[go: up one dir, main page]

WO2017064855A1 - 構造物異常検知システム、構造物異常検知方法及び記録した記録媒体 - Google Patents

構造物異常検知システム、構造物異常検知方法及び記録した記録媒体 Download PDF

Info

Publication number
WO2017064855A1
WO2017064855A1 PCT/JP2016/004525 JP2016004525W WO2017064855A1 WO 2017064855 A1 WO2017064855 A1 WO 2017064855A1 JP 2016004525 W JP2016004525 W JP 2016004525W WO 2017064855 A1 WO2017064855 A1 WO 2017064855A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
inspection
inspection value
model
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2016/004525
Other languages
English (en)
French (fr)
Inventor
亮太 間瀬
勝博 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2017545092A priority Critical patent/JP6819909B2/ja
Priority to US15/767,881 priority patent/US10641681B2/en
Publication of WO2017064855A1 publication Critical patent/WO2017064855A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations

Definitions

  • the present invention relates to a structure abnormality detection system, a structure abnormality detection method, and a recording medium.
  • Non-destructive detection of deterioration and abnormalities that occur in structures such as buildings is desired.
  • an inspector goes on the inspection road, detects abnormalities (contact inspection) by visual inspection or hammering sound inspection, etc., and specifies a place to be repaired preferentially.
  • an abnormality is determined by the sound heard by the ear, so that the abnormality cannot be determined quantitatively, and is labor intensive, inferior in work efficiency, and tends to be costly.
  • an abnormality detection system for a structure a measurement device typified by an accelerometer is regularly arranged on the structure, and a vibration mode is obtained from a measurement result when local vibration is applied to the structure.
  • the abnormality of each structure is determined by calculating the degree of change from the vibration mode when it is normal.
  • an abnormality cannot be detected unless a pattern that can be considered as an abnormality is modeled in advance when there is an abnormality in a plurality of locations.
  • a problem that it is impossible to identify an abnormal part there is a problem that it is impossible to identify an abnormal part.
  • an object of the present invention is to provide a structure abnormality detection system, a detection method, and a recording medium that can efficiently inspect an infrastructure structure and reduce the cost based on inspection information at a plurality of positions.
  • the structure abnormality detection system of the present invention includes: A structure abnormality detection system that detects an abnormality of at least one structure divided into a plurality of groups having a plurality of factors that can affect the behavior of the structure. From the first inspection value acquired at the first inspection position, the vibration intensity at the time of vibration in the predetermined vibration mode at the natural frequency of the structure is the same as the first inspection position.
  • a structure abnormality detection device comprising: Based on the determination of the structure abnormality detection device, by evaluating the suitability of the inspection value of the first structure and the inspection value of the second structure at the specific time with respect to the prediction model, the structure within the group A control unit that identifies that an abnormality has occurred in the object, It is characterized by including.
  • the structure abnormality detection method of the present invention includes: A structure abnormality detection method for detecting an abnormality of at least one structure divided into a plurality of groups in which a plurality of factors capable of affecting the behavior of the structure are similar. Pre-store for each group a model that predicts the inspection value in the second structure from the inspection value in the first structure in the relationship between all normal structures in each of the groups; A step of identifying a structure in which an abnormality occurs in the group by evaluating a degree of matching of the inspection value of the first structure and the inspection value of the second structure with respect to the model at a specific time. When, It is characterized by including.
  • the structure abnormality detection program is capable of realizing the following functions in at least one computer device, and is divided into a plurality of groups in which a plurality of factors that can affect the behavior of the structure are similar.
  • a structure abnormality detection program for detecting an abnormality of at least one structure From the first inspection value obtained at the first inspection position, based on the vibration data obtained at at least one inspection position of the structure in the relationship between all normal structures within each group, the structure A model for predicting a second inspection value acquired at a second inspection position at which the vibration intensity at the time of vibration in a predetermined vibration mode at the natural frequency of the object is approximately the same as the first inspection position.
  • It is characterized by including.
  • the structure abnormality detection system of the present invention includes: A structure abnormality detection system, Sensors that are placed on bridges divided into multiple groups that have the same degree of multiple factors that can affect behavior, and that acquire vibration data; A storage for storing vibration data acquired by the sensor; A structure abnormality detection device, An abnormality of the bridge is detected based on the vibration data at a plurality of positions of the bridge in the group obtained from the sensor.
  • Embodiment 1 it is a schematic diagram which shows the relationship between the road surface (floor board) of a bridge, the vehicle which drive
  • 3 is a graph showing a relationship between frequency and vibration intensity in the first embodiment.
  • Embodiment 2 it is a schematic diagram which shows the relationship between the road surface (floor board) of a bridge, the vehicle which drive
  • Embodiment 3 it is a schematic diagram which shows the relationship between the road surface (floor board) of a bridge, the vehicle which drive
  • 10 is a graph showing the relationship between vibration acceleration and time in Embodiment 3.
  • structure refers to a building constructed using concrete such as a building, a house, and a bridge.
  • the structure may be a pipe such as a pipeline or a water and sewage system.
  • the structure may be a structure (for example, an iron bridge, a machine such as a heavy machine or a construction machine) constructed using a metal.
  • the “abnormality” generated in the structure can include cracks, bolt dropouts, cracks, generation of free lime, and the like.
  • the vibration propagating to the bridge is given from a vehicle traveling on the bridge.
  • vibration propagating through a structure such as a bridge can be applied to the structure by providing a vibration means in the structure abnormality detection device.
  • a vibration means in the structure abnormality detection device When using vibration caused by a vehicle, in general, a plurality of types of vehicles having different weights pass through a sensor, so that the amplitude of vibration propagating through the structure varies. For this reason, the structure abnormality detection apparatus can obtain resonance state information having a plurality of amplitudes.
  • FIG. 1 is a schematic diagram showing a structure abnormality detection system 100 of the present invention.
  • a bridge is illustrated as the structure.
  • a model for predicting an inspection value in another bridge 20 from an inspection value in one bridge 20 is obtained and stored in advance for each group.
  • the bridge 20 in which an abnormality has occurred in a plurality of bridges is detected by evaluating the degree of conformity of the inspection value to the model at a specific time.
  • a model that predicts the inspection value of another bridge from the inspection value of one bridge is obtained for all bridge combinations, and a group of bridges with a high degree of correlation. May be grouped together as a group.
  • the groups 51 to 54 are each connected to the control unit 60. This connection may be wired, wireless, or via the Internet.
  • the control unit 60 detects an abnormality based on the data from each of the groups 51 to 54 and identifies which bridge 20 of which group has the abnormality.
  • the number of bridges 20 included in each group 51 to 54 may be one or more.
  • the bridge 20 may be geographically close or far. Any combination of bridges that have similar environmental conditions is acceptable.
  • the structure can be combined with other structures in addition to the bridge.
  • each bridge 20 is performed based on the structure abnormality detection device described in the first to fourth embodiments described below.
  • the detection information and vibration data from each group 51 to 54 are accumulated in real time in a storage (not shown) on the cloud, and an abnormal group and an abnormal bridge in the group are identified based on the data. You can also
  • Each group 51 to 54 is considered as one structure, and the group is also compared with the normal model of all groups among the groups considered to have the same environmental conditions such as temperature, humidity and material. It is also possible to determine the overall abnormality.
  • FIG. 2 is a block diagram illustrating a functional configuration of a structure abnormality detection apparatus that is used in each embodiment described below and detects a structure abnormality.
  • a structure abnormality detection device (hereinafter referred to as “anomaly detection device”) 1 includes a model storage unit 10 that stores a model that is predicted in advance from a plurality of inspection values, and a predicted inspection value generation unit 11. And the abnormality determination part 12 and the display part 14 which displays the presence or absence of abnormality.
  • the vibration intensity at the time of vibration in the predetermined vibration mode at the natural frequency of the structure is determined based on the first inspection value acquired at the first inspection position detected by the sensor 15.
  • a predicted inspection value of the second inspection value acquired at the second inspection position which is a position that is approximately the same as the first inspection position, is generated.
  • the abnormality determination unit 12 compares the predicted inspection value of the second inspection position obtained by the predicted inspection value generation unit 11 with the inspection value actually measured by the sensor 16 at the second inspection position, and the degree of fitness for the model. To determine whether there is an abnormality.
  • the abnormality determination unit 12 can determine not only the presence / absence of abnormality but also the degree of abnormality.
  • the display unit 14 can issue a repair instruction.
  • the unit 13 including the model storage unit 10, the predicted test value generation unit 11, the abnormality determination unit 12, and the display unit 14 includes a recording medium (not shown) in which a structure abnormality detection program is recorded.
  • the unit 13 can execute the above functions as a structure abnormality detection program using the recording medium and at least one computer device. In that case, some or all of them can be clouded.
  • the recording medium for example, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, and a ROM can be used.
  • FIG. 3 is a schematic diagram showing a relationship between a road surface (floor board) of a bridge as a structure, a vehicle traveling on the road surface, and a sensor.
  • the vehicle 22 travels in the direction of the arrow on the floor plate 21 that forms the road surface of the bridge 20.
  • the floor plate 21 is provided with a plurality of sensors A to F that detect vibrations at a plurality of inspection positions through which the vehicle 22 passes.
  • a storage (not shown) for storing vibration data acquired by the sensor can be provided. It is possible to construct a structure abnormality detection system by combining the sensors A to F, the storage, and the structure abnormality detection device 1.
  • the sensors A to F a vibration sensor that measures vibration acceleration, a displacement sensor that measures displacement, a strain sensor that measures strain, and an acoustic sensor that measures sound can be used. It is preferable to arrange the sensors A to F on the back of a floor board that easily detects changes due to vibration. This is to reduce the influence from the vehicle.
  • the sensor may be a sensor that is not directly disposed on the bridge 20 but is detected from a distance by laser measurement or camera photography. Furthermore, it may include a sensor that detects information on the external environment represented by the temperature, humidity, and wind speed around the bridge 20 and information on the road surface temperature and the like.
  • Embodiment 1 of the present invention will be described.
  • the vibration time-series data acquired by the plurality of sensors A to F shown in FIG. 3 is converted into frequency data, and a model predicted from the correlation of the frequency data of each sensor is generated.
  • the sensor used in Embodiment 1 is preferably a vibration sensor or a displacement sensor.
  • the time-series data is data in which waves having different frequencies overlap with each other including a phase shift, but the influence of the phase can be removed by frequency conversion.
  • a relational expression for predicting the value of sensor B from the value of sensor A is calculated.
  • the data of sensors A and B are divided into small units of data, taking into account the time delay of the data from each sensor, and then sensor A to sensor B or sensor B to sensor A.
  • a regression model or the like prediction is made for each small unit, and an optimum value is calculated by a least square method for the coefficient at that time, and the coefficient having the highest degree of correlation is adopted.
  • Relational expressions can also be calculated by other methods.
  • the degree of correlation obtained from the calculated relational expression is equal to or greater than a predetermined value, it is determined that the sensor set has a high degree of correlation.
  • the degree of correlation can be defined in the prediction of the value of sensor A from the value of sensor B, and the degree of correlation when predicting sensor B from sensor A and the degree of correlation when predicting sensor A from sensor B are predetermined. It may be determined that the degree of correlation is high when the value is greater than or equal to.
  • the degree of correlation here may be an index that increases as the difference between the actual measurement value and the predicted value decreases, and may be the absolute value of the difference, the sum of squares, the inverse of the average, or another index. At the time of model generation, only a sensor set having a high degree of correlation may be modeled, or all sensor sets may be modeled.
  • the degree of correlation is determined from the deviation between the value predicted using the generated model and the actual measurement value, and the presence or absence of an abnormality is determined. It is determined that an abnormality has occurred when the absolute value of the difference between the measured value and the predicted value at an arbitrary time exceeds the absolute value of the difference between the predicted value and the measured value when modeling.
  • the maximum value may be determined to be abnormal when the maximum value is multiplied by a certain coefficient and the value is exceeded.
  • the probability that an abnormality has occurred may be low.
  • An average of the differences from the time may be taken, and it may be determined that an abnormality has occurred when it is equal to or greater than a predetermined value.
  • An abnormality may be detected by other methods. When it is determined that an abnormality has occurred at a plurality of sensor positions, it can be determined that the degree of abnormality is higher as the sensor has more combinations that have an error from the predicted value of a predetermined value or more.
  • the vibration characteristics change when the structure is abnormal, and changes in the vibration characteristics can be detected in a timely manner.
  • the comparison can be made only with the frequency excluding the influence of the phase, and the abnormality can be detected with high accuracy.
  • FIG. 3 when the bridge 20 is normal, a correlation is established between the sensors A, B, and C. However, when an abnormality is detected at the position of the sensor C, a correlation is established between the sensor A and the sensor B. However, it does not hold for sensor C. This is shown in a graph in FIG. In this case, it is assumed that a crack 25 (FIG. 3) is generated at the position of the sensor C.
  • FIG. 4 is a graph showing the relationship between the frequency and the vibration intensity using data for a specific period until the vehicle passes the position of the sensor A and passes the point of the sensor C. It can be seen from the graph that the correlation between the sensors A, B, and C is observed when normal, but the inspection value of the sensor C is deviated from the correlation when abnormal.
  • the normal correlation is updated to the repaired data after repair of the location where the abnormality is found, and becomes the normal correlation.
  • Time series data is a series of data measured at different times. It may be data measured continuously (the time interval is dense) or data measured discontinuously. Further, the measurement intervals need not be equal.
  • the values of the sensors may not be all displacement or vibration acceleration, and may be data in which a plurality of measurement items are mixed. For example, it is possible to detect an abnormality using data in a period different from the period to be modeled.
  • the correlation established between the sensor data can be defined by the probability that the sensor data will have a predetermined value. If a test value that occurs with a rare probability in a probability distribution model is obtained from a sensor, it can be considered that the test value deviates from the predicted test value, and the magnitude of the deviation is determined based on the reciprocal of the probability. It is possible to substitute with a certain amount. By using the features of this probability distribution model, it is possible to detect anomalies using the probability distribution model.
  • the senor is preferably a vibration sensor or a displacement sensor.
  • an abnormality can be detected by looking at the difference between the value predicted using the generated model and the actual measurement value.
  • An abnormality is detected when a difference in the vibration characteristics of each sensor appears at the boundary of the cause of failure that appears to be present at the time of abnormality.
  • FIG. 5 is a schematic diagram showing a relationship between a road surface (floor plate) of a bridge, a vehicle traveling on the road surface, and a sensor in the second embodiment.
  • a correlation is established between the sensor 5 and the sensor 23, but not between the sensor 2 and the sensor 5 and between the sensor 2 and the sensor 23.
  • no correlation is established between the sensor 5 and the sensor 23, and it can be detected that an abnormality has occurred.
  • a part of the right floor board 21 is not shown, and thus the sensor 23 is drawn on the right side of the floor board 21, but actually the sensor 5 and the sensor 23 have substantially the same length. 21 are provided at substantially the same position (near the center). Correlation is caused by the fact that they are provided at substantially the same position and their behavior is similar.
  • the second embodiment unlike the first embodiment, it is possible to detect abnormality by sampling only vibration data (inspection value) of a specific sensor without using vibration data of all the plurality of sensors.
  • the second embodiment since only the relationship between sensors having similar behavior is modeled, it is possible to generate a model with high accuracy and to detect an abnormality with high accuracy.
  • an abnormality is detected using the correlation of time series data.
  • the correlation between the sensors is modeled from the time-series data acquired by each sensor, and the abnormality is detected by comparing the model with the measured value.
  • the degree of correlation is determined by comparing the model with an actual measurement value. Detect as.
  • FIG. 6 is a schematic diagram showing the relationship between the road surface (floor plate) 31 of the bridge 30, the vehicle 32 traveling on the road surface 31, and the sensor in the third embodiment.
  • the correlation between the sensors A, B, and C is observed in the normal state, but it can be seen from the graph shown in FIG. 7 that the inspection value of the sensor C is deviated from the correlation in the abnormal state.
  • a crack 34 is generated at the position of the sensor C.
  • FIG. 7 is a graph showing the relationship between vibration acceleration and time using period data until the vehicle passes the position of sensor A and passes the point of sensor C. Since no correlation is established at the inspection position of the sensor C, it is understood that an abnormality (crack 34) has occurred at the position of the sensor C.
  • the third embodiment unlike the first embodiment, it is not necessary to perform the frequency conversion process, so that the process can be performed at high speed.
  • the abnormality detection method of the second embodiment is performed on time series data. At points where the vibration intensity at the natural frequency of the frequency conversion data normalized in advance is approximately the same (difference is within a predetermined value), a model is generated using the correlation of the time-series data, and abnormality detection is performed. In this case, compared to the second embodiment, it is not necessary to perform frequency conversion processing when detecting an abnormality, and therefore processing can be performed at high speed.
  • this invention is not limited to these embodiment, A various deformation
  • a traveling vehicle is used as an excitation source, but an excitation source different from the vehicle can also be used.
  • the senses do not need to be provided at regular intervals, and can be provided at arbitrary intervals.
  • a structure abnormality detection system for detecting an abnormality of at least one structure divided into a plurality of groups in which a plurality of factors capable of affecting the behavior of the structure are approximately the same. From the first inspection value acquired at the inspection position, a second vibration intensity at the vibration frequency in the predetermined vibration mode at the natural frequency of the structure is the same as the first inspection position. Means for storing a model for predicting a second inspection value acquired at an inspection position; and evaluating the degree of fitness of the first inspection value and the second inspection value acquired at a specific time with respect to the model.
  • structure abnormality detection system characterized in that it comprises a control unit that identifies that the abnormality in the structure in the group is generated.
  • storage means memorize
  • storage means normalizes the frequency conversion data obtained by frequency-converting the said 1st test value and the said 2nd test value, and the said vibration intensity in the said natural frequency becomes comparable.
  • a recording medium recording a structure abnormality detection program for detecting an abnormality of an object, the structure abnormality detection program inspecting at least one of structures in relation to all normal structures in each of the groups Based on the vibration data obtained at the position, from the first inspection value acquired at the first inspection position, the vibration intensity at the time of vibration in the predetermined vibration mode at the natural frequency of the structure is the first inspection.
  • a function for storing in advance a model for predicting a second inspection value acquired at a second inspection position, which is a position similar to the position, for each group, and the first at a specific time A function for identifying a structure in which an abnormality occurs in the group by evaluating a degree of conformity between the inspection value in the structure and the inspection value in the second structure with respect to the model, and Recording media to be used.
  • the said function to memorize stores the said model based on the correlation of the frequency conversion data obtained by frequency-converting the said 1st test value and the said 2nd test value.
  • the frequency conversion data obtained by frequency-converting the inspection value in the first structure and the inspection value in the second structure is normalized, and the vibration intensity at the natural frequency is 8.
  • the sensor which acquires vibration data, and the said sensor A storage unit for storing the acquired vibration data; and a structure abnormality detection device, wherein the abnormality of the bridge is detected based on the vibration data at a plurality of positions of the bridge in the group obtained from the sensor.
  • Structure abnormality detection system It is a structure abnormality detection system, It is arrange
  • the sensor which acquires vibration data, and the said sensor A storage unit for storing the acquired vibration data; and a structure abnormality detection device, wherein the abnormality of the bridge is detected based on the vibration data at a plurality of positions of the bridge in the group obtained from the sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知システムであって、第1の検査位置で取得される第1の検査値から、構造物の固有振動数における、所定の振動モードでの振動時の振動強度が第1の検査位置と同程度となる位置である第2の検査位置で取得される第2の検査値を予測するモデルを記憶する手段と、特定時刻において取得した第1の検査値と第2の検査値の、前記モデルに対する適合度を評価することで、前記構造物の異常を検知する手段と、を備える。

Description

構造物異常検知システム、構造物異常検知方法及び記録した記録媒体
 本発明は、構造物異常検知システム、構造物異常検知方法及び記録媒体に関する。
 建築物などの構造物に生じる劣化や異常を非破壊で検知することが望まれている。例えば、構造物としての橋梁の点検においては、検査路に検査員が赴き、目視やハンマー打音検査等による異常の検知(接触検査)を行い、優先的に補修すべき箇所を特定している。この接触検査は、耳で聴いた音で異常を判断するため、異常を定量的に判断することができない上、労働集約的であり作業効率が悪く、コストもかさむ傾向がある。
 一般に、構造物の異常検知システムにおいては、加速度計を典型とする計測装置を構造物に規則的に配置し、構造物に局部振動を与えた時の計測結果から振動モードを求め、構造物が正常である時の振動モードからの変化の度合いを計算することで、各構造物の異常を判定している。
 しかしながら、従来の異常検知システムでは、複数箇所に異常がある場合に異常として考えられるパターンをあらかじめモデル化しておかない限り、異常を検出できない。また、異常箇所の特定も不可能であると言う問題点があった。
 複数位置における検査情報の関係性を利用して構造物の異常を検知するという構成を備えた異常検知装置及び方法が望まれていた。
 更に、単一の構造物の異常検知ではなく、異なる場所にある複数の構造物の異常を検知する構造物異常検知システム及び構造物異常検知方法が求められていた。
 そこで、本発明の目的は、複数位置の検査情報に基づいて、インフラ構造物の検査を効率化しコストを低減することができる構造物異常検知システム、検知方法及び記録媒体を提供することである。
 上記目的を達成するために、本発明の構造物異常検知システムは、
 構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知システムであって、
 第1の検査位置で取得される第1の検査値から、前記構造物の固有振動数における、所定の振動モードでの振動時の振動強度が第1の検査位置と同程度となる位置である第2の検査位置で取得される第2の検査値を予測するモデルを記憶する手段と、
 特定時刻において取得した前記第1の検査値と前記第2の検査値の、前記モデルに対する適合度を評価することで、前記構造物の異常を検知する手段と、
 を備えた構造物異常検知装置と、
 前記構造物異常検知装置の判定に基づいて、特定時刻における第1の構造物の検査値と第2の構造物の検査値の前記予測モデルに対する適合度を評価することで、前記グループ内の構造物に異常が発生していることを特定する制御部と、
 を含むことを特徴としている。
 上記目的を達成するために、本発明の構造物異常検知方法は、
 構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知方法であって、
 各前記グループ内の正常な全構造物間の関係において、第1の構造物における検査値から第2の構造物における検査値を予測するモデルを前記グループ毎に予め記憶するステップと、
 特定時刻における前記第1の構造物における検査値と前記第2の構造物における検査値の前記モデルに対する適合度を評価することで、前記グループ内で異常が発生している構造物を特定するステップと、
 を含むことを特徴としている。
 上記目的を達成するために、本発明の構造物異常検知プログラムを記録した記録媒体は、
 前記構造物異常検知プログラムが、少なくとも一つのコンピュータ装置に以下の機能を実現させることが可能であり、構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知プログラムであって、
 各前記グループ内の正常な全構造物間の関係において、前記構造物の少なくとも一つの検査位置で得られる振動データに基づき、第1の検査位置で取得される第1の検査値から、前記構造物の固有振動数における、所定の振動モードでの振動時の振動強度が第1の検査位置と同程度となる位置である第2の検査位置で取得される第2の検査値を予測するモデルを前記グループ毎に予め記憶する機能と、
 特定時刻における前記第1の構造物における検査値と前記第2の構造物における検査値の前記モデルに対する適合度を評価することで、前記グループ内で異常が発生している構造物を特定する機能と、
 を含むことを特徴としている。
 上記目的を達成するために、本発明の構造物異常検知システムは、
 構造物異常検知システムであって、
 挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた橋梁に配置され、振動データを取得するセンサと、
 前記センサが取得した振動データを記憶するストレージと、
 構造物異常検知装置と、を有し、
 前記センサから得られる前記グループ内の前記橋梁の複数位置の前記振動データによって前記橋梁の異常を検知することを特徴としている。
 本発明によれば、広域に配置された複数の構造物の異常検査を効率化し、コストを低減することができる。
本発明の構造物異常検知システムを示す概略模式図である。 構造物の異常を検知する構造物異常検知装置の機能構成を説明するブロック図である。 実施形態1において、橋梁の路面(床板)とその上を走行する車両とセンサとの関係を示す模式図である。 実施形態1における周波数と振動強度の関係を示したグラフである。 実施形態2において、橋梁の路面(床板)とその上を走行する車両とセンサとの関係を示す模式図である。 実施形態3において、橋梁の路面(床板)とその上を走行する車両とセンサとの関係を示す模式図である。 実施形態3における振動加速度と時刻の関係を示したグラフである。
 本明細書において、「構造物」とは、例えば、ビル、住宅、橋梁などのコンクリートを用いて建造された建築物を指す。ただし、構造物は、パイプラインや上下水道などの配管であってもよい。さらに構造物は、金属を用いて構築された構造物(例えば鉄橋や、重機及び建機などの機械)であってもよい。また、構造物に生じる「異常」とは、亀裂、ボルトの脱落、ひび割れ、遊離石灰の発生などを含むことができる。
 また、以下説明する各実施形態では、橋梁に伝播する振動は、橋梁を走行する車両から与えられる。しかしながら、橋梁などの構造物を伝播する振動は、構造物異常検知装置に加振手段を設け、この加振手段によって構造物に加えることもできる。車両に起因した振動を利用する場合、一般的に、重量が異なる複数種類の車両がセンサを通過するため、構造物を伝播する振動の振幅は様々になる。このため、構造物異常検知装置は、複数の振幅の共振状態情報を得ることができる。
 以下、本発明を適用した各実施形態を、添付図面を参照して具体的に説明する。以下説明する実施形態は例示として説明するものであり、本発明を限定するものではないことは言うまでもない。
 図1は、本発明の構造物異常検知システム100を示す概略模式図である。ここでは、構造物として橋梁を例示している。橋梁20の挙動に影響し得る複数の要因、例えば温度、湿度、材質等の環境条件が同程度と考えられる構造物としての橋梁20を少なくとも一つ含む、複数のグループ51~54を形成する。各グループ内の正常な全橋梁20間の関係において、1つの橋梁20における検査値から別の橋梁20における検査値を予測するモデルをグループ毎に予め求め、記憶しておく。特定時刻における検査値のモデルに対する適合度を評価することで、複数橋梁内で異常が発生している橋梁20を検知する。もし、環境条件が同程度と考えられる構造物が事前にわからない場合は、1つの橋梁における検査値から別の橋梁における検査値を予測するモデルを全橋梁の組み合わせについて求め、相関度の高い橋梁群をグループとしてまとめても良い。
 グループ51乃至54は、それぞれ制御部60に接続されている。この接続は有線であっても、無線であっても、またインターネット経由であっても良い。制御部60は、各グループ51乃至54からのデータに基づいて、異常を検知し、どのグループのどの橋梁20に異常が発生しているかを特定する。
 各グループ51~54内に含む橋梁20は、一つでも複数でも良い。また、橋梁20は、地理的に近いものであっても、遠いものであっても良い。環境条件が同程度と考えられる橋梁であれば組み合わせは自由である。更に、各グループ51~54内では構造物は橋梁だけでなく、その他の構造物と組み合わせることもできる。
 個々の橋梁20の異常検知については、以下説明する実施形態1乃至4に記載の構造物異常検知装置に基づいて行われる。各グループ51乃至54からの検知情報及び振動データをリアルタイムでクラウド上の不図示のストレージに蓄積しておき、そのデータに基づいて異常のあるグループと、そのグループ内で異常のある橋梁を特定することもできる。
 各グループ51乃至54をそれぞれ一つの構造物と考え、グループについても、温度、湿度、材質等の環境条件が同程度と考えられるグループ間で、全グループの正常時のモデルと比較して、グループ全体での異常を判定することも可能である。
 本発明の構造物異常検知システム内の個々の構造物異常検知装置の構成及び動作を以下説明する。図2は、以下説明する各実施形態で用いられ、構造物の異常を検知する構造物異常検知装置の機能構成を説明するブロック図である。
 図2において、構造物異常検知装置(以下「異常検知装置」と称する)1は、複数の検査値から予め予測して作成されたモデルを記憶したモデル記憶部10と、予測検査値生成部11と、異常判定部12と、異常の有無を表示する表示部14とから構成されている。
 予測検査値生成部11において、センサ15で検知した第1の検査位置で取得される第1の検査値から、構造物の固有振動数における、所定の振動モードでの振動時の振動強度が第1の検査位置と同程度となる位置である第2の検査位置で取得される第2の検査値の予測検査値が生成される。また、異常判定部12では、予測検査値生成部11で得られた第2の検査位置の予測検査値と第2の検査位置においてセンサ16が実測した検査値とを比較し、モデルに対する適合度を評価し、異常の有無を判定する。異常判定部12では、異常の有無だけでなく、異常の程度を判定することもできる。
 異常判定部12からの情報は表示部14に表示される。異常が発見された場合は、表示部14は補修の指示を出すこともできる。また、モデル記憶部10、予測検査値生成部11、異常判定部12、表示部14を含むユニット13は、構造物異常検知プログラムを記録した記録媒体(不図示)を備える。ユニット13は、構造物異常検知プログラムとして、当該記録媒体と少なくとも一つのコンピュータ装置を用いて、上記各機能を実行させることができる。その場合、一部または全てをクラウド化することもできる。記録媒体としては例えば、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性メモリカード、ROMを用いることができる。
 図3は、構造物としての橋梁の路面(床板)とその上を走行する車両とセンサとの関係を示す模式図である。橋梁20の路面を構成する床板21上を車両22が矢印方向に進行する。床板21には、車両22の通過する複数の検査位置に、振動を感知する複数のセンサA乃至Fが設けられている。センサが取得する振動データを記憶するストレージ(不図示)を設けことができる。センサA乃至F、ストレージ、構造物異常検知装置1を組み合わせることで構造物異常検知システムを構築することが可能である。
 センサA乃至Fとしては、振動加速度を計測する振動センサ、変位を計測する変位センサ、歪を計測する歪センサ、音響を計測する音響センサを用いることができる。センサA乃至Fは、振動による変化を検知しやすい床板の裏に配置することが好ましい。これは、車両からの影響を小さくするためである。また、橋梁20に直接配置せず、レーザーによる計測やカメラによる撮影により、遠方から検知するタイプのセンサであっても良い。更に、橋梁20の周辺の気温、湿度、風速に代表される外部環境の情報や、路面の温度等の情報を検知するセンサを含んでも良い。
(実施形態1)
 以下、本発明の実施形態1を説明する。構造物が正常である時、図3に示す複数のセンサA乃至Fにより取得した振動の時系列データを周波数データに変換し、各センサの周波数データの相関関係から予測したモデルを生成する。実施形態1で用いるセンサは、振動センサや変位センサであることが好ましい。時系列データは、周波数の異なる波が位相のずれも含んで重なり合っているデータであるが、周波数変換することで、位相の影響を取り除く事ができる。
 ここで、モデルの生成について説明する。センサAの値からセンサBの値を予測するための関係式(予測式)を算出する。モデル化の際は、各センサからのデータの時間遅れを考慮しながら、センサA及びセンサBのデータを小単位のデータにそれぞれ分割した上で、センサAからセンサBまたはセンサBからセンサAを、回帰モデル等を使って小単位毎に予測し、その際の係数に関して最小2乗法で探索的に最適値を算出し、相関度が最も大きいものを採用する。これ以外の方法で関係式を算出することもできる。
 算出された関係式から得られた相関度が所定の値以上の場合に、それらのセンサの組は相関度が高いと判断する。あるいは、この相関度はセンサBの値からセンサAの値の予測においても定義でき、センサAからセンサBを予測する際の相関度、センサBからセンサAを予測する際の相関度がそれぞれ所定の値以上の場合に相関度が高いと判断しても良い。なお、ここでの相関度は、実測値と予測値の差が小さいほど大きくなる指標であれば良く、差の絶対値または二乗の総和や平均の逆数や、そのほかの指標であっても良い。モデル生成時は、相関度が高いセンサの組のみをモデル化しても良いし、全てのセンサ組をモデル化しても良い。
 ここでは、生成したモデルを用いて予測した値と実測値とのずれから相関度を判定して、異常の有無を判断する。モデル化した際の予測値と実測値の差の絶対値の最大値より、任意の時点の実測値と予測値の差の絶対値が上回った時に異常が発生していると判断する。あるいは、モデル化する際の誤差も考慮し、最大値に一定の係数を乗じた上で、その値を上回った時に異常と判断しても良い。また、前記条件を満たすような実測値と予測値の差が生じる事象が特定の時刻で単発的に発生している場合には、異常が発生している確度が低い可能性があるため、周辺時刻との差の平均を取り、それが所定の値以上である場合に異常が発生していると判断しても良い。それ以外の方法で異常を検知しても良い。複数のセンサ位置で異常が発生していると判断される場合は、予測値との誤差が所定以上となる組み合わせが多いセンサほど、その異常度が高いと判断することができる。
 ここで、周波数変換データの相関について説明する。各時系列データについて、その振幅が最大となる時点から、十分に減衰するまでの一定時間(車がある地点を通過し、その地点に対する車の加振の影響がなくなるまでの時間。実際には数秒程度)のデータを周波数変換し、周波数変換データの相関関係を利用した異常検知を行う。つまり、図3において、車両22がセンサAの上を通過し始めてからセンサCの上を通過し終わって初めてデータが取得でき、センサ間の比較ができるようになる。モデル化の際も、橋梁20が正常な状態の時に、加振源となる車両22がセンサAの上を通過し、センサCの上を通過し終わって得られるセンサA~センサCの周波数変換データによってモデル化することができる。異常検知の際も同様にして処理を行う。
 上記のような処理にするため、隣接するセンサの時系列データにおいて、振幅が最大となる点が僅かな時刻のずれで生じている場合、それらは同一の加振源による加振の影響を受けていると判断し、その振幅が最大となる点の探索を行い、そこから一定時間分の信号を切り出す処理を行う。その後、切り出した区間の信号に対し周波数変換を行う。
 構造物の異常時には振動特性が変化すると考えられ、その振動特性の変化をタイムリーに検知することができる。言い換えると、構造物の異常時に現れると考えられる障害原因箇所を境にした各センサの振動特性の変化の差を検出することができる。結果として、位相の影響を除いた周波数のみでの比較ができ、精度良く異常を検知することができる。
 図3において、橋梁20の正常時にはセンサA、B、C間に相関関係が成立するが、センサCの位置に異常が検知されると、センサAとセンサBとの間には相関関係が成立するが、センサCに対しては成り立たない。これをグラフに表したのが図4である。この場合センサCの位置に亀裂25(図3)が生じているとしている。
 図4は、車両がセンサAの位置を通過して、センサCの地点を過ぎるまでの特定の期間データを用いて、周波数と振動強度の関係を示したグラフである。正常時には、センサA、B、Cの相関がみられるが、異常時にはセンサCの検査値が相関からずれていることがグラフから分かる。
 正常時における相関関係は、異常の発見された箇所の補修が行われた後は、補修後のデータに更新されて、正常時の相関関係となる。
 ここで「時系列データ」について説明する。時系列データとは、異なる時刻に計測されたデータの系列である。連続的(時間間隔が密)に計測されたデータであっても良いし、非連続的に計測されたデータでも良い。また、計測間隔は、等間隔である必要はない。
 相関関係は同一時刻における各センサの値からのみ判断するので、必ずしも同一の計測項目でなくても良い。各センサの値が全て変位、あるいは全て振動加速度となっていなくても良く、複数の計測項目が混在したデータであっても良い。例えば、モデル化する期間とは異なる期間のデータを使って異常検知することも可能である。
 また、確率分布モデルを用いれば、センサのデータの間に成り立つ相関関係を、センサのデータが所定の値となる確率で規定することができる。確率分布モデルにおいて稀な確率で発生する検査値がセンサから得られた場合、検査値が予測検査値とずれているとみなすことができ、そのずれの大きさは確率の逆数に基づいて決定される量で代替可能である。この確率分布モデルの特徴を用いれば、確率分布モデルを用いて異常検知することも可能である。
(実施形態2)
 実施形態2では、実施形態1で説明した周波数変換データのうち、振動モードが同一の床板において、正規化した周波数変換データの各モードの固有振動数における振動強度が同程度となる点の周波数変換データの相関関係をモデル化して、構造物の異常を検知する。
 実施形態2においても、センサは振動センサや変位センサであることが好ましい。実施形態1と同様に、生成したモデルを用いて予測した値と実測値とのずれを見て、異常を検知することができる。異常時に現れると考えられる障害原因箇所を境にした各センサの振動特性の変化の差が現れた時、異常として検出する。
 図5は、実施形態2において、橋梁の路面(床板)とその上を走行する車両とセンサとの関係を示す模式図である。正常時のモデルでは、センサ5とセンサ23間については、相関関係が成立するが、センサ2とセンサ5間とセンサ2とセンサ23間には成立していない。ここで、例えばセンサ23の位置に異常が発生していると、センサ5とセンサ23の間にも相関関係が成立しなくなり、異常が発生していることを検知できることになる。なお、図5では、右側の床板21は一部図示されていないため、センサ23が床板21の右寄りに描かれているが、実際にはセンサ5もセンサ23も、ほぼ同じ長さを持つ床板21のほぼ同じ位置(中央付近)に設けられている。ほぼ同じ位置に設けられ、その挙動が似ていることにより、相関関係が生じる。
 実施形態2では、実施形態1と異なり、複数のセンサ全ての振動データを用いることなく、特定のセンサだけの振動データ(検査値)のみをサンプリングして、異常を検知することが可能となる。
 実施形態2によれば、類似の挙動をとるセンサ間の関係のみをモデル化するため、精度の良いモデルの生成及び精度の良い異常検知が可能となる。
(実施形態3)
 実施形態3では、時系列データの相関関係を利用して異常を検知する。各センサにより取得した時系列データからセンサ間の相関関係をモデル化し、そのモデルと実測値を比較することで異常を検知する。
 実施形態3では、異常時に発生すると考えられる、伝搬する信号の減衰(強度の低下)や、伝搬速度の変化が見られた時、モデルと実測値を比較することで相関度を判定し、異常として検知する。
 図6は、実施形態3において、橋梁30の路面(床板)31とその上を走行する車両32とセンサとの関係を示す模式図である。図4と同様に、正常時には、センサA、B、Cの相関がみられるが、異常時にはセンサCの検査値が相関からずれていることが図7に示すグラフから分かる。センサCの位置に亀裂34が生じている。
 図7は、車両がセンサAの位置を通過して、センサCの地点を過ぎるまでの期間データを用いて、振動加速度と時刻の関係を示したグラフである。センサCの検査位置において相関関係が成立していないことから、センサCの位置において異常(亀裂34)が発生していることが分かる。
 実施形態3によれば、実施形態1と違い、周波数変換の処理をする必要がないため、処理を高速に行うことができる。
(実施形態4)
 実施形態4では、実施形態2の異常検出方法を時系列データに対して行う。あらかじめ正規化した周波数変換データの固有振動数における振動強度が同程度(差が所定の値以内)となる点同士で、その時系列データの相関関係を用いてモデルを生成し、異常検知を行う。この場合、実施形態2に比べて、異常検知の際に周波数変換の処理を行う必要がないため、処理を高速に行うことができる。
 以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、橋梁の振動データを取得する場合、走行する車両を加振源としているが、車両とは別の加振源を用いることもできる。また、センセは等間隔で設ける必要はなく、任意の間隔で設けることができる。
(付記1)構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知システムであって、第1の検査位置で取得される第1の検査値から、前記構造物の固有振動数における、所定の振動モードでの振動時の振動強度が第1の検査位置と同程度となる位置である第2の検査位置で取得される第2の検査値を予測するモデルを記憶する手段と、特定時刻において取得した前記第1の検査値と前記第2の検査値の、前記モデルに対する適合度を評価することで、前記構造物の異常を検知する手段と、を備えた構造物異常検知装置と、前記構造物異常検知装置の判定に基づいて、特定時刻における第1の構造物の検査値と第2の構造物の検査値の前記モデルに対する適合度を評価することで、前記グループ内の構造物に異常が発生していることを特定する制御部と、を含むことを特徴とする構造物異常検知システム。
(付記2)前記記憶する手段は、前記第1の検査値及び前記第2の検査値を周波数変換して得られる周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする付記1に記載の構造物異常検知システム。
(付記3)前記記憶する手段は、前記第1の検査値及び前記第2の検査値を周波数変換して得られる周波数変換データを正規化し、前記固有振動数における前記振動強度が同程度となる前記周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする付記1に記載の構造物異常検知システム。
(付記4)構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知方法であって、各前記グループ内の正常な全構造物間の関係において、第1の構造物における検査値から第2の構造物における検査値を予測するモデルを前記グループ毎に予め記憶するステップと、特定時刻における前記第1の構造物における検査値と前記第2の構造物における検査値の前記モデルに対する適合度を評価することで、前記グループ内で異常が発生している構造物を特定するステップと、を含むことを特徴とする構造物異常検知方法。
(付記5)前記記憶するステップにおいて、前記第1の構造物における検査値及び前記第2の構造物における検査値を周波数変換して得られる周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする付記4に記載の構造物異常検知方法。
(付記6)前記記憶するステップにおいて、前記第1の構造物における検査値及び前記第2の構造物における検査値を周波数変換して得られる周波数変換データを正規化し、固有振動数における振動強度が同程度となる前記周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする付記4に記載の構造物異常検知方法。
(付記7)少なくとも一つのコンピュータ装置に以下の機能を実現させることが可能であり、構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知プログラムを記録した記録媒体であって、前記構造物異常検知プログラムは、各前記グループ内の正常な全構造物間の関係において、構造物の少なくとも一つの検査位置で得られる振動データに基づき、第1の検査位置で取得される第1の検査値から、前記構造物の固有振動数における、所定の振動モードでの振動時の振動強度が第1の検査位置と同程度となる位置である第2の検査位置で取得される第2の検査値を予測するモデルを前記グループ毎に予め記憶する機能と、特定時刻における前記第1の構造物における検査値と前記第2の構造物における検査値の前記モデルに対する適合度を評価することで、前記グループ内で異常が発生している構造物を特定する機能と、を含むことを特徴とする記録媒体。
(付記8)前記記憶する機能では、前記第1の検査値及び前記第2の検査値を周波数変換して得られる周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする付記7に記載の記録媒体。
(付記9)前記記憶する機能では、前記第1の構造物における検査値及び前記第2の構造物における検査値を周波数変換して得られる周波数変換データを正規化し、固有振動数における振動強度が同程度となる前記周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする付記7に記載の記録媒体。
(付記10)構造物異常検知システムであって、挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた橋梁に配置され、振動データを取得するセンサと、前記センサが取得した振動データを記憶するストレージと、構造物異常検知装置と、を有し、前記センサから得られる前記グループ内の前記橋梁の複数位置の前記振動データによって前記橋梁の異常を検知することを特徴とする構造物異常検知システム。
 以上、実施形態(及び変形形態)を参照して本願発明を説明したが、本願発明は上記実施形態(及び変形形態)に限定されるものではない。本願発明の構成及び詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2015年10月13日に出願された日本出願特願2015-202076を基礎とする優先権を主張し、その開示の全てをここに取り込む。

 

Claims (10)

  1.  構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知システムであって、
     第1の検査位置で取得される第1の検査値から、前記構造物の固有振動数における、所定の振動モードでの振動時の振動強度が第1の検査位置と同程度となる位置である第2の検査位置で取得される第2の検査値を予測するモデルを記憶する手段と、
     特定時刻において取得した前記第1の検査値と前記第2の検査値の、前記モデルに対する適合度を評価することで、前記構造物の異常を検知する手段と、
     を備えた構造物異常検知装置と、
     前記構造物異常検知装置の判定に基づいて、特定時刻における第1の構造物の検査値と第2の構造物の検査値の前記モデルに対する適合度を評価することで、前記グループ内の構造物に異常が発生していることを特定する制御部と、
     を含むことを特徴とする構造物異常検知システム。
  2.  前記記憶する手段は、前記第1の検査値及び前記第2の検査値を周波数変換して得られる周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする請求項1に記載の構造物異常検知システム。
  3.  前記記憶する手段は、前記第1の検査値及び前記第2の検査値を周波数変換して得られる周波数変換データを正規化し、前記固有振動数における前記振動強度が同程度となる前記周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする請求項1に記載の構造物異常検知システム。
  4.  構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知方法であって、
     各前記グループ内の正常な全構造物間の関係において、第1の構造物における検査値から第2の構造物における検査値を予測するモデルを前記グループ毎に予め記憶するステップと、
     特定時刻における前記第1の構造物における検査値と前記第2の構造物における検査値の前記モデルに対する適合度を評価することで、前記グループ内で異常が発生している構造物を特定するステップと、
     を含むことを特徴とする構造物異常検知方法。
  5.  前記記憶するステップにおいて、前記第1の構造物における検査値及び前記第2の構造物における検査値を周波数変換して得られる周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする請求項4に記載の構造物異常検知方法。
  6.  前記記憶するステップにおいて、前記第1の構造物における検査値及び前記第2の構造物における検査値を周波数変換して得られる周波数変換データを正規化し、固有振動数における振動強度が同程度となる前記周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする請求項4に記載の構造物異常検知方法。
  7.  少なくとも一つのコンピュータ装置に以下の機能を実現させることが可能であり、構造物の挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた少なくとも一つの構造物の異常を検知する構造物異常検知プログラムを記録した記録媒体であって、
     前記構造物異常検知プログラムは、
     各前記グループ内の正常な全構造物間の関係において、前記構造物の少なくとも一つの検査位置で得られる振動データに基づき、第1の検査位置で取得される第1の検査値から、前記構造物の固有振動数における、所定の振動モードでの振動時の振動強度が第1の検査位置と同程度となる位置である第2の検査位置で取得される第2の検査値を予測するモデルを前記グループ毎に予め記憶する機能と、
     特定時刻における前記第1の構造物における検査値と前記第2の構造物における検査値の前記モデルに対する適合度を評価することで、前記グループ内で異常が発生している構造物を特定する機能と、
     を含むことを特徴とする記録媒体。
  8.  前記記憶する機能では、前記第1の検査値及び前記第2の検査値を周波数変換して得られる周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする請求項7に記載の記録媒体。
  9.  前記記憶する機能では、前記第1の構造物における検査値及び前記第2の構造物における検査値を周波数変換して得られる周波数変換データを正規化し、固有振動数における振動強度が同程度となる前記周波数変換データの相関関係に基づき前記モデルを記憶することを特徴とする請求項7に記載の記録媒体。
  10.  構造物異常検知システムであって、
     挙動に影響を与えうる複数の要因が同程度である複数のグループに分けられた橋梁に配置され、振動データを取得するセンサと、
     前記センサが取得した振動データを記憶するストレージと、
     構造物異常検知装置と、を有し、
     前記センサから得られる前記グループ内の前記橋梁の複数位置の前記振動データによって前記橋梁の異常を検知することを特徴とする構造物異常検知システム。

     
PCT/JP2016/004525 2015-10-13 2016-10-07 構造物異常検知システム、構造物異常検知方法及び記録した記録媒体 Ceased WO2017064855A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017545092A JP6819909B2 (ja) 2015-10-13 2016-10-07 構造物異常検知システム、構造物異常検知方法及び記録した記録媒体
US15/767,881 US10641681B2 (en) 2015-10-13 2016-10-07 Structure abnormality detection system, structure abnormality detection method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015202076 2015-10-13
JP2015-202076 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017064855A1 true WO2017064855A1 (ja) 2017-04-20

Family

ID=58517552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004525 Ceased WO2017064855A1 (ja) 2015-10-13 2016-10-07 構造物異常検知システム、構造物異常検知方法及び記録した記録媒体

Country Status (3)

Country Link
US (1) US10641681B2 (ja)
JP (1) JP6819909B2 (ja)
WO (1) WO2017064855A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230645A1 (ja) * 2017-06-14 2018-12-20 株式会社東芝 異常検知装置、異常検知方法、およびプログラム
JP2019100873A (ja) * 2017-12-04 2019-06-24 富士電機株式会社 解析装置、解析システム及び解析方法
JP2019140687A (ja) * 2017-05-16 2019-08-22 Cach株式会社 遠隔状態監視システム及び監視方法
WO2020044626A1 (ja) * 2018-08-27 2020-03-05 国立大学法人大阪大学 構造物の点検システム及び構造物の点検方法
WO2020157810A1 (ja) * 2019-01-28 2020-08-06 日本電気株式会社 状態推定装置、状態推定方法、及びコンピュータ読み取り可能な記録媒体
WO2020195536A1 (ja) * 2019-03-28 2020-10-01 ポート・アンド・アンカー株式会社 構造物の異常判別方法及び異常判別システム
JP2021018111A (ja) * 2019-07-18 2021-02-15 一般社団法人 レトロフィットジャパン協会 建造物の耐用年数の評価方法及び評価システム
JP2021032822A (ja) * 2019-08-28 2021-03-01 カヤバ システム マシナリー株式会社 検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6735034B2 (ja) * 2015-10-13 2020-08-05 日本電気株式会社 構造物異常検知装置、構造物異常検知方法、記録媒体及び構造物異常検知システム
JP7406382B2 (ja) * 2020-01-16 2023-12-27 三菱重工業株式会社 予兆検知装置及び予兆検知方法
CN113032999B (zh) * 2021-03-26 2024-05-17 北京中关村水木医疗科技有限公司 医疗设备使用寿命的预测方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128182A (ja) * 1993-10-29 1995-05-19 Omron Corp 橋梁特性検査機器
JP2013040774A (ja) * 2011-08-11 2013-02-28 Ntt Data Corp 異常検出装置、異常検出方法、異常検出プログラム
WO2015033603A1 (ja) * 2013-09-09 2015-03-12 日本電気株式会社 情報処理システム、情報処理方法及びプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370964B1 (en) * 1998-11-23 2002-04-16 The Board Of Trustees Of The Leland Stanford Junior University Diagnostic layer and methods for detecting structural integrity of composite and metallic materials
JP5145501B2 (ja) * 2007-03-31 2013-02-20 学校法人早稲田大学 大型建造物の診断システム、大型建造物の診断プログラム、記録媒体および大型建造物の診断方法
JP4932618B2 (ja) * 2007-06-29 2012-05-16 東京エレクトロン株式会社 検査方法及びこの方法を記録したプログラム記録媒体
JP2010127764A (ja) * 2008-11-27 2010-06-10 National Institute Of Advanced Industrial Science & Technology 建物の耐震診断方法および装置
US20120303556A1 (en) * 2011-05-27 2012-11-29 Microsoft Corporation Comparison of modeling and inference methods at multiple spatial resolutions
EP3125057B1 (en) * 2014-03-27 2019-07-03 Nec Corporation System-analyzing device, analysis-model generation method, system analysis method, and system-analyzing program
US10248888B2 (en) * 2014-11-28 2019-04-02 Canon Kabushiki Kaisha Classifying method, storage medium, inspection method, and inspection apparatus
WO2017051631A1 (ja) * 2015-09-24 2017-03-30 富士フイルム株式会社 故障診断装置、故障診断方法、及び故障診断プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128182A (ja) * 1993-10-29 1995-05-19 Omron Corp 橋梁特性検査機器
JP2013040774A (ja) * 2011-08-11 2013-02-28 Ntt Data Corp 異常検出装置、異常検出方法、異常検出プログラム
WO2015033603A1 (ja) * 2013-09-09 2015-03-12 日本電気株式会社 情報処理システム、情報処理方法及びプログラム

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174204B2 (ja) 2017-05-16 2022-11-17 Cach株式会社 遠隔状態監視システム及び監視方法
JP7483195B2 (ja) 2017-05-16 2024-05-15 Cach株式会社 遠隔状態監視システム及び監視方法
JP2019140687A (ja) * 2017-05-16 2019-08-22 Cach株式会社 遠隔状態監視システム及び監視方法
JP2022191271A (ja) * 2017-05-16 2022-12-27 Cach株式会社 遠隔状態監視システム及び監視方法
JPWO2018230645A1 (ja) * 2017-06-14 2020-05-21 株式会社東芝 異常検知装置、異常検知方法、およびプログラム
WO2018230645A1 (ja) * 2017-06-14 2018-12-20 株式会社東芝 異常検知装置、異常検知方法、およびプログラム
JP2019100873A (ja) * 2017-12-04 2019-06-24 富士電機株式会社 解析装置、解析システム及び解析方法
JP7035488B2 (ja) 2017-12-04 2022-03-15 富士電機株式会社 解析装置、解析システム及び解析方法
WO2020044626A1 (ja) * 2018-08-27 2020-03-05 国立大学法人大阪大学 構造物の点検システム及び構造物の点検方法
JP7195526B2 (ja) 2018-08-27 2022-12-26 国立大学法人大阪大学 構造物の点検システム及び構造物の点検方法
JP2020034306A (ja) * 2018-08-27 2020-03-05 国立大学法人大阪大学 構造物の点検システム及び構造物の点検方法
JPWO2020157810A1 (ja) * 2019-01-28 2021-10-21 日本電気株式会社 状態推定装置、状態推定方法、及びプログラム
US11609149B2 (en) 2019-01-28 2023-03-21 Nec Corporation State estimation apparatus, state estimation method, and computer-readable recording medium
WO2020157810A1 (ja) * 2019-01-28 2020-08-06 日本電気株式会社 状態推定装置、状態推定方法、及びコンピュータ読み取り可能な記録媒体
JP2020165672A (ja) * 2019-03-28 2020-10-08 ポート・アンド・アンカー株式会社 構造物の異常判別方法及び異常判別システム
WO2020195536A1 (ja) * 2019-03-28 2020-10-01 ポート・アンド・アンカー株式会社 構造物の異常判別方法及び異常判別システム
JP2021018111A (ja) * 2019-07-18 2021-02-15 一般社団法人 レトロフィットジャパン協会 建造物の耐用年数の評価方法及び評価システム
JP7369424B2 (ja) 2019-07-18 2023-10-26 一般社団法人 レトロフィットジャパン協会 建造物の耐用年数の評価方法及び評価システム
JP2021032822A (ja) * 2019-08-28 2021-03-01 カヤバ システム マシナリー株式会社 検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法
JP7252863B2 (ja) 2019-08-28 2023-04-05 Kyb株式会社 検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法

Also Published As

Publication number Publication date
JPWO2017064855A1 (ja) 2018-08-02
JP6819909B2 (ja) 2021-01-27
US10641681B2 (en) 2020-05-05
US20180306669A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6819909B2 (ja) 構造物異常検知システム、構造物異常検知方法及び記録した記録媒体
JP6735034B2 (ja) 構造物異常検知装置、構造物異常検知方法、記録媒体及び構造物異常検知システム
JP6079776B2 (ja) 構造物の分析装置および構造物の分析方法
US20150114121A1 (en) Structure analyzing device and a structure analyzing method
WO2021010407A1 (ja) 光ファイバセンシングシステム、光ファイバセンシング機器、及び配管劣化検知方法
Alves et al. A fast and efficient feature extraction methodology for structural damage localization based on raw acceleration measurements
Fayyadh et al. Condition assessment of elastic bearing supports using vibration data
Kordestani et al. Normalized energy index-based signal analysis through acceleration trendlines for structural damage detection
Cremona Dynamic monitoring applied to the detection of structural modifications: a high‐speed railway bridge study
Yaghoubzadehfard et al. Ensemble learning-based structural health monitoring of a bridge using an interferometric radar system
JP6364742B2 (ja) 構造物診断装置、構造物診断方法、及びプログラム
Bhuiyan et al. Guided wave crack detection and size estimation in stiffened structures
JP2017187327A (ja) き裂診断方法および装置
Kiani et al. Structural Health Monitoring of FRP-Reinforced Concrete Bridges Using Vibration Responses
CN118736802A (zh) 一种桥梁施工安全监控方法及系统
JPWO2015059956A1 (ja) 構造物診断装置、構造物診断方法、及びプログラム
Gupta et al. Multiple damage prediction in tubular rectangular beam model using frequency response-based mode shape curvature with back-propagation neural network
Fernando et al. Damage Detection and Condition Monitoring of Pre-stressed Concrete Bridges by using Vibrationbased Health Monitoring Techniques
Aulakh et al. Piezo Sensors Based Operational Strain Modal Analysis for SHM
JP6927360B2 (ja) き裂診断方法および装置
JP6426568B2 (ja) ひび割れ発生診断方法及びひび割れ発生診断プログラム
Sadeghi Structural health monitoring of composite bridges by integrating model-based and data-driven methods
Li et al. Wireless vibration testing and bridge deck damage identification using underneath maintenance walkway
KR20100067986A (ko) 고유진동수 기반 구조물 손상탐지 방법
Kristijanto et al. Damage Detection in Gusset Plates of Steel Truss Bridges using Modal Parameters: Experimental and Numerical Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545092

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15767881

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855109

Country of ref document: EP

Kind code of ref document: A1