinobacteria, Proteobacteria, 및 Euryarchaeota로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,In one embodiment of the present invention, in step (c), at least one phylum bacteria-derived extracellular vesicles selected from the group consisting of Actinobacteria, Proteobacteria, and Euryarchaeota,

Betaproteobacteria, Solibacteres, Gammaproteobacteria, Clostridia, Methanobacteria, 및 4C0d-2로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,One or more class bacterial-derived extracellular vesicles selected from the group consisting of Betaproteobacteria, Solibacteres, Gammaproteobacteria, Clostridia, Methanobacteria, and 4C0d-2,

Burkholderiales, Sphingomonadales, Solibacterales, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, 및 Methanobacteriales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,One or more order bacterial-derived extracellular vesicles selected from the group consisting of Burkholderiales, Sphingomonadales, Solibacterales, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, and Methanobacteriales,

Rhizobiaceae, Sphingomonadaceae, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는Group consisting of Rhizobiaceae, Sphingomonadaceae, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Deofolioaceae, Deofolioaceae Extracellular vesicles derived from abnormal families, or

Sphingomonas, Alkanindiges, Roseateles, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacter, Clostridium, Comamonas, Paraprevotella, Roseburia, Citrobacter, Klebsiella, Virgibacillus, Slackia, Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, 및 Methanobrevibacter로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.Sphingomonas, Alkanindiges, Roseateles, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacter, Clonastriia Triacerocitra, Clonastriia Viracerosia, Clonastriia psi The increase or decrease in the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, and Methanobrevibacter can be compared.

본 발명의 일구현예로, 상기 피검체 샘플은 대변 또는 소변일 수 있다.In one embodiment of the present invention, the subject sample may be feces or urine.

환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 염증 및 암 발생에 직접적인 영향을 미칠 수 있으며, 대장용종 및 대장암은 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 또는 세균 유래 세포밖 소포의 메타게놈 분석을 통해 대장용종 및 대장암 등의 대장종양 발병의 위험도를 미리 예측함으로써 대장종양의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 대장종양의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 대장용종 혹은 대장암으로 진단받은 환자에서 메타게놈 분석을 통해 원인인자를 예측하여, 원인인자에 대한 노출을 피함으로써 대장용종 및 대장암의 경과를 좋게 하거나, 재발을 막을 수 있다. Extracellular vesicles secreted by the bacteria present in the environment can be absorbed into the body and directly affect inflammation and cancer development, and colon polyps and colorectal cancer are difficult to diagnose effectively because they are difficult to diagnose early. Predicting the risk of colon tumors such as colorectal polyps and colorectal cancer through metagenomic analysis of bacterial or bacterial-derived extracellular vesicles using a human-derived sample according to the present invention, early diagnosis and prediction of risk groups of colon tumors and appropriate management By delaying the onset time or preventing the onset, and after the onset can be diagnosed early can reduce the incidence of colon tumors and increase the treatment effect. In addition, metagenome analysis predicts causative factors in patients diagnosed with colorectal polyps or colorectal cancer, thereby avoiding exposure to causative factors and improving colon polyps and colorectal cancer, or preventing recurrence.

도 1은 체내에서 세균 유래 세포밖 소포의 분포양상을 평가하기 위한 것으로, 도 1a는 마우스에 장내 세균(Bacteria) 및 세균 유래 소포(EV)를 구강으로 투여한 후 시간별(0, 5min, 3h, 6h, 및 12h)로 이들의 분포양상을 촬영한 사진이고, 도 1b는 마우스에 장내 세균(Bacteria) 및 세균 유래 세포밖 소포(EV)를 구강으로 투여하고 12시간 후 소변 및 다양한 장기(심장, 폐, 간, 신장, 비장, 지방조직, 및 근육)를 적출하여 상기 세균 및 세포밖 소포의 분포양상을 촬영한 사진이다. Figure 1 is for evaluating the distribution of bacteria-derived extracellular vesicles in the body, Figure 1a after the administration of oral intestinal bacteria (Bacteria) and bacteria-derived vesicles (EV) in the mouth hourly (0, 5min, 3h, 6h, and 12h) is a photograph taken of their distribution, Figure 1b is a 12 hours after oral administration of intestinal bacteria (Bacteria) and bacteria-derived extracellular vesicles (EV) to the urine and various organs (heart, Lung, liver, kidney, spleen, adipose tissue, and muscles), and the photographs of the distribution of the bacterial and extracellular vesicles.

도 2는 대장암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.Figure 2 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacterial-derived vesicles from colon cancer patients and normal feces.

도 3은 대장암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.FIG. 3 shows the distribution of bacterial-derived vesicles (EVs) with significant diagnostic performance at a class level by separating bacterial-derived vesicles from colon cancer patients and normal stool.

도 4는 대장암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.4 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order level by separating the bacteria-derived vesicles from colon cancer patients and normal stool.

도 5는 대장암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.5 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating bacteria-derived vesicles from colon cancer patients and normal stool.

도 6은 대장암환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.6 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level by separating bacterial-derived vesicles from colon cancer patients and normal stool.

도 7은 대장암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.7 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating the bacteria-derived vesicles from colon cancer patients and normal urine, and performing a metagenome analysis.

도 8은 대장암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.FIG. 8 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at a class level by separating bacterial-derived vesicles from colorectal cancer patients and normal urine.

도 9는 대장암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.9 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order level by separating the bacteria-derived vesicles in colon cancer patients and normal urine, and performing a metagenome analysis.

도 10은 대장암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.FIG. 10 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level after separation of bacteria-derived vesicles from colon cancer patients and normal urine.

도 11은 대장암환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.11 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separating the bacteria-derived vesicles in colon cancer patients and normal urine.

도 7은 대장암환자 및 대장용종환자 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.7 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating the bacteria-derived vesicles in the urine of colon cancer patients and colon polyps patients .

도 8은 대장암환자 및 대장용종환자 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.8 is a result showing the distribution of bacteria-derived vesicles (EVs) of significant diagnostic performance at the class level by separating the bacteria-derived vesicles in the urine of colorectal cancer patients and colon polyps patients, performing a metagenome analysis .

도 9는 대장암환자 및 대장용종환자 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.9 is a result showing the distribution of bacteria-derived vesicles (EVs) of significant diagnostic performance at the order (neck) by separating the bacteria-derived vesicles in the urine of colorectal cancer patients and colon polyps patients, performing a metagenome analysis .

도 10은 대장암환자 및 대장용종환자 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.10 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating the bacteria-derived vesicles in the urine of colorectal cancer patients and colon polyps patients, and performing a metagenome analysis. .

도 11은 대장암환자 및 대장용종환자 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.11 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separating the bacteria-derived vesicles in the urine of patients with colorectal cancer and colon polyps. .

도 12는 대장암환자 및 대장용종환자 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.12 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating the bacteria-derived vesicles in the stool of colon cancer patients and colon polyps patients .

도 13은 대장암환자 및 대장용종환자 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.13 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the class level by separating the bacteria-derived vesicles in the stool of colon cancer patients and colon polyps patients, and performing a metagenomic analysis .

도 14는 대장암환자 및 대장용종환자 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.14 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order (neck) after separating the bacteria-derived vesicles in the stool of colon cancer patients and colon polyps patients .

도 15는 대장암환자 및 대장용종환자 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.15 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating the bacteria-derived vesicles from the stool of colorectal cancer patients and colon polyps patients, performing a metagenome analysis .

도 16은 대장암환자 및 대장용종환자 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.16 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separation of bacteria-derived vesicles in the bowel cancer patients and colon polyps patients stool. .

도 17은 대장암환자 및 대장용종환자 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.17 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order level by separating the bacteria-derived vesicles in the urine of colorectal cancer patients and colon polyps patients after performing a metagenome analysis .

도 18은 대장암환자 및 대장용종환자 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.18 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separation of bacteria-derived vesicles in urine of colorectal cancer patients and colon polyps. .

도 19는 대장용종환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.19 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacterial-derived vesicles from colon polyps and normal feces.

도 20은 대장용종환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.20 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the class level by separating bacterial-derived vesicles from colon polyps and normal stool.

도 21은 대장용종환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.21 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order level by separating bacterial-derived vesicles from colon polyps and normal feces, and performing a metagenome analysis.

도 22는 대장용종환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.22 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating bacteria-derived vesicles from colon polyps and normal stool.

도 23은 대장용종환자 및 정상인 대변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.23 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separating the bacteria-derived vesicles from colon polyps and normal feces.

도 24는 대장용종환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.Figure 24 shows the distribution of bacterial-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacterial-derived vesicles from colon polyps and normal urine.

도 25은 대장용종환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.FIG. 25 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at a class level after separation of bacterial-derived vesicles from colon polyps and normal urine.

도 26은 대장용종환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.FIG. 26 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the neck level after separation of bacteria-derived vesicles from colon polyps and normal urine.

도 27은 대장용종환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.FIG. 27 shows the distribution of bacterial-derived vesicles (EVs) with significant diagnostic performance at the family level after separation of bacterial-derived vesicles from colon polyps and normal urine.

도 28은 대장용종환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.FIG. 28 shows the distribution of bacterial-derived vesicles (EVs) with significant diagnostic performance at genus level after isolation of bacterial-derived vesicles from colon polyps and normal urine.

본 발명은 세균 메타게놈 분석을 통해 대장용종 및 대장암 등의 대장종양을 진단하는 방법에 관한 것으로서, 본 발명자들은 피검체 유래 샘플을 이용해 세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 대장용종 및 대장암 등의 대장종양의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였다. The present invention relates to a method for diagnosing colorectal tumors such as colon polyps and colorectal cancer through bacterial metagenome analysis, and the present inventors extract genes from extracellular vesicles derived from bacteria using a sample derived from a subject, Bacterial-derived extracellular vesicles that could act as causative factors of colorectal tumors such as colon polyps and colorectal cancer were identified.

이에, 본 발명은 (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;Thus, the present invention comprises the steps of (a) extracting DNA from the extracellular vesicles isolated from the subject sample;

(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And

(c) 상기 PCR 산물의 서열분석을 통하여 정상인과 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는(c) comparing the increase and decrease of the bacterial-derived extracellular vesicles in the normal-derived colorectal cancer-derived sample by sequencing the PCR product; or

상기 PCR 산물의 서열분석을 통하여 대장용종환자와 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는Comparing the increase and decrease of the bacterial-derived extracellular vesicles in the colon-derived patient and the colon cancer-derived sample by sequencing the PCR product; or

상기 PCR 산물의 서열분석을 통하여 정상인과 대장용종환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는 대장종양 진단을 위한 정보제공방법을 제공한다. It provides an information providing method for diagnosing colon tumors comprising comparing the increase and decrease of the content of bacterial-derived extracellular vesicles in a sample derived from normal people and colon polyps through sequencing of the PCR product.

본 발명에서 사용되는 용어, "대장암 진단" 이란 환자에 대하여 대장암이 발병할 가능성이 있는지, 대장암이 발병할 가능성이 상대적으로 높은지, 또는 대장암이 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 대장암 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 대장암을 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.As used herein, the term "diagnosed colorectal cancer" means to determine whether or not colon cancer is likely to develop, whether or not colon cancer is relatively high, or whether colorectal cancer has already occurred in a patient. . The method of the present invention can be used to prevent or delay the onset of the disease through special and appropriate management as a patient at high risk of developing colorectal cancer for any particular patient. In addition, the methods of the present invention can be used clinically to determine treatment by early diagnosis of colon cancer and selecting the most appropriate treatment regimen.

본 발명에서 사용되는 용어, "대장용종 진단" 이란 환자에 대하여 대장용종이 발병할 가능성이 있는지, 대장용종이 발병할 가능성이 상대적으로 높은지, 또는 대장용종이 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 대장용종 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 대장용종을 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.As used herein, the term "diagnosing colon polyps" means determining whether a colon polyp is likely to develop, whether the colon polyp is relatively high, or whether a polyp has already occurred. . The method of the present invention can be used to prevent or delay the onset of the disease through special and appropriate management as a patient at high risk of developing colon polyps for any particular patient. In addition, the methods of the present invention can be used clinically to determine treatment by early diagnosis of colon polyps and selecting the most appropriate treatment regimen.

본 발명에서 사용되는 용어, "메타게놈(metagenome)"이란 "군유전체"라고도 하며, 흙, 동물의 장 등 고립된 지역 내의 모든 바이러스, 세균, 곰팡이 등을 포함하는 유전체의 총합을 의미하는 것으로, 주로 배양이 되지 않는 미생물을 분석하기 위해서 서열분석기를 사용하여 한꺼번에 많은 미생물을 동정하는 것을 설명하는 유전체의 개념으로 쓰인다. 특히, 메타게놈은 한 종의 게놈 또는 유전체를 말하는 것이 아니라, 한 환경단위의 모든 종의 유전체로서 일종의 혼합유전체를 말한다. 이는 오믹스적으로 생물학이 발전하는 과정에서 한 종을 정의할 때 기능적으로 기존의 한 종뿐만 아니라, 다양한 종이 서로 상호작용하여 완전한 종을 만든다는 관점에서 나온 용어이다. 기술적으로는 빠른 서열분석법을 이용해서, 종에 관계없이 모든 DNA, RNA를 분석하여, 한 환경 내에서의 모든 종을 동정하고, 상호작용, 대사작용을 규명하는 기법의 대상이다. 본 발명에서는 바람직하게 혈청에서 분리한 세균 유래 세포밖 소포를 이용하여 메타게놈 분석을 실시하였다.The term "metagenome" used in the present invention, also referred to as "metagenome", refers to the total of the genome including all viruses, bacteria, fungi, etc. in an isolated area such as soil, animal intestine, It is mainly used as a concept of genome explaining the identification of many microorganisms at once using sequencer to analyze microorganisms which are not cultured. In particular, metagenome does not refer to one species of genome or genome, but refers to a kind of mixed dielectric as the genome of all species of one environmental unit. This is a term from the point of view of defining a species in the course of the evolution of biology in terms of functional species as well as various species that interact with each other to create a complete species. Technically, rapid sequencing is used to analyze all DNA and RNA, regardless of species, to identify all species in one environment, and to identify interactions and metabolism. In the present invention, metagenome analysis was preferably performed using bacterial-derived extracellular vesicles isolated from serum.

본 발명의 실시예에서는 정상인, 대장용종환자, 및 대장암환자의 대변 및 소변 내 세균 유래 세포밖 소포에 존재하는 유전자에 대한 메타게놈 분석을 실시하였으며, 문(phylum), 강(class), 목(order), 과(family), 및 속(genus) 수준에서 각각 분석하여 실제로 대장암 및 대장용종 발생의 원인으로 작용할 수 있는 세균 유래 소포를 동정하였다.In the embodiment of the present invention, meta-genomic analysis was performed on genes present in the extracellular vesicles in feces and urine of normal people, colon polyps, and colon cancer patients. Analyzes at the order, family, and genus levels, respectively, identified bacterial vesicles that could actually cause colon cancer and colon polyps development.

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 문 수준에서 분석한 결과, Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, 및 Fusobacteria 문 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicles metagenome present in the stool at the gate level, Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, and Fusobacteria door-derived vesicles derived from colon cancer patients There was a significant difference between and normal (see Example 4).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 강 수준에서 분석한 결과, Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Coriobacteriia, Oscillatoriophycideae, 및 Fusobacteriia 강 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).More specifically, in one embodiment of the present invention, the bacterium-derived vesicle metagenome present in the feces at the river level, Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Vesicles derived from Coriobacteriia, Oscillatoriophycideae, and Fusobacteriia bacterium showed significant differences between colon cancer patients and normal individuals (see Example 4).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 목 수준에서 분석한 결과, RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, 및 Bdellovibrionales 목 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).More specifically, in one embodiment of the present invention, the result of analyzing the bacterial-derived vesicle metagenome present in the stool at the neck level, RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, and Bdellovibrionales neck bacterial-derived vesicles showed significant differences between colon cancer patients and normal individuals (see Example 4).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 과 수준에서 분석한 결과, Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, 및 Bdellovibrionaceae 과 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).More specifically, in one embodiment of the present invention, the bacterium-derived vesicles metagenome present in the feces at an excessive level, Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphellomoaceae, Barton Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, and Bdellovibrionaceae were significantly different between colon cancer patients and normal colon cancer patients (see Example 4).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 속 수준에서 분석한 결과, rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriimonas, Dermacoccus, Achromobacter, Novosphingobium, Sneathia, Agrobacterium, Blastomonas, Bdellovibrio, Alkanindiges, Roseateles, 및 Shuttleworthia 속 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).More specifically, in one embodiment of the present invention, bacteria-derived vesicle metagenome present in the feces at the genus level, rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriimonas, Dermacoccus, Achromobacter, Novosphingobium, Sneathia, Agrobacterium, Blastomonas, Bdellovibrio, Alkanindiges, Roseateles, and the subcutaneous intestines of the genus There was a difference (see Example 4).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 문 수준에서 분석한 결과, Proteobacteria, 및 Euryarchaeota 문 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicles metagenome present in the urine at the gate level, there was a significant difference between the proteobacteria and the Euryarchaeota door bacteria-derived vesicles between colon cancer patients and normal people ( See Example 5).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 강 수준에서 분석한 결과, Gammaproteobacteria, Clostridia, 및 Methanobacteria 강 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).More specifically, in one embodiment of the present invention, as a result of analysis of the vesicle metagenome derived from bacteria present in the urine, there was a significant difference between Gammaproteobacteria, Clostridia, and Methanobacteria river bacterial vesicles between colon cancer patients and normal people. (See Example 5).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 목 수준에서 분석한 결과, Desulfobacterales, Stramenopiles, Pseudomonadales, Clostridiales, Turicibacterales, Desulfovibrionales, Oceanospirillales, 및 Methanobacteriales 목 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).More specifically, in an embodiment of the present invention, the bacterium-derived vesicles metagenome present in the urine was analyzed at the neck level. There was a significant difference between cancer patients and normal subjects (see Example 5).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 과 수준에서 분석한 결과, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Turicibacteraceae, Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Clostridiaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae 과 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).More specifically, in one embodiment of the present invention, the bacteria-derived vesicles metagenome present in the urine at an excessive level, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Turicibacteraceae, Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Clostridiaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, and Rikenellaceae and bacterial-derived vesicles showed significant differences between colon cancer patients and normal individuals (see Example 5).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 속 수준에서 분석한 결과, Rhizobium, Proteus, Morganella, Acinetobacter, Pseudomonas, SMB53, Enterococcus, Lactococcus, Turicibacter, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacterium, Comamonas, Gordonia, Paraprevotella, Mycobacterium, Roseburia, Dialister, Slackia, Escherichia, Phascolarctobacterium, Sutterella, Virgibacillus, Eggerthella, Halomonas, Citrobacter, Roseomonas, Alloiococcus, Serratia, Methanobrevibacter, 및 Bilophila 속 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).More specifically, in one embodiment of the present invention, the bacteria-derived vesicle metagenome present in the urine at the genus level, Rhizobium, Proteus, Morganella, Acinetobacter, Pseudomonas, SMB53, Enterococcus, Lactococcus, Turicibacter, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacterium, Comamonas, Gordonia, Paraprevotella, Mycobacterium, Roseburia, Dialister, Slackia, Escherichia, Phascolarctobacterium, Sutterella, Virgibacillus, Eggerthella, Halomonasoc, Citrobacteriococcus, Miobacteriumobacero Derived vesicles were significantly different between colorectal cancer patients and normal subjects (see Example 5).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 문 수준에서 분석한 결과, Spirochaetes 문 세균 유래 소포가 대장암환자와 대장용종환자 사이에 유의한 차이가 있었다(실시예 6 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicle metagenome present in the stool at the gate level, there was a significant difference between the colon cancer patients and colon polyps patients in the spirochaetes-door bacteria-derived vesicles (implementation See example 6.)

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 강 수준에서 분석한 결과, Spirochaetes, 및 Acidobacteria-6 강 세균 유래 소포가 대장암환자와 대장용종환자 사이에 유의한 차이가 있었다(실시예 6 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicle metagenome present in the stool at the river level, the vesicles derived from Spirochaetes, and Acidobacteria-6 strong bacteria were significant between colon cancer patients and colon polyps patients. There was a difference (see Example 6).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 목 수준에서 분석한 결과, Spirochaetales 목 세균 유래 소포가 대장암환자와 대장용종환자 사이에 유의한 차이가 있었다(실시예 6 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacterial-derived vesicles metagenome present in the stool at the neck level, there was a significant difference between the colon cancer patients and colonic polyps in the spirochaetales neck bacteria-derived vesicles. See example 6.)

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 과 수준에서 분석한 결과, Spirochaetaceae, 및 S24-7 과 세균 유래 소포가 대장암환자와 대장용종환자 사이에 유의한 차이가 있었다(실시예 6 참조).More specifically, in an embodiment of the present invention, as a result of analyzing the bacteria-derived vesicles metagenome present in the feces at an excessive level, Spirochaetaceae, and S24-7 and bacteria-derived vesicles were significant between colon cancer patients and colon polyps patients. There was a difference (see Example 6).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 속 수준에서 분석한 결과, Treponema, Dialister, 및 Oscillospira 속 세균 유래 소포가 대장암환자와 대장용종환자 사이에 유의한 차이가 있었다(실시예 6 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicle metagenome in the feces at the genus level, Treponema, Dialister, and Oscillospira bacteria-derived vesicles significant between colon cancer patients and colon polyps patients There was a difference (see Example 6).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 목 수준에서 분석한 결과, Myxococcales 목 세균 유래 소포가 대장암환자와 대장용종환자 사이에 유의한 차이가 있었다(실시예 7 참조).More specifically, in one embodiment of the present invention, as a result of neck analysis of bacterial vesicles metagenome present in urine, there was a significant difference between Mycococcales neck bacteria-derived vesicles between colon cancer patients and colon polyps patients (execution See Example 7).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 속 수준에서 분석한 결과, Eubacterium 목 세균 유래 소포가 대장암환자와 대장용종환자 사이에 유의한 차이가 있었다(실시예 7 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicle metagenome present in the urine at the genus level, Eubacterium neck bacteria-derived vesicles had a significant difference between colon cancer patients and colon polyps patients (execution See Example 7).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 문 수준에서 분석한 결과, Actinobacteria 문 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 8 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicle metagenome present in the stool at the gate level, there was a significant difference between the colon-derived and normal people with Actinobacteria vesicle-derived vesicles (Example 8 Reference).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 강 수준에서 분석한 결과, Betaproteobacteria, 및 Solibacteres 강 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 8 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicle metagenome present in the feces at the river level, there was a significant difference between the beta-proteobacteria, and Solibacteres-derived bacteria-derived vesicles between colon polyps and normal people ( See Example 8).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 목 수준에서 분석한 결과, Burkholderiales, Sphingomonadales, 및 Solibacterales 목 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 8 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacterial-derived vesicle metagenome present in the stool at the neck level, Burkholderiales, Sphingomonadales, and Solibacterales neck bacteria-derived vesicles were significantly different between colonic patients and normal people (See Example 8).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 과 수준에서 분석한 결과, Rhizobiaceae, 및 Sphingomonadaceae 과 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 8 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicle metagenome present in the feces at the excessive level, there was a significant difference between Rhizobiaceae, and Sphingomonadaceae and bacteria-derived vesicles between colon polyps and normal people ( See Example 8).

보다 구체적으로 본 발명의 일실시예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 속 수준에서 분석한 결과, Sphingomonas, Alkanindiges, 및 Roseateles 속 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 8 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicles metagenome present in the feces at the genus level, Sphingomonas, Alkanindiges, and Roseateles bacteria-derived vesicles significant differences between the colon polyps and normal people (See Example 8).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 문 수준에서 분석한 결과, Proteobacteria, 및 Euryarchaeota 문 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 9 참조).More specifically, in one embodiment of the present invention, as a result of analyzing the bacteria-derived vesicles metagenome in the urine at the gate level, there was a significant difference between the proteobacteria and Euryarchaeota door bacteria-derived vesicles between the colon polyp and the normal ( See Example 9).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 강 수준에서 분석한 결과, Gammaproteobacteria, Clostridia, Methanobacteria, 및 4C0d-2 강 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 9 참조).More specifically, in one embodiment of the present invention, the bacterium-derived vesicle metagenome present in the urine, as a result of the analysis, Gammaproteobacteria, Clostridia, Methanobacteria, and 4C0d-2 strong bacteria-derived vesicles between the colon polyps and normal people There was a significant difference (see Example 9).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 목 수준에서 분석한 결과, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, 및 Methanobacteriales 목 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 9 참조).More specifically, in an embodiment of the present invention, the bacterial-derived vesicle metagenome present in the urine, as a result of neck analysis, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, and Methanobacteriales vesicles derived from the neck bacteria and normal colon colon patients There was a significant difference between them (see Example 9).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 과 수준에서 분석한 결과, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Rhizobiaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae 과 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 9 참조).More specifically, in one embodiment of the present invention, the bacterium-derived vesicle metagenome present in the urine at an exaggerated level, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Rhizobiaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, and Rikenellaceae showed significant differences between colonic and normal patients (see Example 9).

보다 구체적으로 본 발명의 일실시예에서는, 소변에 존재하는 세균 유래 소포 메타게놈을 속 수준에서 분석한 결과, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacter, Clostridium, Comamonas, Paraprevotella, Roseburia, Citrobacter, Klebsiella, Virgibacillus, Slackia, Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, 및 Methanobrevibacter 속 세균 유래 소포가 대장용종환자와 정상인 사이에 유의한 차이가 있었다(실시예 9 참조).More specifically, in one embodiment of the present invention, the bacteria-derived vesicle metagenome present in the urine at the genus level, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Differences between the normal vesicles of the genus of the genus of the genus of the genus of the strains of the genus (See Example 9).

본 발명은 상기와 같은 실시예 결과를 통해, 대변 및 소변으로부터 분리한 세균 유래 세포밖 소포에 대하여 메타게놈 분석을 실시함으로써 정상인 및 대장용종환자와 비교하여 대장암환자에서 함량이 유의하게 변화한 세균 유래 소포들을 동정하였으며, 메타게놈 분석을 통해 상기 각 수준에서 세균 유래 소포들의 함량 증감을 분석함으로써 대장암을 진단할 수 있음을 확인하였다.The present invention, through the results of the above embodiment, by performing a metagenomic analysis on the bacterial-derived extracellular vesicles isolated from feces and urine bacteria significantly changed in colorectal cancer patients compared to normal and colon polyps patients Derived vesicles were identified, and metagenome analysis confirmed that colon cancer can be diagnosed by analyzing the increase or decrease in the content of bacterial derived vesicles at each level.

또한, 본 발명은 상기와 같은 실시예 결과를 통해, 대변 및 소변으로부터 분리한 세균 유래 세포밖 소포에 대하여 메타게놈 분석을 실시함으로써 정상인과 비교하여 대장용종환자에서 함량이 유의하게 변화한 세균 유래 소포들을 동정하였으며, 메타게놈 분석을 통해 상기 각 수준에서 세균 유래 소포들의 함량 증감을 분석함으로써 대장용종을 진단할 수 있음을 확인하였다.In addition, the present invention is a bacterial-derived vesicle with a significantly changed content in colorectal patients compared to the normal by performing a metagenome analysis on the bacterial-derived extracellular vesicles isolated from feces and urine through the results as described above The metagenomic analysis confirmed that colon polyps could be diagnosed by analyzing the increase and decrease of the content of bacterial-derived vesicles at each level.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.

[실시예]EXAMPLE

실시예 1. 장내 세균 및 세균 유래 소포의 체내 흡수, 분포, 및 배설 양상 분석Example 1 Analysis of Uptake, Distribution, and Excretion of Intestinal Bacteria and Bacterial-Derived Vesicles

장내 세균과 세균 유래 소포가 위장관을 통해 전신적으로 흡수되는 지를 평가하기 위하여 다음과 같은 방법으로 실험을 수행하였다. 마우스의 위장에 형광으로 표지한 장내세균과 장내 세균 유래 소포를 각각 50 μg의 용량으로 위장관으로 투여하고 0분, 5분, 3시간, 6시간, 12시간 후에 형광을 측정하였다. 마우스 전체 이미지를 관찰한 결과, 도 1a에 나타낸 바와 같이, 상기 세균(Bacteria)인 경우에는 전신적으로 흡수되지 않았지만, 세균 유래 소포(EV)인 경우에는, 투여 후 5분에 전신적으로 흡수되었고, 투여 3시간 후에는 방광에 형광이 진하게 관찰되어, 소포가 비뇨기계로 배설됨을 알 수 있었다. 또한, 소포는 투여 12시간까지 체내에 존재함을 알 수 있었다. In order to evaluate whether the intestinal bacteria and bacteria-derived vesicles are absorbed systemically through the gastrointestinal tract, experiments were performed as follows. Fluorescently labeled enterobacteriaceae and enteric bacteria-derived vesicles were administered to the gastrointestinal tract at doses of 50 μg, respectively, and the fluorescence was measured after 0, 5, 3, 6 and 12 hours. As a result of observing the entire image of the mouse, as shown in FIG. 1A, the bacteria (Bacteria) were not absorbed systemically, but in the case of bacteria-derived vesicles (EV), they were absorbed systemically 5 minutes after administration and administered. After 3 hours, the bladder was strongly observed, indicating that the vesicles were excreted by the urinary system. In addition, the vesicles were found to exist in the body until 12 hours of administration.

장내세균과 장내 세균유래 소포가 전신적으로 흡수된 후, 여러 장기로 침윤된 양상을 평가하기 위하여, 형광으로 표지한 50 μg의 세균과 세균유래 소포를 상기의 방법과 같이 투여한 다음 12시간째에 마우스로부터 소변(Blood), 심장(Heart), 폐(Lung), 간(Liver), 신장(Kidney), 비장(Spleen), 지방조직(Adipose tissue), 및 근육(Muscle)을 적출하였다. 상기 적출한 조직들에서 형광을 관찰한 결과, 도1b에 나타낸 바와 같이, 상기 장내 세균(Bacteria)은 각 장기에 흡수되지 않은 반면, 상기 장내 세균 유래 세포밖 소포(EV)는 소변, 심장, 폐, 간, 신장, 비장, 지방조직, 및 근육에 분포하는 것을 확인하였다.After the systemic absorption of enterobacteriaceae and enteric bacteria-derived vesicles systemically, in order to assess the invasion of various organs, the fluorescently labeled 50 μg of bacteria and bacteria-derived vesicles were administered in the same manner as above 12 hours. Blood, Heart, Lung, Liver, Kidney, Spleen, Adipose tissue, and Muscle were extracted from mice. As shown in FIG. 1B, the intestinal bacteria (Bacteria) were not absorbed in each organ, whereas the intestinal bacteria-derived extracellular vesicles (EVs) were urine, heart, lung as shown in FIG. And distribution in liver, kidney, spleen, adipose tissue, and muscle.

실시예 2. 대변 및 소변으로부터 소포 분리 및 DNA 추출Example 2. Vesicle Separation and DNA Extraction from Feces and Urine

대변 및 소변으로부터 소포를 분리하고 DNA를 추출하기 위해, 먼저 10 ㎖ 튜브에 대변 및 소변을 넣고 원심분리(3,500 x g, 10min, 4℃)를 실시하여 부유물을 가라앉혀 상등액만을 회수한 후 새로운 10 ㎖ 튜브에 옮겼다. 0.22 ㎛ 필터를 사용하여 상기 회수한 상등액으로부터 세균 및 이물질을 제거한 후, 센트리프랩튜브(centripreigugal filters 50 kD)에 옮기고 1500 x g, 4℃에서 15분간 원심분리하여 50 kD 보다 작은 물질은 버리고 10 ㎖까지 농축 시켰다. 다시 한 번 0.22 ㎛ 필터를 사용하여 박테리아 및 이물질을 제거한 후, Type 90ti 로터로 150,000 x g, 4℃에서 3시간 동안 초고속원심분리방법을 사용하여 상등액을 버리고 덩어리진 pellet을 생리식염수(PBS)로 녹여 소포를 수득하였다. To separate the vesicles from the feces and urine and extract the DNA, first stool and urine were put in a 10 ml tube and centrifuged (3,500 xg, 10min, 4 ° C) to settle the suspended solids to recover only the supernatant, followed by a new 10 ml. Transferred to the tube. After removing the bacteria and foreign substances from the recovered supernatant using a 0.22 ㎛ filter, transfer to centripreigugal filters (50 kD) and centrifuged at 1500 xg, 4 ℃ for 15 minutes to discard the material smaller than 50 kD and 10 ml Concentrated until. Once again, remove the bacteria and foreign substances using a 0.22 ㎛ filter, discard the supernatant using ultra-fast centrifugation for 3 hours at 150,000 xg, 4 ℃ with a Type 90ti rotor and dissolve the agglomerated pellet in physiological saline (PBS) Vesicles were obtained.

상기 방법에 따라 대변 및 소변으로부터 분리한 소포 100 ㎕를 100℃에서 끓여서 내부의 DNA를 지질 밖으로 나오게 한 후 얼음에 5분 동안 식혔다. 다음으로 남은 부유물을 제거하기 위하여 10,000 x g, 4℃에서 30분간 원심분리하고 상등액 만을 모은 후 Nanodrop을 이용하여 DNA 양을 정량하였다. 이후 상기 추출된 DNA에 세균 유래 DNA가 존재하는지 확인하기 위하여 하기 표 1에 나타낸 16s rDNA primer로 PCR을 수행하여 상기 추출된 유전자에 세균 유래 유전자가 존재하는 것을 확인하였다.According to the method, 100 μl of the vesicles isolated from feces and urine were boiled at 100 ° C. to let the DNA inside the lipids out and then cooled on ice for 5 minutes. Next, in order to remove the remaining suspended matter, centrifugation at 10,000 x g, 4 ℃ for 30 minutes, and collected only the supernatant and quantified the DNA amount using Nanodrop. Thereafter, PCR was performed with the 16s rDNA primer shown in Table 1 to confirm whether the bacteria-derived DNA exists in the extracted DNA, and it was confirmed that the bacteria-derived gene exists in the extracted gene.

primerprimer 서열order 서열번호SEQ ID NO: 16S rDNA16S rDNA 16S_V3_F16S_V3_F 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3'5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3 ' 1One 16S_V4_R16S_V4_R 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-35'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3 22

실시예 3. 대변 및 소변 내 소포에서 추출한 DNA를 이용한 메타게놈 분석Example 3 Metagenomic Analysis Using DNA Extracted from Fecal and Urine Vesicles

상기 실시예 2의 방법으로 유전자를 추출한 후, 상기 표1에 나타낸 16S rDNA 프라이머를 사용하여 PCR을 실시하여 유전자를 증폭시키고 시퀀싱(Illumina MiSeq sequencer)을 수행하였다. 결과를 Standard Flowgram Format(SFF) 파일로 출력하고 GS FLX software(v2.9)를 이용하여 SFF 파일을 sequence 파일(.fasta)과 nucleotide quality score 파일로 변환한 다음 리드의 신용도 평가를 확인하고, window(20 bps) 평균 base call accuracy가 99% 미만(Phred score <20)인 부분을 제거하였다. 질이 낮은 부분을 제거한 후, 리드의 길이가 300 bps 이상인 것만 이용하였으며(Sickle version 1.33), 결과 분석을 위해 Operational Taxonomy Unit(OTU)은 UCLUST와 USEARCH를 이용하여 시퀀스 유사도에 따라 클러스터링을 수행하였다. 구체적으로 속(genus)은 94%, 과(family)는 90%, 목(order)은 85%, 강(class)은 80%, 문(phylum)은 75% 시퀀스 유사도를 기준으로 클러스터링을 하고 각 OTU의 문, 강, 목, 과, 속 레벨의 분류를 수행하고, BLASTN와 GreenGenes의 16S DNA 시퀀스 데이터베이스(108,453 시퀀스)를 이용하여 97% 이상의 시퀀스 유사도 갖는 박테리아를 분석하였다(QIIME).After the gene was extracted by the method of Example 2, PCR was performed using the 16S rDNA primer shown in Table 1 to amplify the gene and perform sequencing (Illumina MiSeq sequencer). Output the result as a Standard Flowgram Format (SFF) file, convert the SFF file into a sequence file (.fasta) and a nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and window (20 bps) The part with the average base call accuracy of less than 99% (Phred score <20) was removed. After removing the low quality part, only the lead length was 300 bps or more (Sickle version 1.33), and the Operational Taxonomy Unit (OTU) performed UCLUST and USEARCH for clustering according to sequence similarity. Specifically, the clustering is based on 94% genus, 90% family, 85% order, 80% class, and 75% sequence similarity. OTU's door, river, neck, family and genus level classifications were performed, and bacteria with greater than 97% sequence similarity were analyzed using BLASTN and GreenGenes' 16S DNA sequence database (108,453 sequences) (QIIME).

실시예Example 4. 정상인과 대장암환자 대변에서 분리한  4. Isolation from Stool in Normal and Colorectal Cancer Patients 세균유래Germ-derived 소포  parcel 메타게놈Metagenome 분석 기반 대장암 진단모형 Analysis-based Colorectal Cancer Diagnosis Model

상기 실시예 3의 방법으로, 대장암환자 29명과 정상인 358명의 대변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.By the method of Example 3, vesicles were isolated from stool of 29 colon cancer patients and 358 normal patients, and then metagenome sequencing was performed. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.

대변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, 및 Fusobacteria 문 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 2 및 도 2 참조).Analysis of stool-derived vesicles at the phylum level revealed colon diagnosis of colon cancer when one or more biomarkers were developed in Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, and Fusobacteria door bacteria. Performance was significant (see Table 2 and FIG. 2).

  대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity p__Deferribacteresp__Deferribacteres 0.00040.0004 0.00180.0018 0.00010.0001 0.00030.0003 0.00060.0006 0.160.16 0.740.74 1.001.00 0.030.03 p__Tenericutesp__Tenericutes 0.00980.0098 0.02560.0256 0.00270.0027 0.00640.0064 0.00010.0001 0.270.27 0.740.74 1.001.00 0.030.03 p__Actinobacteriap__Actinobacteria 0.03530.0353 0.04030.0403 0.08170.0817 0.05880.0588 0.00030.0003 2.322.32 0.800.80 0.990.99 0.140.14 p__Acidobacteriap__Acidobacteria 0.00050.0005 0.00240.0024 0.00190.0019 0.00210.0021 0.00240.0024 3.613.61 0.750.75 1.001.00 0.030.03 p__Armatimonadetesp__Armatimonadetes 0.00020.0002 0.00070.0007 0.00090.0009 0.00130.0013 0.00750.0075 5.115.11 0.770.77 1.001.00 0.070.07 p__Planctomycetesp__Planctomycetes 0.00010.0001 0.00060.0006 0.00110.0011 0.00150.0015 0.00270.0027 7.367.36 0.820.82 0.990.99 0.240.24 p__Fusobacteriap__Fusobacteria 0.00160.0016 0.00400.0040 0.01240.0124 0.02020.0202 0.00880.0088 7.607.60 0.820.82 0.990.99 0.170.17

대변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Coriobacteriia, Oscillatoriophycideae, 및 Fusobacteriia 강 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 3 및 도 3 참조).Analysis of fecal bacteria-derived vesicles at the class level revealed that one or more biopsies of Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Coriobacteriia, Oscillatoriophycideae, and Fusobacteriia river bacteria When the diagnostic model was developed as a marker, the diagnostic performance for colorectal cancer was significant (see Table 3 and FIG. 3).

  대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity c__Deferribacteresc__Deferribacteres 0.00040.0004 0.00180.0018 0.00010.0001 0.00030.0003 0.00060.0006 0.160.16 0.740.74 1.001.00 0.030.03 c__Mollicutesc__Mollicutes 0.00950.0095 0.02540.0254 0.00260.0026 0.00640.0064 0.00020.0002 0.280.28 0.740.74 1.001.00 0.030.03 c__4C0d-2c__4C0d-2 0.00070.0007 0.00280.0028 0.00020.0002 0.00040.0004 0.00840.0084 0.340.34 0.730.73 1.001.00 0.030.03 c__Bacillic__Bacilli 0.08200.0820 0.09550.0955 0.16610.1661 0.15370.1537 0.00780.0078 2.032.03 0.750.75 1.001.00 0.030.03 c__Alphaproteobacteriac__Alphaproteobacteria 0.01920.0192 0.03060.0306 0.04910.0491 0.05200.0520 0.00540.0054 2.562.56 0.800.80 1.001.00 0.140.14 c__[Saprospirae]c __ [Saprospirae] 0.00030.0003 0.00100.0010 0.00080.0008 0.00120.0012 0.00400.0040 2.942.94 0.740.74 1.001.00 0.030.03 c__[Fimbriimonadia]c __ [Fimbriimonadia] 0.00020.0002 0.00070.0007 0.00090.0009 0.00130.0013 0.00750.0075 5.145.14 0.770.77 1.001.00 0.070.07 c__Acidobacteria-6c__Acidobacteria-6 0.00010.0001 0.00070.0007 0.00070.0007 0.00100.0010 0.00370.0037 5.855.85 0.780.78 0.990.99 0.030.03 c__Solibacteresc__Solibacteres 0.00010.0001 0.00060.0006 0.00060.0006 0.00090.0009 0.00900.0090 5.865.86 0.750.75 0.990.99 0.070.07 c__Coriobacteriiac__Coriobacteriia 0.00400.0040 0.00810.0081 0.02510.0251 0.03630.0363 0.00460.0046 6.336.33 0.800.80 0.990.99 0.170.17 c__Oscillatoriophycideaec__Oscillatoriophycideae 0.00010.0001 0.00050.0005 0.00060.0006 0.00090.0009 0.00500.0050 6.726.72 0.800.80 0.990.99 0.100.10 c__Fusobacteriiac__Fusobacteriia 0.00160.0016 0.00400.0040 0.01240.0124 0.02020.0202 0.00880.0088 7.607.60 0.820.82 0.990.99 0.170.17

대변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, 및 Bdellovibrionales 목 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 4 및 도 4 참조).Bacterial-derived vesicles in feces at the order level were analyzed by RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibactles, Corio When developing a diagnostic model with one or more biomarkers in Fusobacteriales, and Bdellovibrionales neck bacteria, the diagnostic performance for colorectal cancer was significant (see Table 4 and Figure 4).

  대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity o__RF32o__RF32 0.00050.0005 0.00260.0026 0.00000.0000 0.00010.0001 0.00050.0005 0.030.03 0.750.75 1.001.00 0.030.03 o__YS2o__YS2 0.00060.0006 0.00270.0027 0.00010.0001 0.00020.0002 0.00030.0003 0.090.09 0.740.74 1.001.00 0.030.03 o__Deferribacteraleso__Deferribacterales 0.00040.0004 0.00180.0018 0.00010.0001 0.00030.0003 0.00060.0006 0.160.16 0.740.74 1.001.00 0.030.03 o__Turicibacteraleso__Turicibacterales 0.01480.0148 0.04930.0493 0.00240.0024 0.00530.0053 0.00000.0000 0.160.16 0.750.75 1.001.00 0.030.03 o__RF39o__RF39 0.00900.0090 0.02480.0248 0.00170.0017 0.00460.0046 0.00000.0000 0.180.18 0.750.75 1.001.00 0.030.03 o__Oceanospirillaleso__Oceanospirillales 0.00090.0009 0.00330.0033 0.00020.0002 0.00030.0003 0.00010.0001 0.220.22 0.750.75 1.001.00 0.030.03 o__Rhizobialeso__Rhizobiales 0.00850.0085 0.02020.0202 0.01890.0189 0.02150.0215 0.00820.0082 2.232.23 0.750.75 1.001.00 0.030.03 o__Lactobacillaleso__Lactobacillales 0.05190.0519 0.08090.0809 0.14020.1402 0.14950.1495 0.00440.0044 2.702.70 0.760.76 1.001.00 0.100.10 o__Rhodobacteraleso__Rhodobacterales 0.00190.0019 0.00570.0057 0.00540.0054 0.00590.0059 0.00200.0020 2.812.81 0.760.76 1.001.00 0.030.03 o__[Saprospirales]o __ [Saprospirales] 0.00030.0003 0.00100.0010 0.00080.0008 0.00120.0012 0.00400.0040 2.942.94 0.740.74 1.001.00 0.030.03 o__Sphingomonadaleso__Sphingomonadales 0.00500.0050 0.00970.0097 0.01920.0192 0.02070.0207 0.00120.0012 3.873.87 0.850.85 0.990.99 0.210.21 o__[Fimbriimonadales]o __ [Fimbriimonadales] 0.00020.0002 0.00070.0007 0.00090.0009 0.00130.0013 0.00750.0075 5.145.14 0.770.77 1.001.00 0.070.07 o__iii1-15o__iii1-15 0.00010.0001 0.00070.0007 0.00060.0006 0.00100.0010 0.00900.0090 5.675.67 0.780.78 0.990.99 0.030.03 o__Solibacteraleso__Solibacterales 0.00010.0001 0.00060.0006 0.00060.0006 0.00090.0009 0.00890.0089 5.895.89 0.750.75 0.990.99 0.070.07 o__Coriobacterialeso__Coriobacteriales 0.00400.0040 0.00810.0081 0.02510.0251 0.03630.0363 0.00460.0046 6.336.33 0.800.80 0.990.99 0.170.17 o__Chroococcaleso__Chroococcales 0.00010.0001 0.00050.0005 0.00060.0006 0.00090.0009 0.00500.0050 6.636.63 0.800.80 0.990.99 0.140.14 o__Fusobacterialeso__Fusobacteriales 0.00160.0016 0.00400.0040 0.01240.0124 0.02020.0202 0.00880.0088 7.607.60 0.820.82 0.990.99 0.170.17 o__Bdellovibrionaleso__Bdellovibrionales 0.00010.0001 0.00040.0004 0.00060.0006 0.00090.0009 0.00630.0063 9.799.79 0.760.76 0.990.99 0.100.10

대변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, 및 Bdellovibrionaceae 과 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 5 및 도 5 참조).Analysis of bacteria-derived vesicles in feces at the family level revealed that Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Rriiobaaceae When diagnostic models were developed with one or more biomarkers in Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, and Bdellovibrionaceae and bacteria, the diagnostic performance for colorectal cancer was significant (see Table 5 and Figure 5).

  대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity f__Peptococcaceaef__Peptococcaceae 0.00200.0020 0.00480.0048 0.00010.0001 0.00030.0003 0.00000.0000 0.070.07 0.800.80 1.001.00 0.030.03 f__Deferribacteraceaef__Deferribacteraceae 0.00040.0004 0.00180.0018 0.00010.0001 0.00030.0003 0.00060.0006 0.160.16 0.740.74 1.001.00 0.030.03 f__Turicibacteraceaef__Turicibacteraceae 0.01480.0148 0.04930.0493 0.00240.0024 0.00530.0053 0.00000.0000 0.160.16 0.750.75 1.001.00 0.030.03 f__Halomonadaceaef__Halomonadaceae 0.00080.0008 0.00270.0027 0.00020.0002 0.00030.0003 0.00020.0002 0.250.25 0.740.74 1.001.00 0.030.03 f__Clostridiaceaef__Clostridiaceae 0.04770.0477 0.07920.0792 0.01290.0129 0.01760.0176 0.00000.0000 0.270.27 0.790.79 1.001.00 0.030.03 f__Prevotellaceaef__Prevotellaceae 0.15180.1518 0.17170.1717 0.04540.0454 0.06560.0656 0.00000.0000 0.300.30 0.790.79 1.001.00 0.030.03 f__Peptostreptococcaceaef__Peptostreptococcaceae 0.02750.0275 0.06230.0623 0.00880.0088 0.01340.0134 0.00000.0000 0.320.32 0.760.76 1.001.00 0.030.03 f__Rhodobacteraceaef__Rhodobacteraceae 0.00190.0019 0.00570.0057 0.00540.0054 0.00590.0059 0.00200.0020 2.822.82 0.760.76 1.001.00 0.030.03 f__Nocardioidaceaef__Nocardioidaceae 0.00040.0004 0.00160.0016 0.00130.0013 0.00190.0019 0.00370.0037 3.583.58 0.750.75 1.001.00 0.030.03 f__Sphingomonadaceaef__Sphingomonadaceae 0.00470.0047 0.00910.0091 0.01870.0187 0.02020.0202 0.00100.0010 4.004.00 0.860.86 0.990.99 0.210.21 f__Bartonellaceaef__Bartonellaceae 0.00020.0002 0.00140.0014 0.00090.0009 0.00120.0012 0.00880.0088 4.274.27 0.750.75 1.001.00 0.030.03 f__Cellulomonadaceaef__Cellulomonadaceae 0.00010.0001 0.00090.0009 0.00060.0006 0.00090.0009 0.00840.0084 4.484.48 0.740.74 1.001.00 0.030.03 f__Lactobacillaceaef__Lactobacillaceae 0.01620.0162 0.02240.0224 0.07330.0733 0.09670.0967 0.00420.0042 4.524.52 0.830.83 0.990.99 0.210.21 f__Rhizobiaceaef__Rhizobiaceae 0.00220.0022 0.00400.0040 0.01020.0102 0.01250.0125 0.00230.0023 4.624.62 0.830.83 1.001.00 0.280.28 f__[Fimbriimonadaceae]f __ [Fimbriimonadaceae] 0.00020.0002 0.00070.0007 0.00090.0009 0.00130.0013 0.00750.0075 5.145.14 0.770.77 1.001.00 0.070.07 f__Dermacoccaceaef__Dermacoccaceae 0.00030.0003 0.00100.0010 0.00180.0018 0.00250.0025 0.00470.0047 5.585.58 0.810.81 0.990.99 0.140.14 f__Leptotrichiaceaef__Leptotrichiaceae 0.00070.0007 0.00270.0027 0.00420.0042 0.00550.0055 0.00210.0021 5.935.93 0.820.82 0.990.99 0.070.07 f__Coriobacteriaceaef__Coriobacteriaceae 0.00400.0040 0.00810.0081 0.02510.0251 0.03630.0363 0.00460.0046 6.336.33 0.800.80 0.990.99 0.170.17 f__Xenococcaceaef__Xenococcaceae 0.00010.0001 0.00050.0005 0.00060.0006 0.00090.0009 0.00490.0049 6.726.72 0.810.81 0.990.99 0.140.14 f__Aeromonadaceaef__Aeromonadaceae 0.00010.0001 0.00060.0006 0.00090.0009 0.00130.0013 0.00350.0035 7.117.11 0.820.82 0.990.99 0.100.10 f__Geodermatophilaceaef__Geodermatophilaceae 0.00020.0002 0.00080.0008 0.00130.0013 0.00180.0018 0.00230.0023 7.467.46 0.830.83 0.990.99 0.170.17 f__Bdellovibrionaceaef__Bdellovibrionaceae 0.00000.0000 0.00020.0002 0.00060.0006 0.00090.0009 0.00380.0038 23.4823.48 0.800.80 1.001.00 0.240.24

대변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriimonas, Dermacoccus, Achromobacter, Novosphingobium, Sneathia, Agrobacterium, Blastomonas, Bdellovibrio, Alkanindiges, Roseateles, 및 Shuttleworthia 속 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 6 및 도 6 참조).Bacterial-derived vesicles in feces at genus level were analyzed by rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytopomonas, When diagnostic models were developed with one or more biomarkers of bacteria of the genus Lactobacillus, Fimbriimonas, Dermacoccus, Achromobacter, Novosphingobium, Sneathia, Agrobacterium, Blastomonas, Bdellovibrio, Alkanindiges, Roseateles, and Shuttleworthia, diagnostic performance for colorectal cancer was significant. (See Table 6 and FIG. 6).

  대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity g__rc4-4g__rc4-4 0.00100.0010 0.00350.0035 0.00000.0000 0.00000.0000 0.00000.0000 0.010.01 0.800.80 1.001.00 0.030.03 g__Proteusg__Proteus 0.01210.0121 0.02720.0272 0.00050.0005 0.00110.0011 0.00000.0000 0.040.04 0.800.80 1.001.00 0.030.03 g__Catenibacteriumg__Catenibacterium 0.00140.0014 0.00470.0047 0.00020.0002 0.00040.0004 0.00000.0000 0.110.11 0.750.75 1.001.00 0.030.03 g__Mucispirillumg__Mucispirillum 0.00040.0004 0.00180.0018 0.00010.0001 0.00030.0003 0.00060.0006 0.160.16 0.740.74 1.001.00 0.030.03 g__[Eubacterium]g __ [Eubacterium] 0.00080.0008 0.00200.0020 0.00010.0001 0.00030.0003 0.00000.0000 0.160.16 0.740.74 1.001.00 0.030.03 g__Turicibacterg__Turicibacter 0.01480.0148 0.04930.0493 0.00240.0024 0.00530.0053 0.00000.0000 0.160.16 0.750.75 1.001.00 0.030.03 g__Alloiococcusg__Alloiococcus 0.00040.0004 0.00250.0025 0.00010.0001 0.00020.0002 0.00860.0086 0.160.16 0.730.73 1.001.00 0.030.03 g__Halomonasg__Halomonas 0.00060.0006 0.00240.0024 0.00020.0002 0.00030.0003 0.00270.0027 0.290.29 0.730.73 1.001.00 0.030.03 g__Prevotellag__Prevotella 0.15180.1518 0.17170.1717 0.04540.0454 0.06560.0656 0.00000.0000 0.300.30 0.790.79 1.001.00 0.030.03 g__Dialisterg__Dialister 0.00630.0063 0.01860.0186 0.00200.0020 0.00270.0027 0.00010.0001 0.320.32 0.750.75 1.001.00 0.030.03 g__Anaerostipesg__Anaerostipes 0.00060.0006 0.00140.0014 0.00020.0002 0.00050.0005 0.00200.0020 0.360.36 0.740.74 1.001.00 0.030.03 g__SMB53g__SMB53 0.00110.0011 0.00180.0018 0.00040.0004 0.00070.0007 0.00020.0002 0.390.39 0.760.76 1.001.00 0.000.00 g__Faecalibacteriumg__Faecalibacterium 0.06810.0681 0.08820.0882 0.02850.0285 0.05840.0584 0.00200.0020 0.420.42 0.770.77 1.001.00 0.030.03 g__Blautiag__Blautia 0.00370.0037 0.01000.0100 0.00170.0017 0.00170.0017 0.00090.0009 0.450.45 0.740.74 1.001.00 0.030.03 g__Capnocytophagag__Capnocytophaga 0.00030.0003 0.00080.0008 0.00070.0007 0.00090.0009 0.00520.0052 2.592.59 0.750.75 1.001.00 0.030.03 g__Sphingomonasg__Sphingomonas 0.00320.0032 0.00590.0059 0.01280.0128 0.01380.0138 0.00110.0011 3.953.95 0.850.85 0.990.99 0.280.28 g__Lactobacillusg__Lactobacillus 0.01600.0160 0.02230.0223 0.07310.0731 0.09660.0966 0.00410.0041 4.584.58 0.830.83 0.990.99 0.210.21 g__Fimbriimonasg__Fimbriimonas 0.00020.0002 0.00070.0007 0.00090.0009 0.00130.0013 0.00790.0079 5.105.10 0.770.77 1.001.00 0.070.07 g__Dermacoccusg__Dermacoccus 0.00030.0003 0.00100.0010 0.00180.0018 0.00250.0025 0.00470.0047 5.585.58 0.810.81 0.990.99 0.140.14 g__Achromobacterg__Achromobacter 0.00010.0001 0.00030.0003 0.00050.0005 0.00080.0008 0.00650.0065 6.936.93 0.830.83 0.990.99 0.170.17 g__Novosphingobiumg__Novosphingobium 0.00020.0002 0.00090.0009 0.00140.0014 0.00210.0021 0.00460.0046 7.847.84 0.820.82 0.990.99 0.100.10 g__Sneathiag__Sneathia 0.00020.0002 0.00190.0019 0.00380.0038 0.00500.0050 0.00090.0009 17.6017.60 0.850.85 1.001.00 0.280.28 g__Agrobacteriumg__Agrobacterium 0.00020.0002 0.00060.0006 0.00360.0036 0.00470.0047 0.00050.0005 20.6820.68 0.870.87 1.001.00 0.410.41 g__Blastomonasg__Blastomonas 0.00000.0000 0.00020.0002 0.00060.0006 0.00080.0008 0.00120.0012 22.8722.87 0.840.84 0.990.99 0.310.31 g__Bdellovibriog__Bdellovibrio 0.00000.0000 0.00020.0002 0.00060.0006 0.00090.0009 0.00380.0038 23.6323.63 0.800.80 1.001.00 0.240.24 g__Alkanindigesg__Alkanindiges 0.00000.0000 0.00020.0002 0.00080.0008 0.00140.0014 0.00370.0037 26.9426.94 0.850.85 1.001.00 0.280.28 g__Roseatelesg__Roseateles 0.00000.0000 0.00020.0002 0.00110.0011 0.00200.0020 0.00860.0086 51.4751.47 0.830.83 0.990.99 0.310.31 g__Shuttleworthiag__Shuttleworthia 0.00000.0000 0.00030.0003 0.00200.0020 0.00340.0034 0.00430.0043 51.5551.55 0.840.84 1.001.00 0.340.34

실시예Example 5. 정상인과 대장암환자 소변에서 분리한  5. Isolation from Urine of Normal and Colorectal Cancer Patients 세균유래Germ-derived 소포  parcel 메타게놈Metagenome 분석 기반 대장암 진단모형 Analysis-based Colorectal Cancer Diagnosis Model

상기 실시예 3의 방법으로, 대장암환자 38명과 정상인 38명의 소변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.By the method of Example 3, the vesicles were isolated from the urine of 38 patients with colorectal cancer and 38 normal people and then subjected to metagenome sequencing. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.

소변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Proteobacteria, 및 Euryarchaeota 문 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 7 및 도 7 참조).Analysis of vesicle-derived vesicles in the urine at the phylum level revealed significant diagnostic performance for colorectal cancer when developing a diagnostic model with one or more biomarkers in Proteobacteria and Euryarchaeota cultivars (Table 7 and See FIG. 7).

대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity p__Proteobacteriap__Proteobacteria 0.53790.5379 0.18710.1871 0.23940.2394 0.08200.0820 0.00000.0000 0.450.45 0.940.94 0.840.84 0.870.87 p__Euryarchaeotap__Euryarchaeota 0.00000.0000 0.00010.0001 0.00210.0021 0.00210.0021 0.00000.0000 70.4970.49 0.900.90 0.970.97 0.710.71

소변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Gammaproteobacteria, Clostridia, 및 Methanobacteria 강 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 8 및 도 8 참조).Analysis of the vesicle-derived vesicles in urine at the class level showed a significant diagnostic performance for colorectal cancer when developing a diagnostic model with one or more biomarkers in Gammaproteobacteria, Clostridia, and Methanobacteria river bacteria. 8 and FIG. 8).

대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity c__Gammaproteobacteriac__Gammaproteobacteria 0.44310.4431 0.21040.2104 0.17760.1776 0.05770.0577 0.00000.0000 0.400.40 0.900.90 0.760.76 0.870.87 c__Clostridiac__Clostridia 0.12860.1286 0.07230.0723 0.27520.2752 0.08440.0844 0.00000.0000 2.142.14 0.930.93 0.870.87 0.820.82 c__Methanobacteriac__Methanobacteria 0.00000.0000 0.00010.0001 0.00200.0020 0.00210.0021 0.00000.0000 67.3667.36 0.900.90 0.970.97 0.680.68

소변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Desulfobacterales, Stramenopiles, Pseudomonadales, Clostridiales, Turicibacterales, Desulfovibrionales, Oceanospirillales, 및 Methanobacteriales 목 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 9 및 도 9 참조).Analysis of the urine-derived vesicles at the order level revealed colorectal cancer when developing diagnostic models with one or more biomarkers from Desulfobacterales, Stramenopiles, Pseudomonadales, Clostridiales, Turicibacterales, Desulfovibrionales, Oceanospirillales, and Methanobacteriales neck bacteria. Diagnostic performance was significant (see Table 9 and FIG. 9).

대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity o__Desulfobacteraleso__Desulfobacterales 0.0012 0.0012 0.0027 0.0027 0.0000 0.0000 0.0000 0.0000 0.0078 0.0078 0.000.00 0.770.77 0.530.53 0.760.76 o__Stramenopileso__Stramenopiles 0.0055 0.0055 0.0083 0.0083 0.0001 0.0001 0.0004 0.0004 0.0003 0.0003 0.020.02 0.820.82 0.580.58 0.870.87 o__Pseudomonadaleso__Pseudomonadales 0.3124 0.3124 0.1910 0.1910 0.0622 0.0622 0.0401 0.0401 0.0000 0.0000 0.200.20 0.930.93 0.870.87 0.920.92 o__Clostridialeso__Clostridiales 0.1284 0.1284 0.0725 0.0725 0.2751 0.2751 0.0843 0.0843 0.0000 0.0000 2.142.14 0.930.93 0.870.87 0.820.82 o__Turicibacteraleso__Turicibacterales 0.0017 0.0017 0.0026 0.0026 0.0038 0.0038 0.0040 0.0040 0.0075 0.0075 2.272.27 0.720.72 0.710.71 0.610.61 o__Desulfovibrionaleso__Desulfovibrionales 0.0001 0.0001 0.0005 0.0005 0.0009 0.0009 0.0010 0.0010 0.0001 0.0001 6.786.78 0.790.79 0.890.89 0.580.58 o__Oceanospirillaleso__Oceanospirillales 0.0005 0.0005 0.0012 0.0012 0.0038 0.0038 0.0073 0.0073 0.0098 0.0098 7.707.70 0.840.84 0.870.87 0.580.58 o__Methanobacterialeso__Methanobacteriales 0.0000 0.0000 0.0001 0.0001 0.0020 0.0020 0.0021 0.0021 0.0000 0.0000 67.3667.36 0.900.90 0.970.97 0.680.68

소변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Turicibacteraceae, Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Clostridiaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae 과 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 10 및 도 10 참조).Analysis of bacteria-derived vesicles in the urine at the family level showed Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Turicibacteraceae, Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Clostridiaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordonviaceae, Myoraceae, Myraceae, When diagnostic models were developed with one or more biomarkers in Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, and Rikenellaceae, the diagnostic performance for colorectal cancer was significant (see Table 10 and Figure 10).

대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity f__Moraxellaceaef__Moraxellaceae 0.18100.1810 0.14010.1401 0.03130.0313 0.02200.0220 0.00000.0000 0.170.17 0.930.93 0.870.87 0.870.87 f__Pseudomonadaceaef__Pseudomonadaceae 0.13140.1314 0.09730.0973 0.03060.0306 0.02040.0204 0.00000.0000 0.230.23 0.900.90 0.820.82 0.890.89 f__Streptococcaceaef__Streptococcaceae 0.01800.0180 0.01260.0126 0.03830.0383 0.01670.0167 0.00000.0000 2.132.13 0.890.89 0.790.79 0.870.87 f__Turicibacteraceaef__Turicibacteraceae 0.00170.0017 0.00260.0026 0.00380.0038 0.00400.0040 0.00750.0075 2.272.27 0.720.72 0.710.71 0.610.61 f__Veillonellaceaef__Veillonellaceae 0.00700.0070 0.00830.0083 0.01680.0168 0.00740.0074 0.00000.0000 2.412.41 0.850.85 0.710.71 0.740.74 f__Bacteroidaceaef__Bacteroidaceae 0.02120.0212 0.02070.0207 0.05170.0517 0.03810.0381 0.00010.0001 2.442.44 0.840.84 0.820.82 0.740.74 f__Aerococcaceaef__Aerococcaceae 0.00210.0021 0.00330.0033 0.00520.0052 0.00590.0059 0.00570.0057 2.512.51 0.740.74 0.740.74 0.610.61 f__Comamonadaceaef__Comamonadaceae 0.00270.0027 0.00360.0036 0.00710.0071 0.00620.0062 0.00030.0003 2.632.63 0.760.76 0.760.76 0.630.63 f__Clostridiaceaef__Clostridiaceae 0.01000.0100 0.01140.0114 0.02990.0299 0.02050.0205 0.00000.0000 2.992.99 0.860.86 0.790.79 0.710.71 f__[Paraprevotellaceae]f __ [Paraprevotellaceae] 0.00120.0012 0.00360.0036 0.00380.0038 0.00330.0033 0.00170.0017 3.113.11 0.820.82 0.820.82 0.630.63 f__Christensenellaceaef__Christensenellaceae 0.00040.0004 0.00130.0013 0.00140.0014 0.00140.0014 0.00400.0040 3.163.16 0.740.74 0.870.87 0.680.68 f__Ruminococcaceaef__Ruminococcaceae 0.03790.0379 0.04310.0431 0.12800.1280 0.03900.0390 0.00000.0000 3.383.38 0.950.95 0.920.92 0.870.87 f__Corynebacteriaceaef__Corynebacteriaceae 0.00900.0090 0.00970.0097 0.03660.0366 0.01970.0197 0.00000.0000 4.074.07 0.960.96 0.890.89 0.870.87 f__Gordoniaceaef__Gordoniaceae 0.00010.0001 0.00050.0005 0.00040.0004 0.00060.0006 0.00810.0081 5.035.03 0.780.78 0.760.76 0.680.68 f__Mycobacteriaceaef__Mycobacteriaceae 0.00020.0002 0.00080.0008 0.00090.0009 0.00150.0015 0.00900.0090 5.825.82 0.760.76 0.920.92 0.580.58 f__Desulfovibrionaceaef__Desulfovibrionaceae 0.00010.0001 0.00050.0005 0.00090.0009 0.00100.0010 0.00010.0001 6.786.78 0.790.79 0.890.89 0.580.58 f__Halomonadaceaef__Halomonadaceae 0.00020.0002 0.00080.0008 0.00180.0018 0.00220.0022 0.00010.0001 9.409.40 0.880.88 0.920.92 0.660.66 f__Alcaligenaceaef__Alcaligenaceae 0.00010.0001 0.00040.0004 0.00180.0018 0.00170.0017 0.00000.0000 15.7715.77 0.900.90 0.950.95 0.790.79 f__[Barnesiellaceae]f __ [Barnesiellaceae] 0.00010.0001 0.00040.0004 0.00160.0016 0.00180.0018 0.00000.0000 24.0824.08 0.840.84 0.950.95 0.660.66 f__Methanobacteriaceaef__Methanobacteriaceae 0.00000.0000 0.00010.0001 0.00200.0020 0.00210.0021 0.00000.0000 67.3667.36 0.900.90 0.970.97 0.680.68 f__Rikenellaceaef__Rikenellaceae 0.00000.0000 0.00020.0002 0.00590.0059 0.00400.0040 0.00000.0000 153.18153.18 0.980.98 0.970.97 0.920.92

소변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Rhizobium, Proteus, Morganella, Acinetobacter, Pseudomonas, SMB53, Enterococcus, Lactococcus, Turicibacter, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacterium, Comamonas, Gordonia, Paraprevotella, Mycobacterium, Roseburia, Dialister, Slackia, Escherichia, Phascolarctobacterium, Sutterella, Virgibacillus, Eggerthella, Halomonas, Citrobacter, Roseomonas, Alloiococcus, Serratia, Methanobrevibacter, 및 Bilophila 속 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 11 및 도 11 참조).Analysis of bacterial vesicles in the urine at genus level showed Rhizobium, Proteus, Morganella, Acinetobacter, Pseudomonas, SMB53, Enterococcus, Lactococcus, Turicibacter, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Coramobacter, One or more biotypes of the genus were diagnosed as one or more biotypes in the genus of the genus of bacteria: Gordonia, Paraprevotella, Mycobacterium, Roseburia, Dialister, Slackia, Escherichia, Phascolarctobacterium, Sutterella, Virgibacillus, Eggerthella, Halomonas, Citrobacter, Roseomonas, Alloiococcus, Serratia, Methanobrevibacter, and Bilophila , Diagnostic performance for colorectal cancer was significant (see Table 11 and FIG. 11).

대조군Control 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity g__Rhizobiumg__Rhizobium 0.00560.0056 0.00560.0056 0.00000.0000 0.00000.0000 0.00000.0000 0.000.00 1.001.00 1.001.00 1.001.00 g__Proteusg__Proteus 0.01320.0132 0.01920.0192 0.00060.0006 0.00100.0010 0.00030.0003 0.040.04 0.870.87 0.760.76 0.950.95 g__Morganellag__Morganella 0.02110.0211 0.02950.0295 0.00130.0013 0.00600.0060 0.00020.0002 0.060.06 0.840.84 0.610.61 0.840.84 g__Acinetobacterg__Acinetobacter 0.16830.1683 0.13960.1396 0.01720.0172 0.01380.0138 0.00000.0000 0.100.10 0.940.94 0.840.84 0.950.95 g__Pseudomonasg__Pseudomonas 0.12880.1288 0.09650.0965 0.02860.0286 0.02010.0201 0.00000.0000 0.220.22 0.900.90 0.820.82 0.890.89 g__SMB53g__SMB53 0.00340.0034 0.00460.0046 0.00080.0008 0.00120.0012 0.00170.0017 0.230.23 0.730.73 0.580.58 0.660.66 g__Enterococcusg__Enterococcus 0.00860.0086 0.01080.0108 0.00230.0023 0.00240.0024 0.00100.0010 0.260.26 0.740.74 0.500.50 0.820.82 g__Lactococcusg__Lactococcus 0.00350.0035 0.00390.0039 0.00150.0015 0.00190.0019 0.00740.0074 0.440.44 0.670.67 0.500.50 0.660.66 g__Turicibacterg__Turicibacter 0.00170.0017 0.00260.0026 0.00380.0038 0.00400.0040 0.00750.0075 2.272.27 0.720.72 0.710.71 0.610.61 g__Coprococcusg__Coprococcus 0.00360.0036 0.00430.0043 0.00830.0083 0.00520.0052 0.00000.0000 2.312.31 0.810.81 0.740.74 0.760.76 g__Bacteroidesg__Bacteroides 0.02120.0212 0.02070.0207 0.05170.0517 0.03810.0381 0.00010.0001 2.442.44 0.840.84 0.820.82 0.740.74 g__Doreag__Dorea 0.00100.0010 0.00150.0015 0.00250.0025 0.00240.0024 0.00110.0011 2.552.55 0.800.80 0.790.79 0.660.66 g__Streptococcusg__Streptococcus 0.01430.0143 0.01220.0122 0.03660.0366 0.01660.0166 0.00000.0000 2.562.56 0.900.90 0.790.79 0.870.87 g__Lachnospirag__Lachnospira 0.00050.0005 0.00120.0012 0.00170.0017 0.00200.0020 0.00200.0020 3.543.54 0.760.76 0.820.82 0.660.66 g__[Ruminococcus]g __ [Ruminococcus] 0.00100.0010 0.00150.0015 0.00400.0040 0.00310.0031 0.00000.0000 3.833.83 0.850.85 0.790.79 0.580.58 g__Corynebacteriumg__Corynebacterium 0.00900.0090 0.00970.0097 0.03660.0366 0.01970.0197 0.00000.0000 4.074.07 0.960.96 0.890.89 0.870.87 g__Comamonasg__Comamonas 0.00030.0003 0.00100.0010 0.00130.0013 0.00180.0018 0.00500.0050 4.324.32 0.770.77 0.870.87 0.610.61 g__Ruminococcusg__Ruminococcus 0.00300.0030 0.00430.0043 0.01480.0148 0.00730.0073 0.00000.0000 4.944.94 0.940.94 0.870.87 0.820.82 g__Gordoniag__Gordonia 0.00010.0001 0.00050.0005 0.00040.0004 0.00060.0006 0.00810.0081 5.035.03 0.780.78 0.760.76 0.680.68 g__Paraprevotellag__Paraprevotella 0.00020.0002 0.00070.0007 0.00100.0010 0.00140.0014 0.00150.0015 5.705.70 0.800.80 0.890.89 0.660.66 g__Mycobacteriumg__Mycobacterium 0.00020.0002 0.00080.0008 0.00090.0009 0.00150.0015 0.00900.0090 5.825.82 0.760.76 0.920.92 0.580.58 g__Roseburiag__Roseburia 0.00040.0004 0.00170.0017 0.00320.0032 0.00280.0028 0.00000.0000 8.458.45 0.930.93 0.920.92 0.790.79 g__Dialisterg__Dialister 0.00050.0005 0.00120.0012 0.00650.0065 0.00460.0046 0.00000.0000 13.8413.84 0.940.94 0.920.92 0.870.87 g__Slackiag__Slackia 0.00000.0000 0.00030.0003 0.00070.0007 0.00140.0014 0.00620.0062 15.1415.14 0.770.77 0.920.92 0.580.58 g__Escherichiag__Escherichia 0.00010.0001 0.00010.0001 0.00090.0009 0.00080.0008 0.00000.0000 15.9815.98 0.950.95 0.950.95 0.840.84 g__Phascolarctobacteriumg__Phascolarctobacterium 0.00010.0001 0.00070.0007 0.00260.0026 0.00300.0030 0.00000.0000 20.7620.76 0.930.93 0.970.97 0.840.84 g__Sutterellag__Sutterella 0.00010.0001 0.00030.0003 0.00130.0013 0.00150.0015 0.00000.0000 20.9920.99 0.860.86 0.950.95 0.740.74 g__Virgibacillusg__Virgibacillus 0.00000.0000 0.00010.0001 0.00080.0008 0.00100.0010 0.00000.0000 21.7421.74 0.830.83 0.890.89 0.610.61 g__Eggerthellag__Eggerthella 0.00000.0000 0.00010.0001 0.00050.0005 0.00100.0010 0.00440.0044 24.8224.82 0.760.76 0.760.76 0.550.55 g__Halomonasg__Halomonas 0.00010.0001 0.00030.0003 0.00170.0017 0.00220.0022 0.00000.0000 26.5026.50 0.910.91 0.950.95 0.760.76 g__Citrobacterg__Citrobacter 0.00030.0003 0.00050.0005 0.00890.0089 0.00560.0056 0.00000.0000 30.0730.07 0.990.99 0.970.97 0.920.92 g__Roseomonasg__Roseomonas 0.00000.0000 0.00020.0002 0.00120.0012 0.00160.0016 0.00010.0001 35.6735.67 0.850.85 0.970.97 0.580.58 g__Alloiococcusg__Alloiococcus 0.00000.0000 0.00010.0001 0.00220.0022 0.00500.0050 0.00970.0097 174.52174.52 0.880.88 0.950.95 0.740.74 g__Serratiag__Serratia 0.00000.0000 0.00000.0000 0.00060.0006 0.00100.0010 0.00070.0007 195.10195.10 0.810.81 0.920.92 0.550.55 g__Methanobrevibacterg__Methanobrevibacter 0.00000.0000 0.00000.0000 0.00200.0020 0.00210.0021 0.00000.0000 555.27555.27 0.920.92 1.001.00 0.740.74 g__Bilophilag__Bilophila 0.00000.0000 0.00000.0000 0.00050.0005 0.00080.0008 0.00030.0003 873.83873.83 0.790.79 0.920.92 0.530.53

실시예Example 6.  6. 대장용종환자와With colon polyps 대장암환자 대변에서 분리한  Isolated from Stool in Patients with Colorectal Cancer 세균유래Germ-derived 소포  parcel 메타게놈Metagenome 분석 기반 대장암 진단모형 Analysis-based Colorectal Cancer Diagnosis Model

상기 실시예 3의 방법으로, 대장암환자 29명과 대장용종환자 27명의 대변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.By the method of Example 3, vesicles were isolated from the stool of 29 colon cancer patients and 27 colon polyp patients, and then metagenome sequencing was performed. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.

대변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Spirochaetes 문 세균을 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 12 및 도 12 참조).As a result of analyzing the stool-derived vesicles at the phylum level, when the diagnostic model was developed as a biomarker of Spirochaetes cultivars, the diagnostic performance for colon cancer was significant (see Table 12 and FIG. 12).

  대장용종Colon polyp 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity p__Spirochaetesp__Spirochaetes 0.00050.0005 0.00090.0009 0.00010.0001 0.00010.0001 0.02160.0216 0.120.12 0.870.87 0.740.74 0.790.79

대변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Spirochaetes, 및 Acidobacteria-6 강 세균을 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 13 및 도 13 참조).As a result of analyzing the stool-derived vesicles at the class level, the diagnostic performance for colon cancer was significant when the diagnostic model was developed for biomarkers of spirochaetes and Acidobacteria-6. See FIG. 13).

  대장용종Colon polyp 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity c__Spirochaetesc__Spirochaetes 0.00050.0005 0.00090.0009 0.00010.0001 0.00010.0001 0.02020.0202 0.110.11 0.870.87 0.780.78 0.830.83 c__Acidobacteria-6c__Acidobacteria-6 0.00030.0003 0.00040.0004 0.00070.0007 0.00100.0010 0.02370.0237 2.922.92 0.850.85 0.810.81 0.690.69

대변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Spirochaetales 목 세균을 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 14 및 도 14 참조).As a result of analyzing the stool-derived vesicles at the order level, when the diagnostic model was developed as a biomarker of Spirochaetales neck bacteria, the diagnostic performance for colon cancer was significant (see Table 14 and FIG. 14).

  대장용종Colon polyp 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity o__Spirochaetaleso__Spirochaetales 0.00050.0005 0.00090.0009 0.00010.0001 0.00010.0001 0.02020.0202 0.110.11 0.870.87 0.780.78 0.830.83

대변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Spirochaetaceae, 및 S24-7 과 세균을 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 15 및 도 15 참조).Analysis of bacterial vesicles in the feces at the family level showed that diagnostic performance for colon cancer was significant when Spirochaetaceae and S24-7 and bacteria were developed as biomarkers (Table 15 and See FIG. 15).

  대장용종Colon polyp 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity f__Spirochaetaceaef__Spirochaetaceae 0.00050.0005 0.00090.0009 0.00010.0001 0.00010.0001 0.02020.0202 0.110.11 0.870.87 0.780.78 0.830.83 f__S24-7f__S24-7 0.00210.0021 0.00530.0053 0.01030.0103 0.02060.0206 0.04920.0492 4.934.93 0.840.84 0.810.81 0.690.69

대변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Treponema, Dialister, 및 Oscillospira 속 세균을 바이오마커로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 16 및 도 16 참조).Analysis of bacterial vesicle-derived stool at the genus level showed that diagnostic performance for colon cancer was significant when a diagnostic model was developed for the biomarkers of bacteria of Treponema, Dialister, and Oscillospira (Table 16 and See FIG. 16).

  대장용종Colon polyp 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity g__Treponemag__Treponema 0.00050.0005 0.00090.0009 0.00010.0001 0.00010.0001 0.02020.0202 0.110.11 0.86850.8685 0.77780.7778 0.82760.8276 g__Dialisterg__Dialister 0.01030.0103 0.01520.0152 0.00200.0020 0.00270.0027 0.01060.0106 0.200.20 0.86720.8672 0.77780.7778 0.82760.8276 g__Oscillospirag__Oscillospira 0.00230.0023 0.00190.0019 0.00740.0074 0.01090.0109 0.02120.0212 3.183.18 0.83780.8378 0.77780.7778 0.72410.7241

실시예Example 7.  7. 대장용종환자와With colon polyps 대장암환자 소변에서 분리한  Isolated from Urine Colon Cancer Patients 세균유래Germ-derived 소포  parcel 메타게놈Metagenome 분석 기반 대장암 진단모형 Analysis-based Colorectal Cancer Diagnosis Model

상기 실시예 3의 방법으로, 대장암환자 26명과 대장용종환자 38명의 소변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.By the method of Example 3, the vesicles were isolated from the urine of 26 patients with colorectal cancer and 38 patients with colorectal polyps, and then metagenome sequencing was performed. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.

소변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Myxococcales 목 세균으로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 17 및 도 17 참조).As a result of analyzing the vesicle-derived vesicles in the urine at the order level, when the diagnostic model was developed with the tree Myxococcales, the diagnostic performance for colon cancer was significant (see Table 17 and FIG. 17).

대장용종Colon polyp 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity o__Myxococcaleso__Myxococcales 0.0000 0.0000 0.0001 0.0001 0.0005 0.0005 0.0013 0.0013 0.0442 0.0442 14.5214.52 0.780.78 0.690.69 0.820.82

소변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Eubacterium 속 세균으로 진단모형을 개발하였을 때, 대장암에 대한 진단적 성능이 유의하게 나타났다 (표 18 및 도 18 참조).As a result of analyzing the bacterial vesicles in the urine at the genus level, when diagnostic models were developed with Eubacterium spp., The diagnostic performance for colon cancer was significant (see Table 18 and Fig. 18).

대장용종Colon polyp 대장암Colorectal cancer t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity g__[Eubacterium]g __ [Eubacterium] 0.00090.0009 0.00110.0011 0.00240.0024 0.00280.0028 0.00400.0040 2.722.72 0.790.79 0.620.62 0.790.79

실시예Example 8. 정상인과  8. Normal people 대장용종Colon polyp 대변에서 분리한  Separated from feces 세균유래Germ-derived 소포  parcel 메타게놈Metagenome 분석 기반  Analytics based 대장용종Colon polyp 진단모형 Diagnostic Model

상기 실시예 3의 방법으로, 대장암환자 27명과 정상인 358명의 대변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.By the method of Example 3, vesicles were isolated from stool of 27 colon cancer patients and 358 normal patients, and then metagenome sequencing was performed. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.

대변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Actinobacteria 문 세균으로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 19 및 도 19 참조).As a result of analyzing fecal bacteria-derived vesicles at the phylum level, when the diagnostic model was developed with Actinobacteria cultivars, the diagnostic performance of colon polyps was significant (see Table 19 and FIG. 19).

  대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity p__Actinobacteriap__Actinobacteria 0.03530.0353 0.04030.0403 0.08260.0826 0.06800.0680 0.00160.0016 2.342.34 0.840.84 0.990.99 0.110.11

대변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Betaproteobacteria, 및 Solibacteres 강 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 20 및 도 20 참조).Analysis of fecal bacteria-derived vesicles at the class level showed significant diagnostic performance for colorectal polyps when developing a diagnostic model with at least one biomarker in Betaproteobacteria and Solibacteres river bacteria (Table 20 and 20).

  대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity c__Betaproteobacteriac__Betaproteobacteria 0.01510.0151 0.03700.0370 0.03910.0391 0.03690.0369 0.00130.0013 2.582.58 0.820.82 1.001.00 0.000.00 c__Solibacteresc__Solibacteres 0.00010.0001 0.00060.0006 0.00050.0005 0.00070.0007 0.00930.0093 4.954.95 0.830.83 1.001.00 0.000.00

대변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Burkholderiales, Sphingomonadales, 및 Solibacterales 목 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 21 및 도 21 참조).Analysis of bacterial vesicles from stool at the order level showed significant diagnostic performance for colon polyps when developing a diagnostic model with one or more biomarkers in Burkholderiales, Sphingomonadales, and Solibacterales throat bacteria. 21 and FIG. 21).

  대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity o__Burkholderialeso__Burkholderiales 0.01210.0121 0.03580.0358 0.03670.0367 0.03650.0365 0.00070.0007 3.023.02 0.820.82 1.001.00 0.000.00 o__Sphingomonadaleso__Sphingomonadales 0.00500.0050 0.00970.0097 0.02150.0215 0.02160.0216 0.00060.0006 4.334.33 0.870.87 0.990.99 0.190.19 o__Solibacteraleso__Solibacterales 0.00010.0001 0.00060.0006 0.00050.0005 0.00070.0007 0.00910.0091 4.984.98 0.830.83 1.001.00 0.000.00

대변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Rhizobiaceae, 및 Sphingomonadaceae 과 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 22 및 도 22 참조).Analysis of fecal-derived vesicles at the family level showed significant diagnostic performance for colon polyps when developing a diagnostic model with one or more biomarkers in Rhizobiaceae, Sphingomonadaceae and bacteria (Table 22 and See FIG. 22).

  대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity f__Rhizobiaceaef__Rhizobiaceae 0.00220.0022 0.00400.0040 0.00800.0080 0.01050.0105 0.00910.0091 3.643.64 0.830.83 0.990.99 0.190.19 f__Sphingomonadaceaef__Sphingomonadaceae 0.00470.0047 0.00910.0091 0.02080.0208 0.02100.0210 0.00060.0006 4.464.46 0.870.87 0.990.99 0.220.22

대변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Sphingomonas, Alkanindiges, 및 Roseateles 속 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 23 및 도 23 참조).Analysis of bacterial vesicle-derived stool at the genus level revealed significant diagnostic performance for colon polyps when developing a diagnostic model with one or more biomarkers in bacteria of Sphingomonas, Alkanindiges, and Roseateles. 23 and FIG. 23).

  대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity g__Sphingomonasg__Sphingomonas 0.00320.0032 0.00590.0059 0.01550.0155 0.01640.0164 0.00080.0008 4.774.77 0.870.87 0.990.99 0.300.30 g__Alkanindigesg__Alkanindiges 0.00000.0000 0.00020.0002 0.00080.0008 0.00150.0015 0.00970.0097 26.7326.73 0.840.84 1.001.00 0.260.26 g__Roseatelesg__Roseateles 0.00000.0000 0.00020.0002 0.00060.0006 0.00110.0011 0.00780.0078 30.8830.88 0.850.85 0.990.99 0.220.22

실시예Example 9. 정상인과  9. The normal person 대장용종Colon polyp 소변에서 분리한  Isolated from urine 세균유래Germ-derived 소포  parcel 메타게놈Metagenome 분석 기반  Analytics based 대장용종Colon polyp 진단모형 Diagnostic Model

상기 실시예 3의 방법으로, 대장암환자 38명과 정상인 38명의 소변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.By the method of Example 3, the vesicles were isolated from the urine of 38 patients with colorectal cancer and 38 normal people and then subjected to metagenome sequencing. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.

소변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Proteobacteria, 및 Euryarchaeota 문 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 24 및 도 24 참조).Analysis of vesicle-derived vesicles in the urine at the phylum level revealed significant diagnostic performance for colon polyps when developing a diagnostic model with one or more biomarkers in Proteobacteria and Euryarchaeota cultivars (Table 24 and See FIG. 24).

대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity p__Proteobacteriap__Proteobacteria 0.53790.5379 0.18710.1871 0.24160.2416 0.06910.0691 0.00000.0000 0.450.45 0.920.92 0.820.82 0.880.88 p__Euryarchaeotap__Euryarchaeota 0.00000.0000 0.00010.0001 0.00240.0024 0.00270.0027 0.00010.0001 82.2182.21 0.900.90 1.001.00 0.730.73

소변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Gammaproteobacteria, Clostridia, Methanobacteria, 및 4C0d-2 강 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 25 및 도 25 참조).The analysis of vesicle-derived vesicles in urine at the class level revealed that diagnostic performance of colonic polyps was significant when Gammaproteobacteria, Clostridia, Methanobacteria, and 4C0d-2 river bacteria were developed with one or more biomarkers. (See Table 25 and FIG. 25).

대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity c__Gammaproteobacteriac__Gammaproteobacteria 0.44310.4431 0.21040.2104 0.18070.1807 0.05110.0511 0.00000.0000 0.410.41 0.860.86 0.760.76 0.880.88 c__Clostridiac__Clostridia 0.12860.1286 0.07230.0723 0.28040.2804 0.06370.0637 0.00000.0000 2.182.18 0.940.94 0.870.87 0.770.77 c__Methanobacteriac__Methanobacteria 0.00000.0000 0.00010.0001 0.00240.0024 0.00270.0027 0.00020.0002 79.8879.88 0.900.90 1.001.00 0.730.73 c__4C0d-2c__4C0d-2 0.00000.0000 0.00000.0000 0.00060.0006 0.00110.0011 0.00990.0099 1952.621952.62 0.810.81 0.920.92 0.380.38

소변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, 및 Methanobacteriales 목 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 26 및 도 26 참조).Analysis of the urine-derived vesicles at the order level showed diagnostic performance for colon polyps when one or more biomarkers were developed for stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, and Methanobacteriales neck bacteria. This was significant (see Table 26 and Figure 26).

대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AucAuc sensitivitysensitivity specificityspecificity o__Stramenopileso__Stramenopiles 0.00550.0055 0.00830.0083 0.00000.0000 0.00000.0000 0.00140.0014 0.000.00 0.890.89 0.740.74 1.001.00 o__Pseudomonadaleso__Pseudomonadales 0.31240.3124 0.19100.1910 0.06220.0622 0.04140.0414 0.00000.0000 0.200.20 0.910.91 0.840.84 0.850.85 o__Clostridialeso__Clostridiales 0.12840.1284 0.07250.0725 0.28040.2804 0.06370.0637 0.00000.0000 2.182.18 0.940.94 0.870.87 0.770.77 o__Oceanospirillaleso__Oceanospirillales 0.00050.0005 0.00120.0012 0.00180.0018 0.00150.0015 0.00030.0003 3.653.65 0.860.86 0.890.89 0.620.62 o__Desulfovibrionaleso__Desulfovibrionales 0.00010.0001 0.00050.0005 0.00100.0010 0.00150.0015 0.00640.0064 7.617.61 0.830.83 0.920.92 0.540.54 o__Methanobacterialeso__Methanobacteriales 0.00000.0000 0.00010.0001 0.00240.0024 0.00270.0027 0.00020.0002 79.8879.88 0.900.90 1.001.00 0.730.73

소변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Rhizobiaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae 과 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 27 및 도 27 참조).Analysis of bacteria-derived vesicles in the urine at the family level revealed Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Rhizobiaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Halbacaceae necaceae When diagnostic models were developed with one or more biomarkers in Barnesiellaceae, Methanobacteriaceae, and Rikenellaceae family and bacteria, the diagnostic performance for colon polyps was significant (see Table 27 and Figure 27).

대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity f__[Exiguobacteraceae]f __ [Exiguobacteraceae] 0.00130.0013 0.00260.0026 0.00010.0001 0.00030.0003 0.00760.0076 0.060.06 0.740.74 0.630.63 0.770.77 f__Moraxellaceaef__Moraxellaceae 0.18100.1810 0.14010.1401 0.03060.0306 0.02350.0235 0.00000.0000 0.170.17 0.880.88 0.790.79 0.810.81 f__Pseudomonadaceaef__Pseudomonadaceae 0.13140.1314 0.09730.0973 0.03150.0315 0.02010.0201 0.00000.0000 0.240.24 0.890.89 0.820.82 0.850.85 f__Rhizobiaceaef__Rhizobiaceae 0.00680.0068 0.00620.0062 0.00250.0025 0.00320.0032 0.00070.0007 0.370.37 0.830.83 0.790.79 0.620.62 f__Streptococcaceaef__Streptococcaceae 0.01800.0180 0.01260.0126 0.03730.0373 0.00990.0099 0.00000.0000 2.082.08 0.900.90 0.870.87 0.850.85 f__Peptostreptococcaceaef__Peptostreptococcaceae 0.00090.0009 0.00170.0017 0.00230.0023 0.00170.0017 0.00290.0029 2.422.42 0.840.84 0.950.95 0.650.65 f__Comamonadaceaef__Comamonadaceae 0.00270.0027 0.00360.0036 0.00670.0067 0.00670.0067 0.00900.0090 2.482.48 0.770.77 0.790.79 0.460.46 f__Veillonellaceaef__Veillonellaceae 0.00700.0070 0.00830.0083 0.01860.0186 0.00560.0056 0.00000.0000 2.672.67 0.860.86 0.790.79 0.770.77 f__Bacteroidaceaef__Bacteroidaceae 0.02120.0212 0.02070.0207 0.05710.0571 0.02170.0217 0.00000.0000 2.692.69 0.920.92 0.890.89 0.730.73 f__[Paraprevotellaceae]f __ [Paraprevotellaceae] 0.00120.0012 0.00360.0036 0.00370.0037 0.00210.0021 0.00080.0008 3.073.07 0.850.85 0.820.82 0.650.65 f__Ruminococcaceaef__Ruminococcaceae 0.03790.0379 0.04310.0431 0.13250.1325 0.03960.0396 0.00000.0000 3.503.50 0.930.93 0.870.87 0.850.85 f__Corynebacteriaceaef__Corynebacteriaceae 0.00900.0090 0.00970.0097 0.03670.0367 0.01590.0159 0.00000.0000 4.094.09 0.970.97 0.950.95 0.850.85 f__Christensenellaceaef__Christensenellaceae 0.00040.0004 0.00130.0013 0.00180.0018 0.00210.0021 0.00420.0042 4.234.23 0.840.84 0.920.92 0.620.62 f__[Odoribacteraceae]f __ [Odoribacteraceae] 0.00050.0005 0.00220.0022 0.00230.0023 0.00220.0022 0.00260.0026 4.304.30 0.830.83 0.890.89 0.540.54 f__Desulfovibrionaceaef__Desulfovibrionaceae 0.00010.0001 0.00050.0005 0.00100.0010 0.00150.0015 0.00640.0064 7.617.61 0.830.83 0.920.92 0.540.54 f__Halomonadaceaef__Halomonadaceae 0.00020.0002 0.00080.0008 0.00160.0016 0.00150.0015 0.00010.0001 8.488.48 0.910.91 0.970.97 0.730.73 f__Alcaligenaceaef__Alcaligenaceae 0.00010.0001 0.00040.0004 0.00140.0014 0.00170.0017 0.00060.0006 12.3812.38 0.820.82 0.920.92 0.500.50 f__[Barnesiellaceae]f __ [Barnesiellaceae] 0.00010.0001 0.00040.0004 0.00220.0022 0.00310.0031 0.00150.0015 33.0933.09 0.930.93 0.970.97 0.770.77 f__Methanobacteriaceaef__Methanobacteriaceae 0.00000.0000 0.00010.0001 0.00240.0024 0.00270.0027 0.00020.0002 79.8879.88 0.900.90 1.001.00 0.730.73 f__Rikenellaceaef__Rikenellaceae 0.00000.0000 0.00020.0002 0.00540.0054 0.00330.0033 0.00000.0000 139.26139.26 0.970.97 0.970.97 0.920.92

소변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacter, Clostridium, Comamonas, Paraprevotella, Roseburia, Citrobacter, Klebsiella, Virgibacillus, Slackia, Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, 및 Methanobrevibacter 속 세균에서 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 대장용종에 대한 진단적 성능이 유의하게 나타났다 (표 28 및 도 28 참조).Analysis of bacteria-derived vesicles in the urine at genus level showed Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacvoella, Cloribactera When developing a diagnostic model with one or more biomarkers in bacteria of Roseburia, Citrobacter, Klebsiella, Virgibacillus, Slackia, Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, and Methanobrevibacter, diagnostic performance for colon polyps was significant. 28 and FIG. 28).

대조군Control 대장용종Colon polyp t-testt-test TaxonTaxon MeanMean SDSD MeanMean SDSD p-valuep-value RatioRatio AUCAUC sensitivitysensitivity specificityspecificity g__Rhizobiumg__Rhizobium 0.00560.0056 0.00560.0056 0.00000.0000 0.00000.0000 0.00000.0000 0.000.00 0.990.99 0.950.95 1.001.00 g__Morganellag__Morganella 0.02110.0211 0.02950.0295 0.00030.0003 0.00060.0006 0.00010.0001 0.010.01 0.820.82 0.630.63 0.850.85 g__Proteusg__Proteus 0.01320.0132 0.01920.0192 0.00030.0003 0.00050.0005 0.00020.0002 0.020.02 0.910.91 0.820.82 0.960.96 g__Exiguobacteriumg__Exiguobacterium 0.00130.0013 0.00260.0026 0.00010.0001 0.00030.0003 0.00780.0078 0.060.06 0.740.74 0.630.63 0.770.77 g__Acinetobacterg__Acinetobacter 0.16830.1683 0.13960.1396 0.01520.0152 0.01230.0123 0.00000.0000 0.090.09 0.900.90 0.820.82 0.810.81 g__Pseudomonasg__Pseudomonas 0.12880.1288 0.09650.0965 0.02960.0296 0.01950.0195 0.00000.0000 0.230.23 0.890.89 0.820.82 0.810.81 g__SMB53g__SMB53 0.00340.0034 0.00460.0046 0.00100.0010 0.00100.0010 0.00390.0039 0.300.30 0.780.78 0.740.74 0.690.69 g__Lactococcusg__Lactococcus 0.00350.0035 0.00390.0039 0.00140.0014 0.00140.0014 0.00290.0029 0.390.39 0.750.75 0.710.71 0.620.62 g__Coprococcusg__Coprococcus 0.00360.0036 0.00430.0043 0.00840.0084 0.00470.0047 0.00010.0001 2.352.35 0.820.82 0.870.87 0.730.73 g__Streptococcusg__Streptococcus 0.01430.0143 0.01220.0122 0.03580.0358 0.01020.0102 0.00000.0000 2.502.50 0.900.90 0.870.87 0.810.81 g__Bacteroidesg__Bacteroides 0.02120.0212 0.02070.0207 0.05710.0571 0.02170.0217 0.00000.0000 2.692.69 0.920.92 0.890.89 0.730.73 g__[Ruminococcus]g __ [Ruminococcus] 0.00100.0010 0.00150.0015 0.00410.0041 0.00390.0039 0.00050.0005 3.963.96 0.810.81 0.870.87 0.580.58 g__Corynebacteriumg__Corynebacterium 0.00900.0090 0.00970.0097 0.03670.0367 0.01590.0159 0.00000.0000 4.094.09 0.970.97 0.950.95 0.850.85 g__Odoribacterg__Odoribacter 0.00020.0002 0.00090.0009 0.00100.0010 0.00120.0012 0.00500.0050 4.314.31 0.820.82 0.920.92 0.540.54 g__Clostridiumg__Clostridium 0.00030.0003 0.00110.0011 0.00140.0014 0.00150.0015 0.00160.0016 4.394.39 0.840.84 0.950.95 0.580.58 g__Ruminococcusg__Ruminococcus 0.00300.0030 0.00430.0043 0.01450.0145 0.00830.0083 0.00000.0000 4.844.84 0.910.91 0.890.89 0.730.73 g__Comamonasg__Comamonas 0.00030.0003 0.00100.0010 0.00150.0015 0.00200.0020 0.00870.0087 5.175.17 0.780.78 0.920.92 0.500.50 g__Paraprevotellag__Paraprevotella 0.00020.0002 0.00070.0007 0.00120.0012 0.00140.0014 0.00100.0010 6.626.62 0.850.85 0.920.92 0.620.62 g__Roseburiag__Roseburia 0.00040.0004 0.00170.0017 0.00430.0043 0.00290.0029 0.00000.0000 11.3011.30 0.960.96 0.950.95 0.880.88 g__Citrobacterg__Citrobacter 0.00030.0003 0.00050.0005 0.00340.0034 0.00200.0020 0.00000.0000 11.6111.61 0.970.97 0.950.95 0.920.92 g__Klebsiellag__Klebsiella 0.00020.0002 0.00060.0006 0.00260.0026 0.00420.0042 0.00700.0070 13.6813.68 0.890.89 0.950.95 0.580.58 g__Virgibacillusg__Virgibacillus 0.00000.0000 0.00010.0001 0.00060.0006 0.00100.0010 0.00740.0074 15.8715.87 0.750.75 0.920.92 0.420.42 g__Slackiag__Slackia 0.00000.0000 0.00030.0003 0.00080.0008 0.00070.0007 0.00000.0000 16.1116.11 0.880.88 0.950.95 0.650.65 g__Dialisterg__Dialister 0.00050.0005 0.00120.0012 0.00820.0082 0.00470.0047 0.00000.0000 17.5217.52 0.950.95 0.970.97 0.850.85 g__Phascolarctobacteriumg__Phascolarctobacterium 0.00010.0001 0.00070.0007 0.00230.0023 0.00250.0025 0.00020.0002 18.6918.69 0.880.88 0.970.97 0.650.65 g__Sutterellag__Sutterella 0.00010.0001 0.00030.0003 0.00120.0012 0.00170.0017 0.00150.0015 19.1619.16 0.800.80 0.970.97 0.460.46 g__Halomonasg__Halomonas 0.00010.0001 0.00030.0003 0.00150.0015 0.00150.0015 0.00010.0001 22.9922.99 0.910.91 0.950.95 0.730.73 g__Roseomonasg__Roseomonas 0.00000.0000 0.00020.0002 0.00260.0026 0.00430.0043 0.00520.0052 78.3678.36 0.930.93 0.970.97 0.770.77 g__Methanobrevibacterg__Methanobrevibacter 0.00000.0000 0.00000.0000 0.00240.0024 0.00270.0027 0.00020.0002 661.93661.93 0.910.91 1.001.00 0.730.73

상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The description of the present invention set forth above is for illustrative purposes, and one of ordinary skill in the art may understand that the present invention may be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. There will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

본 발명에 따른 세균 메타게놈 분석을 통해 대장종양을 진단하는 방법은 피검체 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 대장용종 및 대장암 등의 대장종양의 발병 위험도를 예측하고 진단하는데 이용할 수 있다. 환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 염증 및 암 발생에 직접적인 영향을 미칠 수 있으며, 대장용종 및 대장암은 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 또는 세균 유래 세포밖 소포의 메타게놈 분석을 통해 대장용종 및 대장암 등의 대장종양 발병의 위험도를 미리 예측함으로써 대장종양의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 대장종양의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 대장용종 혹은 대장암으로 진단받은 환자에서 본 발명에 따른 세균 메타게놈 분석은, 원인인자를 예측하여 원인인자에 대한 노출을 피함으로써 대장용종 및 대장암의 경과를 좋게 하거나, 재발을 막는데 이용할 수 있다. The method for diagnosing colon tumors through bacterial metagenomic analysis according to the present invention is performed by performing bacterial metagenomic analysis using a sample derived from a subject to analyze the increase or decrease in the content of specific bacterial-derived extracellular vesicles, such as colon polyps and colon cancer. It can be used to predict and diagnose the risk of developing a tumor. Extracellular vesicles secreted by the bacteria present in the environment can be absorbed into the body and directly affect inflammation and cancer development, and colon polyps and colorectal cancer are difficult to diagnose effectively because they are difficult to diagnose early. Predicting the risk of colon tumors such as colorectal polyps and colorectal cancer through metagenomic analysis of bacterial or bacterial-derived extracellular vesicles using a human-derived sample according to the present invention, early diagnosis and prediction of risk groups of colon tumors and appropriate management By delaying the onset time or preventing the onset, and after the onset can be diagnosed early can reduce the incidence of colon tumors and increase the treatment effect. In addition, the bacterial metagenomic analysis according to the present invention in patients diagnosed with colorectal polyps or colon cancer improves the progression of colon polyps and colorectal cancer or prevents recurrence by predicting the causative factors and avoiding exposure to the causative factors. It is available.

Claims (16)

하기의 단계를 포함하는, 대장종양 진단을 위한 정보제공방법:Information providing method for the diagnosis of colorectal tumor, comprising the following steps: (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(a) extracting DNA from extracellular vesicles isolated from a subject sample; (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And (c) 상기 PCR 산물의 서열분석을 통하여 정상인과 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는(c) comparing the increase and decrease of the bacterial-derived extracellular vesicles in the normal-derived colorectal cancer-derived sample by sequencing the PCR product; or 상기 PCR 산물의 서열분석을 통하여 대장용종환자와 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는Comparing the increase and decrease of the bacterial-derived extracellular vesicles in the colon-derived patient and the colon cancer-derived sample by sequencing the PCR product; or 상기 PCR 산물의 서열분석을 통하여 정상인과 대장용종환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.Comparing the increase and decrease of the content of bacterial-derived extracellular vesicles in the sample derived from normal people and colon polyps through the sequencing of the PCR product. 제1항에 있어서,The method of claim 1, 상기 (c) 단계에서, 상기 PCR 산물의 서열분석을 통하여 정상인과 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통하여 대장암을 진단하는 것을 특징으로 하는, 정보제공방법.In the step (c), the colorectal cancer is diagnosed by comparing the increase and decrease of the bacterial-derived extracellular vesicles in the sample derived from normal people and colon cancer patients by sequencing the PCR product, information providing method . 제2항에 있어서,The method of claim 2, 상기 (c) 단계에서 Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, Fusobacteria, Proteobacteria, 및 Euryarchaeota로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포, (C) at least one phylum bacteria-derived extracellular vesicle selected from the group consisting of Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, Fusobacteria, Proteobacteria, and Euryarchaeota, Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Coriobacteriia, Oscillatoriophycideae, Fusobacteriia, Gammaproteobacteria, Clostridia, 및 Methanobacteria로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포, One or more species of cells derived from the group consisting of Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Coriobacteriia, Oscillatoriophycideae, Fusobacteriia, Gammaproteobacteria, Clostridia, and Methanobacteria Out parcel, RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, Bdellovibrionales, Desulfobacterales, Stramenopiles, Pseudomonadales, Clostridiales, Desulfovibrionales, 및 Methanobacteriales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, Bd One or more order bacterial derived extracellular vesicles selected from the group consisting of: Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, Bdellovibrionaceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, Bdellovibrionaceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, One or more family or small family cells from the group consisting of Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, and Rikenellaceae rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriimonas, Dermacoccus, Achromobacter, Novosphingobium, Sneathia, Agrobacterium, Blastomonas, Bdellovibrio, Alkanindiges, Roseateles, Shuttleworthia, Rhizobium, Morganella, Acinetobacter, Pseudomonas, Enterococcus, Lactococcus, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacterium, Comamonas, Gordonia, Paraprevotella, Mycobacterium, Roseburia, Slackia, Escherichia, Phascolarctobacterium, Sutterella, Virgibacillus, Eggerthella, Citrobacter, Roseomonas, Serratia, Methanobrevibacter, 및 Bilophila로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriicus, Achromobacus, Achromobacsium, Achromobacsium Bdellovibrio, Alkanindiges, Roseateles, Shuttleworthia, Rhizobium, Morganella, Acinetobacter, Pseudomonas, Enterococcus, Lactococcus, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacteria, Comamocobacterium, Comamocobacterium, Lacosebacteria, Mycobacterium terpenia An information providing method, characterized by comparing the increase or decrease in the content of one or more genus bacterial-derived extracellular vesicles selected from the group consisting of Sutterella, Virgibacillus, Eggerthella, Citrobacter, Roseomonas, Serratia, Methanobrevibacter, and Bilophila. 제1항에 있어서,The method of claim 1, 상기 (c) 단계에서, 상기 PCR 산물의 서열분석을 통하여 대장용종환자와 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통하여 대장암을 진단하는 것을 특징으로 하는, 정보제공방법.In the step (c), the colon product is diagnosed through comparing the increase or decrease in the amount of bacterial-derived extracellular vesicles in the colon-derived patient and colorectal cancer-derived sample by sequencing the PCR product, information How to Provide. 제4항에 있어서,The method of claim 4, wherein 상기 (c) 단계에서 Spirochaetes 문(phylum) 세균 유래 세포밖 소포,In the step (c) Spirochaetes phylum bacteria-derived extracellular vesicles, Spirochaetes, 및 Acidobacteria-6로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,One or more class bacterial-derived extracellular vesicles selected from the group consisting of Spirochaetes, and Acidobacteria-6, Spirochaetales, 및 Myxococcales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,One or more order bacterial extracellular vesicles selected from the group consisting of Spirochaetales, and Myxococcales, Spirochaetaceae, 및 S24-7로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는Extracellular vesicles derived from one or more family bacteria selected from the group consisting of Spirochaetaceae, and S24-7, or Treponema, Dialister, Oscillospira, 및 Eubacterium로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.An information providing method, characterized by comparing the increase or decrease in the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Treponema, Dialister, Oscillospira, and Eubacterium. 제1항에 있어서,The method of claim 1, 상기 (c) 단계에서, 상기 PCR 산물의 서열분석을 통하여 정상인과 대장용종환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통하여 대장용종을 진단하는 것을 특징으로 하는, 정보제공방법.In the step (c), the colon polyps are diagnosed by comparing the increase and decrease of the bacterial-derived extracellular vesicles in the sample from the normal and colon polyps patient through the sequencing of the PCR product, information providing method . 제6항에 있어서,The method of claim 6, 상기 (c) 단계에서 Actinobacteria, Proteobacteria, 및 Euryarchaeota로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,(C) at least one phylum bacteria-derived extracellular vesicles selected from the group consisting of Actinobacteria, Proteobacteria, and Euryarchaeota, Betaproteobacteria, Solibacteres, Gammaproteobacteria, Clostridia, Methanobacteria, 및 4C0d-2로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,One or more class bacterial-derived extracellular vesicles selected from the group consisting of Betaproteobacteria, Solibacteres, Gammaproteobacteria, Clostridia, Methanobacteria, and 4C0d-2, Burkholderiales, Sphingomonadales, Solibacterales, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, 및 Methanobacteriales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,One or more order bacterial-derived extracellular vesicles selected from the group consisting of Burkholderiales, Sphingomonadales, Solibacterales, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, and Methanobacteriales, Rhizobiaceae, Sphingomonadaceae, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는Group consisting of Rhizobiaceae, Sphingomonadaceae, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Deofolioaceae, Deofolioaceae Extracellular vesicles derived from abnormal families, or Sphingomonas, Alkanindiges, Roseateles, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacter, Clostridium, Comamonas, Paraprevotella, Roseburia, Citrobacter, Klebsiella, Virgibacillus, Slackia, Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, 및 Methanobrevibacter로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.Sphingomonas, Alkanindiges, Roseateles, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacter, Clonastriia Triacerocitra, Clonastriia Viracerosia, Clonastriia psi An information providing method, characterized by comparing the increase or decrease in the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, and Methanobrevibacter. 제1항에 있어서,The method of claim 1, 상기 피검체 샘플은 대변 또는 소변인 것을 특징으로 하는, 정보제공방법.The subject sample is characterized in that the feces or urine, information providing method. 하기의 단계를 포함하는, 대장종양 진단방법:Colon tumor diagnosis method comprising the following steps: (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(a) extracting DNA from extracellular vesicles isolated from a subject sample; (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And (c) 상기 PCR 산물의 서열분석을 통하여 정상인과 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는(c) comparing the increase and decrease of the bacterial-derived extracellular vesicles in the normal-derived colorectal cancer-derived sample by sequencing the PCR product; or 상기 PCR 산물의 서열분석을 통하여 대장용종환자와 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 또는Comparing the increase and decrease of the bacterial-derived extracellular vesicles in the colon-derived patient and the colon cancer-derived sample by sequencing the PCR product; or 상기 PCR 산물의 서열분석을 통하여 정상인과 대장용종환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.Comparing the increase and decrease of the content of bacterial-derived extracellular vesicles in the sample derived from normal people and colon polyps through the sequencing of the PCR product. 제9항에 있어서,The method of claim 9, 상기 (c) 단계에서, 상기 PCR 산물의 서열분석을 통하여 정상인과 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통하여 대장암을 진단하는 것을 특징으로 하는, 대장종양 진단방법.In the step (c), colon cancer is diagnosed by comparing the increase and decrease of the bacterial-derived extracellular vesicles in the sample derived from normal people and colon cancer patients by sequencing the PCR product, colon tumor diagnosis Way. 제10항에 있어서,The method of claim 10, 상기 (c) 단계에서 Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, Fusobacteria, Proteobacteria, 및 Euryarchaeota로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포, (C) at least one phylum bacteria-derived extracellular vesicle selected from the group consisting of Deferribacteres, Tenericutes, Actinobacteria, Acidobacteria, Armatimonadetes, Planctomycetes, Fusobacteria, Proteobacteria, and Euryarchaeota, Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Coriobacteriia, Oscillatoriophycideae, Fusobacteriia, Gammaproteobacteria, Clostridia, 및 Methanobacteria로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포, One or more species of cells derived from the group consisting of Deferribacteres, Mollicutes, 4C0d-2, Bacilli, Alphaproteobacteria, Saprospirae, Fimbriimonadia, Acidobacteria-6, Solibacteres, Coriobacteriia, Oscillatoriophycideae, Fusobacteriia, Gammaproteobacteria, Clostridia, and Methanobacteria Out parcel, RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, Bdellovibrionales, Desulfobacterales, Stramenopiles, Pseudomonadales, Clostridiales, Desulfovibrionales, 및 Methanobacteriales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,RF32, YS2, Deferribacterales, Turicibacterales, RF39, Oceanospirillales, Rhizobiales, Lactobacillales, Rhodobacterales, Saprospirales, Sphingomonadales, Fimbriimonadales, iii1-15, Solibacterales, Coriobacteriales, Chroococcales, Fusobacteriales, Bd One or more order bacterial derived extracellular vesicles selected from the group consisting of: Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, Bdellovibrionaceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는Peptococcaceae, Deferribacteraceae, Turicibacteraceae, Halomonadaceae, Clostridiaceae, Prevotellaceae, Peptostreptococcaceae, Rhodobacteraceae, Nocardioidaceae, Sphingomonadaceae, Bartonellaceae, Cellulomonadaceae, Lactobacillaceae, Rhizobiaceae, Fimbriimonadaceae, Dermacoccaceae, Leptotrichiaceae, Coriobacteriaceae, Xenococcaceae, Aeromonadaceae, Geodermatophilaceae, Bdellovibrionaceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, One or more family or small family cells from the group consisting of Veillonellaceae, Bacteroidaceae, Aerococcaceae, Comamonadaceae, Paraprevotellaceae, Christensenellaceae, Ruminococcaceae, Corynebacteriaceae, Gordoniaceae, Mycobacteriaceae, Desulfovibrionaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, and Rikenellaceae rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriimonas, Dermacoccus, Achromobacter, Novosphingobium, Sneathia, Agrobacterium, Blastomonas, Bdellovibrio, Alkanindiges, Roseateles, Shuttleworthia, Rhizobium, Morganella, Acinetobacter, Pseudomonas, Enterococcus, Lactococcus, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacterium, Comamonas, Gordonia, Paraprevotella, Mycobacterium, Roseburia, Slackia, Escherichia, Phascolarctobacterium, Sutterella, Virgibacillus, Eggerthella, Citrobacter, Roseomonas, Serratia, Methanobrevibacter, 및 Bilophila로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 대장종양 진단방법.rc4-4, Proteus, Catenibacterium, Mucispirillum, Eubacterium, Turicibacter, Alloiococcus, Halomonas, Prevotella, Dialister, Anaerostipes, SMB53, Faecalibacterium, Blautia, Capnocytophaga, Sphingomonas, Lactobacillus, Fimbriicus, Achromobacus, Achromobacsium, Achromobacsium Bdellovibrio, Alkanindiges, Roseateles, Shuttleworthia, Rhizobium, Morganella, Acinetobacter, Pseudomonas, Enterococcus, Lactococcus, Coprococcus, Bacteroides, Dorea, Streptococcus, Lachnospira, Ruminococcus, Corynebacteria, Comamocobacterium, Comamocobacterium, Lacosebacteria, Mycobacterium terpenia A method for diagnosing colon tumors, characterized by comparing the increase or decrease in the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Sutterella, Virgibacillus, Eggerthella, Citrobacter, Roseomonas, Serratia, Methanobrevibacter, and Bilophila. 제9항에 있어서,The method of claim 9, 상기 (c) 단계에서, 상기 PCR 산물의 서열분석을 통하여 대장용종환자와 대장암환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통하여 대장암을 진단하는 것을 특징으로 하는, 대장종양 진단방법.In the step (c), colon cancer is diagnosed by comparing the increase and decrease of the bacterial-derived extracellular vesicles in the sample from the colon polyps and colon cancer patients through the sequencing of the PCR product, colon Tumor diagnostic method. 제12항에 있어서,The method of claim 12, 상기 (c) 단계에서 Spirochaetes 문(phylum) 세균 유래 세포밖 소포,In the step (c) Spirochaetes phylum bacteria-derived extracellular vesicles, Spirochaetes, 및 Acidobacteria-6로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,One or more class bacterial-derived extracellular vesicles selected from the group consisting of Spirochaetes, and Acidobacteria-6, Spirochaetales, 및 Myxococcales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,One or more order bacterial extracellular vesicles selected from the group consisting of Spirochaetales, and Myxococcales, Spirochaetaceae, 및 S24-7로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는Extracellular vesicles derived from one or more family bacteria selected from the group consisting of Spirochaetaceae, and S24-7, or Treponema, Dialister, Oscillospira, 및 Eubacterium로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 대장종양 진단방법.A method for diagnosing colorectal tumors, comprising comparing the increase or decrease of the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Treponema, Dialister, Oscillospira, and Eubacterium. 제9항에 있어서,The method of claim 9, 상기 (c) 단계에서, 상기 PCR 산물의 서열분석을 통하여 정상인과 대장용종환자 유래 샘플에서 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통하여 대장용종을 진단하는 것을 특징으로 하는, 대장종양 진단방법.In step (c), colon polyps are diagnosed by comparing the increase and decrease of the bacterial-derived extracellular vesicles in the sample derived from normal people and colon polyps through sequencing the PCR product. Way. 제14항에 있어서,The method of claim 14, 상기 (c) 단계에서 Actinobacteria, Proteobacteria, 및 Euryarchaeota로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,(C) at least one phylum bacteria-derived extracellular vesicles selected from the group consisting of Actinobacteria, Proteobacteria, and Euryarchaeota, Betaproteobacteria, Solibacteres, Gammaproteobacteria, Clostridia, Methanobacteria, 및 4C0d-2로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,One or more class bacterial-derived extracellular vesicles selected from the group consisting of Betaproteobacteria, Solibacteres, Gammaproteobacteria, Clostridia, Methanobacteria, and 4C0d-2, Burkholderiales, Sphingomonadales, Solibacterales, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, 및 Methanobacteriales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,One or more order bacterial-derived extracellular vesicles selected from the group consisting of Burkholderiales, Sphingomonadales, Solibacterales, Stramenopiles, Pseudomonadales, Clostridiales, Oceanospirillales, Desulfovibrionales, and Methanobacteriales, Rhizobiaceae, Sphingomonadaceae, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Desulfovibrionaceae, Halomonadaceae, Alcaligenaceae, Barnesiellaceae, Methanobacteriaceae, 및 Rikenellaceae로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는Group consisting of Rhizobiaceae, Sphingomonadaceae, Exiguobacteraceae, Moraxellaceae, Pseudomonadaceae, Streptococcaceae, Peptostreptococcaceae, Comamonadaceae, Veillonellaceae, Bacteroidaceae, Paraprevotellaceae, Ruminococcaceae, Corynebacteriaceae, Christensenellaceae, Odoribacteraceae, Deofolioaceae, Deofolioaceae Extracellular vesicles derived from abnormal families, or Sphingomonas, Alkanindiges, Roseateles, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacter, Clostridium, Comamonas, Paraprevotella, Roseburia, Citrobacter, Klebsiella, Virgibacillus, Slackia, Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, 및 Methanobrevibacter로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 대장종양 진단방법.Sphingomonas, Alkanindiges, Roseateles, Rhizobium, Morganella, Proteus, Exiguobacterium, Acinetobacter, Pseudomonas, SMB53, Lactococcus, Coprococcus, Streptococcus, Bacteroides, Ruminococcus, Corynebacterium, Odoribacter, Clonastriia Triacerocitra, Clonastriia Viracerosia, Clonastriia psi A method for diagnosing colon tumors, characterized by comparing the increase or decrease in the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Dialister, Phascolarctobacterium, Sutterella, Halomonas, Roseomonas, and Methanobrevibacter. 제9항에 있어서,The method of claim 9, 상기 피검체 샘플은 대변 또는 소변인 것을 특징으로 하는, 대장종양 진단방법.The subject sample is characterized in that the feces or urine, colon tumor diagnosis method.
PCT/KR2017/015557 2016-12-28 2017-12-27 Method for diagnosing colon tumor via bacterial metagenomic analysis Ceased WO2018124735A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019535378A JP6914552B2 (en) 2016-12-28 2017-12-27 Method for determining colorectal tumors through bacterial metagenomic analysis
CN201780081381.2A CN110382720A (en) 2016-12-28 2017-12-27 Methods for diagnosing colon cancer by bacterial metagenomic analysis
US16/472,986 US20190330687A1 (en) 2016-12-28 2017-12-27 Method for diagnosing colon tumor via bacterial metagenomic analysis
EP17887675.1A EP3564390B1 (en) 2016-12-28 2017-12-27 Method for diagnosing colon tumor via bacterial metagenomic analysis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0181574 2016-12-28
KR20160181574 2016-12-28
KR1020170180144A KR101940426B1 (en) 2016-12-28 2017-12-26 Method for diagnosis of colon tumor using analysis of bacteria metagenome
KR10-2017-0180144 2017-12-26

Publications (1)

Publication Number Publication Date
WO2018124735A1 true WO2018124735A1 (en) 2018-07-05

Family

ID=62709835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015557 Ceased WO2018124735A1 (en) 2016-12-28 2017-12-27 Method for diagnosing colon tumor via bacterial metagenomic analysis

Country Status (1)

Country Link
WO (1) WO2018124735A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019226035A1 (en) * 2018-05-25 2019-11-28 주식회사 엠디헬스케어 Method for diagnosing colon cancer through qpcr analysis
US20220137056A1 (en) * 2019-02-08 2022-05-05 Board Of Regents, The University Of Texas System Isolation and detection of exosome-associated microbiome for diagnostic and therapeutic purposes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110025603A (en) * 2009-09-04 2011-03-10 주식회사이언메딕스 Gram-positive bacteria-derived extracellular vesicles and uses thereof
KR20110073049A (en) 2009-12-23 2011-06-29 한국생명공학연구원 Method for Screening Enzyme Activity from Metagenome Library
US20130121968A1 (en) * 2011-10-03 2013-05-16 Atossa Genetics, Inc. Methods of combining metagenome and the metatranscriptome in multiplex profiles
WO2016099076A1 (en) * 2014-12-16 2016-06-23 이화여자대학교 산학협력단 Method for identifying pathogens of bacterial infectious diseases by using bacteria-derived nanovesicles
KR20160110232A (en) * 2015-03-11 2016-09-21 주식회사 엠디헬스케어 Composition for Prevention or Treatment of Inflammatory disease Comprising Extracellular Vesicles Derived from Lactic acid bacteria

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110025603A (en) * 2009-09-04 2011-03-10 주식회사이언메딕스 Gram-positive bacteria-derived extracellular vesicles and uses thereof
KR20110073049A (en) 2009-12-23 2011-06-29 한국생명공학연구원 Method for Screening Enzyme Activity from Metagenome Library
US20130121968A1 (en) * 2011-10-03 2013-05-16 Atossa Genetics, Inc. Methods of combining metagenome and the metatranscriptome in multiplex profiles
WO2016099076A1 (en) * 2014-12-16 2016-06-23 이화여자대학교 산학협력단 Method for identifying pathogens of bacterial infectious diseases by using bacteria-derived nanovesicles
KR20160110232A (en) * 2015-03-11 2016-09-21 주식회사 엠디헬스케어 Composition for Prevention or Treatment of Inflammatory disease Comprising Extracellular Vesicles Derived from Lactic acid bacteria

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564390A4
ZELLER, GEORGE ET AL: "Potential of fecal microbiota for early-stage detection of Colorectal Cancer", MOLECULAR SYSTEMS BIOLOGY, vol. 10, no. 11, 28 November 2014 (2014-11-28), pages 766, XP055488670, DOI: 10.15252/msb.20145645 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019226035A1 (en) * 2018-05-25 2019-11-28 주식회사 엠디헬스케어 Method for diagnosing colon cancer through qpcr analysis
US20220137056A1 (en) * 2019-02-08 2022-05-05 Board Of Regents, The University Of Texas System Isolation and detection of exosome-associated microbiome for diagnostic and therapeutic purposes

Similar Documents

Publication Publication Date Title
WO2018124617A1 (en) Method for diagnosing lung cancer via bacterial metagenomic analysis
WO2018124606A1 (en) Method for diagnosing breast cancer via microbial metagenomic analysis
WO2018111040A1 (en) Diagnosis method of stomach cancer through bacterial metagenome analysis
WO2019074216A1 (en) Method for diagnosing alzheimer dementia via bacterial metagenomic analysis
WO2019066599A2 (en) Novel lactic acid bacteria and use thereof
WO2020004874A1 (en) Inflammatory bowel disease diagnostic method by means of bacterial metagenomic analysis
Jiang et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease
EP3564390A1 (en) Method for diagnosing colon tumor via bacterial metagenomic analysis
WO2018155960A1 (en) Method for diagnosing ovarian cancer through microbial metagenome analysis
WO2018155950A1 (en) Method for diagnosing diabetes through bacterial metagenome analysis
WO2018155961A1 (en) Method for diagnosing parkinson&#39;s disease through bacterial metagenome analysis
WO2018124735A1 (en) Method for diagnosing colon tumor via bacterial metagenomic analysis
WO2018143678A1 (en) Novel lactic acid bacteria and use thereof
WO2018111028A1 (en) Method for diagnosing cardiac disease through bacterial metagenome analysis
WO2019160284A1 (en) Method for diagnosis of stroke through bacterial metagenome analysis
WO2018230960A2 (en) Novel bifidobacterium bifidum strain and strain-derived polysaccharide
WO2017047968A1 (en) Novel lactobacillus having various functions, and use thereof
WO2018155967A1 (en) Method for diagnosing chronic obstructive airway disease through bacterial metagenome analysis
WO2021020920A2 (en) Kit for predicting or diagnosing nonalcoholic fatty liver disease, and method for diagnosing nonalcoholic fatty liver disease
WO2019147080A1 (en) Method for diagnosing depression via bacterial metagenomic analysis
WO2018225945A1 (en) Method for diagnosing atopic dermatitis through microbial metagenomic analysis
Basyigit et al. Gastric Xanthoma: a review of the literature.
WO2021049834A1 (en) Method for diagnosing colorectal cancer on basis of metagenome and metabolite of extracellular vesicles
WO2018124619A1 (en) Method for diagnosing bladder cancer via microbial metagenomic analysis
WO2018124742A1 (en) Method for diagnosing prostatic disease via bacterial metagenomic analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017887675

Country of ref document: EP

Effective date: 20190729