WO2016060278A1 - 大腸癌に対する薬物療法の感受性を予測する方法 - Google Patents
大腸癌に対する薬物療法の感受性を予測する方法 Download PDFInfo
- Publication number
- WO2016060278A1 WO2016060278A1 PCT/JP2015/079909 JP2015079909W WO2016060278A1 WO 2016060278 A1 WO2016060278 A1 WO 2016060278A1 JP 2015079909 W JP2015079909 W JP 2015079909W WO 2016060278 A1 WO2016060278 A1 WO 2016060278A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- methylation
- gene
- colorectal cancer
- cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/154—Methylation markers
Definitions
- the present invention relates to a method for predicting responsiveness to cancer drug therapy for colorectal cancer. More specifically, a method for predicting susceptibility to cancer drug therapy for colorectal cancer using, as an index, a DNA methylation profile in a sample containing colorectal cancer tissue, colorectal cancer cells or DNA derived from colorectal cancer cells of a colorectal cancer patient About.
- Colorectal cancer is a disease that occupies second place in men and first place in women among all malignant tumors. The number of deaths is the third highest (about 40,000 in 2004) and is expected to increase further in 2015 (about 66,000). Improving the treatment results for colorectal cancer is considered to greatly contribute to reducing the number of cancer deaths accounting for 30% of the total deaths.
- irinotecan-based and oxaliplatin-based chemotherapy is used for chemotherapy for advanced recurrent colorectal cancer that cannot be curatively resected.
- the order of application in combination has not been studied so far.
- molecular targeted drugs especially anti-EGFR antibody drugs (cetuximab, panitumumab) and anti-VEGF antibody drugs (bevacizumab)
- treatment results progression-free survival and overall survival of advanced / recurrent colorectal cancer have steadily improved.
- molecular targeted drugs are expensive and are currently less cost effective than conventional chemotherapeutic drugs and other molecular targeted drugs used for cancer. It is necessary to selectively apply treatment to more effective subjects from the viewpoint of avoiding side effects of ineffective patients, which is a wasteful medical cost.
- anti-EGFR antibody drugs As a biomarker for predicting the therapeutic sensitivity of advanced / recurrent colorectal cancer to anti-EGFR antibody drugs, it was reported in 2008 that there was no added therapeutic effect of anti-EGFR antibody drugs in cases with mutations in exon 2 of KRAS. ing. In recent clinical studies, anti-EGFR antibody drugs may be more effective in RAS wild type cases that do not have mutations in exons 3, 4 and NRAS exons 2, 3, 4 in addition to exon 2 of KRAS. It has been reported. In addition, PIK3CA mutations are promising as therapeutic effect predictors, and BRAF mutations have been reported as prognostic predictors.
- Non-patent Document 2 The group of Sapporo Medical University shows that LINE-1 methylation level and microRNA-31 expression level are positively correlated with colorectal cancer patients, and the microRNA-31 high expression group in the non-hate survival period in anti-EGFR antibody administration cases Have reported that it is significantly shorter than the low expression group (Non-patent Document 2).
- Non-patent Document 3 Non-patent Document 3
- the present invention has been made in view of the circumstances as described above, and predicts the responsiveness to cancer drug therapy for colorectal cancer with high accuracy, reduces the patient's economic and physical burden, and reduces cost. It is an object to provide a highly effective administration guideline.
- the present invention is the first report that drug sensitivity can be predicted from a methylation profile.
- the present invention it is possible to select chemotherapy for colorectal cancer, particularly advanced recurrent colorectal cancer that cannot be curatively excised, based on the difference in methylation status. That is, when initiating primary treatment, select the order of application of irinotecan-based and oxaliplatin-based chemotherapy regimens, which are currently acceptable, based on DNA methylation status from patient specimens Can do.
- the present invention it is possible to extract a group of cases exhibiting resistance to an anti-EGFR antibody drug even in the KRAS wild type. Furthermore, in addition to exon 2 of KRAS which has been reported in recent years, even cases of RAS wild type that do not have mutations in exons 3, 4 and NRAS exons 2, 3, 4 are included in the treatment resistant group. can do. That is, the method of the present invention can extract a case that is actually resistant from cases classified into the treatment sensitive group in the conventional report, and can be said to be a more accurate treatment effect prediction method. .
- Gene mutations accumulate sequentially in the development and progression of cancer, and subpopulations with various gene mutation profiles are present in the tumor (heterogeneity). Since colorectal cancer has a strong tendency to accumulate gene mutations in the development and progression of tumors, and is a tumor rich in heterogeneity, when examining gene mutations, it is collected at any point in the treatment process, from which site, and to what extent It is strongly influenced by whether DNA is extracted from the tumor.
- the methylation profile is considered to be determined in the early stage of cancer development and can be said to be relatively uniform in the tumor.
- methylation in the tumor at the start of molecular target drug use even for samples collected at the time of resection of the primary focus It is expected to reflect the profile more accurately. That is, the method of the present invention can accurately determine the therapeutic effect on cancer pharmacotherapy regardless of the progress of cancer or the condition for collecting samples.
- a group that is highly effective by an anti-EGFR antibody can be concentrated and detected as compared with the conventional method based on gene expression. A highly accurate determination can be made.
- FIG. 1 shows the results of an exhaustive DNA methylation analysis (unsupervised hierarchical cluster analysis using 3163 probes with a standard deviation of the ⁇ value distribution exceeding 0.25) in 45 colorectal cancer patients who have used anti-EGFR antibody drugs.
- FIG. 2 shows a comparison between the hypermethylated group and the hypomethylated group of (A) progression-free survival (PFS) and (B) total survival (OS) when using anti-EGFR antibody drugs in 45 colorectal cancer patients.
- FIG. 3 is a comprehensive DNA methylation analysis of 52 colorectal cancer patients with a history of use of anti-EGFR antibody drugs, which is different from 45 cases in Example 1 (teaching by 2577 probe with a standard deviation of ⁇ value distribution exceeding 0.25).
- FIG. 7 shows survival curves when using anti-EGFR antibody drugs: (A) Comparison of hypermethylation group and hypomethylation group of this classification, (B) Hypermethylation group (HME) based on the classification of Yagi et al. The comparison of an intermediate methylation group (IME) and a hypomethylation group (LME) is shown.
- FIG. 8 shows progression-free survival (PFS) and methylation classification when combined therapy including oxaliplatin (solid line) and combination therapy including irinotecan (dashed line) are performed as primary treatment in advanced recurrent colorectal cancer. Correlation is shown: (A) primary treatment outcome in the hypermethylation (HMCC) group, (B) primary treatment outcome in the hypomethylation (LMCC) group.
- FIG. 9 shows progression-free survival (PFS) and methylation classification in combination therapy including oxaliplatin (solid line) and combination therapy including irinotecan (dashed line) as secondary treatment in advanced recurrent colorectal cancer Correlation is shown: (A) secondary treatment outcome in the hypermethylation (HMCC) group, (B) secondary treatment outcome in the hypomethylation (LMCC) group.
- PFS progression-free survival
- HMCC hypermethylation
- LMCC hypomethylation
- FIG. 10 shows the case of combination therapy including oxaliplatin as the first treatment, irinotecan as the second treatment (solid line), and irinotecan as the first treatment, and oxaliplatin as the second treatment in advanced recurrent colorectal cancer Shows the correlation between progression-free survival (PFS) when performed (dashed line) and methylation classification: (A) treatment results in hypermethylation (HMCC) group, (B) hypomethylation (LMCC) group Treatment results.
- FIG. 11 shows a case of combination therapy including oxaliplatin as the first treatment, irinotecan as the second treatment (solid line), and irinotecan as the first treatment, and oxaliplatin as the second treatment in advanced recurrent colorectal cancer.
- FIG. 12 shows the correlation between progression-free survival (PFS) and CIMP classification when combination therapy including oxaliplatin (solid line) and combination therapy including irinotecan (dashed line) is performed as primary treatment in advanced recurrent colorectal cancer : (A) 1st treatment result of CIMP positive group, (B) 1st treatment result of CIMP negative group.
- PFS progression-free survival
- FIG. 12 shows the correlation between progression-free survival (PFS) and CIMP classification when combination therapy including oxaliplatin (solid line) and combination therapy including irinotecan (dashed line) is performed as primary treatment in advanced recurrent colorectal cancer : (A) 1st treatment result of CIMP positive group, (B) 1st treatment result of CIMP negative group.
- FIG. 13 shows the correlation between progression-free survival (PFS) and CIMP classification when a combination therapy including oxaliplatin (solid line) and a combination therapy including irinotecan (dashed line) are performed as secondary treatment in advanced recurrent colorectal cancer.
- PFS progression-free survival
- FIG. 14 shows the case of combination therapy including oxaliplatin as the first treatment, irinotecan as the second treatment (solid line), and irinotecan as the first treatment, and oxaliplatin as the second treatment in advanced recurrent colorectal cancer.
- FIG. 15 shows the case of combination therapy including oxaliplatin as the first treatment, irinotecan as the second treatment (solid line), and irinotecan as the first treatment, and oxaliplatin as the second treatment in advanced recurrent colorectal cancer.
- the present invention relates to a method for determining cancer drug therapy responsiveness in patients with colorectal cancer.
- the meanings of terms used in the present invention and the present specification will be described below.
- responsiveness to cancer drug therapy means the patient's response to cancer drug therapy as described above, and “sensitivity” when cancer drug therapy is successful, Is expressed as “resistance”.
- the present invention relates to a method for determining the responsiveness of a colorectal cancer patient to cancer drug therapy based on the DNA methylation level in a specimen containing the colorectal cancer tissue or colorectal cancer cells of the patient. It is.
- HMCC Highly-Methylated Coloric Cancer
- LMCC Low-Methylated Corrector Cancer
- Example 3 Comparison with existing biomarkers As described above, in recent years, in addition to KRAS exon 2, KRAS exons 2, 3, 4 and NRAS exons 2, 3, 4 are treated with anti-EGFR antibody drugs in cases with mutations It has been reported that the effect is poor, and is being clinically applied in Japan as a biomarker.
- the response rates of anti-EGFR antibody drugs were compared.
- this classification showed the same relevance as the classification based on the RAS genotype in both the response rate of the anti-EGFR antibody drug, the PFS when using the anti-EGFR antibody drug, and the OS after the first administration of the anti-EGFR antibody drug.
- the results of multivariate analysis indicated that this classification is a defining factor independent of the RAS genotype in PFS when using anti-EGFR antibody drugs.
- Example 1 a total of 97 cases including Example 1 and Example 2 were classified into 3 groups of HME (7 cases), IME (16 cases), and LME (74 cases) (Table 5).
- the classification method of the present invention can extract many methylated cases as compared with the existing subtype classification based on methylation, and is not extracted by the existing subtype classification. Hypermethylated cases were also shown to be resistant to anti-EGFR antibody drugs. That is, according to the method of the present invention, it is possible to predict the treatment sensitivity of an anti-EGFR antibody drug with higher accuracy than the existing subtype classification.
- Example 5 Examination of classification method based on limited number of probes The classification method based on the limited number of probes was examined using 97 examples included in Example 1 and Example 2. In Examples 1 and 2, the extracted cases of 3,163 and 2,577 were used for analysis, and target cases were classified by unsupervised cluster analysis. Of the probes used for analysis in each example, 1744 probes were common to both examples. Among these, 1053 probes having a difference in ⁇ value were extracted between the case group classified into the HMCC group and the case group classified into the LMCC group (Table 7: described at the end of Examples).
- the case was classified into the HMCC group (for example, 3 or more, 6 probes when using 4 probes). If the methylation is 4 or more and methylation is positive, it is classified as the HMCC group).
- the sensitivity indicates the ratio of cases determined to be the HMCC group in the method of this example among the total 34 cases determined to be the HMCC group in Examples 1 and 2.
- the specificity indicates the ratio of cases determined as the LMCC group by the method in Example 5 out of a total of 63 cases determined as the LMCC group in Examples 1 and 2.
- the number of probes to be extracted was set (4, 5, 6, 7, 10). Arbitrary probe extraction, case classification, and calculation of sensitivity specificity were taken as one set, and this was repeated 5 sets under each condition, and the average value was taken as the sensitivity specificity under each condition.
- the sensitivity specificity calculated under each condition is shown in the table.
- Example 6 Correlation between treatment results and methylation classification in advanced recurrent colorectal cancer 1
- Correlation between primary treatment results and methylation classification Comprehensive methylation analysis was conducted on 94 advanced recurrent colorectal cancers according to Example 1.
- the HMCC group (34 cases) and the LMCC group (60 cases) were classified, and the progression-free survival period of the first treatment was compared in each group.
- the combination therapy including oxaliplatin (solid line) tended to have a shorter progression-free survival compared to the combination therapy including irinotecan (dashed line), but in the LMCC group, there was no difference between the two treatments. There was no difference in exacerbation survival time (FIG. 8). Therefore, the methylation classification of the present invention was considered useful as a biomarker for therapeutic selection in the primary treatment of advanced recurrent colorectal cancer.
- the combination therapy including oxaliplatin in the primary treatment and the combination therapy including irinotecan in the subsequent secondary treatment is more effective than the group (broken line) in the reverse order.
- progression-free survival There was a tendency for progression-free survival to be short (FIG. 10A).
- progression-free survival there was no difference in progression-free survival between the two treatment methods in the LMCC group (FIG. 10B).
- CIMP analysis was performed on 108 patients who underwent primary treatment in advanced colorectal cancer and 78 cases who had advanced to secondary therapy. CIMP positive (24 cases), CIMP negative (84 cases), and CIMP positive (17 cases), respectively. ) And CIMP negative (61 cases).
- combination therapy including oxaliplatin in the primary treatment tended to have a short progression-free survival period in combination therapy including irinotecan in the second treatment (FIGS. 15A and 15C).
- the primary and secondary treatments are continuously analyzed, the group in which the combination therapy including oxaliplatin in the primary treatment and the combination therapy including irinotecan in the subsequent secondary treatment are performed in the reverse order was significantly shorter in progression-free survival (FIG. 15E).
- the CIMP negative group there was no difference in progression-free survival between the two treatment methods (FIGS. 15B, D, F).
- the CIMP classification is useful not only as a treatment choice in primary and secondary treatment of advanced recurrent colorectal cancer but also as a biomarker for selecting the order of primary treatment and secondary treatment.
- Example 8 Refinement and verification of probes in two cohorts
- the patient groups of Examples 1 and 2 are designated as a first cohort (C1) and a second cohort (C2), respectively.
- FIG. 16 a prediction model related to the classification of HMCC and LMCC was created using an algorithm called Random Forest.
- Random Forest a prediction model related to the classification of HMCC and LMCC was created using an algorithm called Random Forest.
- a model was created with C1 by Random Forest, and the classification result of C2 was predicted.
- Using the extracted 1744 probes a model was created in C2 by Random Forest, and the classification result of C1 was predicted.
- Random Forests confirmed the importance of variables when creating a model, and narrowed the variables to 0.002 or more.
- 140 probes were extracted from the C1 model and 128 probes were extracted from the C2 model.
- 24 probes remained when the common probe was extracted.
- Prediction of 3) and 4) was performed using these 24 probes. 8-1) When the model was created with C1 and the classification result of C2 was predicted, the correct answer rate was 98.1% (only one example was different from the correct answer). 8-2) When the model was created with C2 and the classification result of C1 was predicted, the accuracy rate was 100%.
- Table 8 shows the extracted 24 probes.
- FIG. 17 shows the result of reclassifying 97 cases used for analysis by setting the conditions shown on the slide using 24 probes. In this classification, methylation was positive when each probe had a ⁇ value of 0.5 or more. Of the 24 probes, the HMCC group was used when the number of methylation positive probes was 16 or more, and the LMCC group was used when the number of methylation positive probes was 15 or less.
- each gene is identified by chromosome number and position information. For example, when the chromosome number is 3 and the position information is 150802997, it indicates that a specific base existing in 150802997 of chromosome 3 is methylated.
- the methylation described in this classification means that “one base at a specific position on the human genome is methylated”.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Oncology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Hospice & Palliative Care (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
本明細書は、本願の優先権の基礎である特願2014−212503号(2014年10月17日出願)の明細書に記載された内容を包含する。本発明は、大腸癌に対するがん薬物療法に対する応答性を予測する方法に関する。より詳細には、大腸癌患者の大腸癌組織、大腸癌細胞、又は大腸癌細胞由来のDNAを含む検体中のDNAメチル化プロファイルを指標として、大腸癌に対するがん薬物療法に対する感受性を予測する方法に関する。
すなわち、本発明は、以下の[1]~[14]を提供する。
[1] 大腸癌患者のがん薬物療法に対する応答性を予測する方法であって、被験者の大腸癌組織、大腸癌細胞、又は大腸癌細胞由来のDNAを含む検体におけるDNAメチル化レベルを解析し、前記DNAメチル化レベルに基づき前記被験者のがん薬物療法応答性を判定することを特徴とする方法;
[2] 以下の工程を含む上記[1]に記載の方法:
(1)被験者の大腸癌組織、大腸癌細胞、又は大腸癌細胞由来のDNAを含む検体中のDNAメチル化レベルを測定する工程、
(2)β値が0.5以上の遺伝子をメチル化陽性とし、メチル化陽性の遺伝子の割合が60%以上の場合に当該被験者を高メチル化群に、60%未満である場合に低メチル化群に分類する工程、及び
(3)低メチル化群に分類された場合に前記被験者をがん薬物療法感受性と判定し、高メチル化群に分類された場合に前記被験者をがん薬物療法抵抗性と判定する工程;
[3] 高メチル化群と低メチル化群でβ値に有意な差がある遺伝子群から選ばれる少なくとも4以上のマーカー遺伝子を対象として解析を行うことを特徴とする、上記[1]又は[2]記載の方法;
[4] 表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる少なくとも4以上のマーカー遺伝子を対象として解析を行うことを特徴とする、上記[1]又は[2]記載の方法、例えば、表8記載の遺伝子群を対象として解析を行うことを特徴とする、上記[1]又は[2]記載の方法;
[5] 表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる4~20のマーカー遺伝子を対象として解析を行うことを特徴とする、上記[1]又は[2]記載の方法;
[6] 表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる4~10のマーカー遺伝子を対象として解析を行うことを特徴とする、上記[1]又は[2]記載の方法;
[7] マーカー遺伝子が表8記載の24遺伝子又はCACNA1G、LOX、SLC30A10、ELMO1、HAND1、IBN2、及びTHBDから選ばれる少なくとも1以上を含む、上記[4]~[6]のいずれかに記載の方法;
[8] がん薬物療法が化学療法である、上記[1]~[7]のいずれかに記載の方法;
[9] がん薬物療法が分子標的薬を用いた治療法である、上記[1]~[7]のいずれかに記載の方法;
[10] 分子標的薬が抗EGFR抗体である、上記[9]に記載の方法;
[11] 複数のがん薬物療法の適用順序の適否を判定しうる、上記[1]~[10]のいずれかに記載の方法;
[12] 大腸癌患者のがん薬物療法に対する応答性を予測するためのプローブセットであって、
表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる4以上のマーカー遺伝子、例えば表8記載の遺伝子群すべてについて、その少なくとも1つのCpG部位を含む領域と相補的な配列を含み、前記CpG部位のメチル化の有無を検出可能なプローブを含むプローブセット;
[13] マーカー遺伝子が、表8記載の遺伝子群CACNA1G、LOX、SLC30A10、ELMO1、HAND1、IBN2、及びTHBDから選ばれる1以上の遺伝子を含む、上記[12]記載のプローブセット;
[14] 大腸癌患者のがん薬物療法に対する応答性を予測するためのキットであって、
(a)表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる4以上の遺伝子、例えば表8記載の遺伝子群すべてについて、その少なくとも1つのCpG部位を含む領域と相補的な配列を含み、前記CpG部位のメチル化の有無を検出可能なプローブ、及び
(b)表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる4以上の遺伝子、例えば表8記載の遺伝子群すべてについて、その少なくとも1つのCpG部位を含む領域に結合し、前記CpG領域を含む領域を増幅可能なプライマーペア、を含むキット;
[15] マーカー遺伝子が、表8記載の24遺伝子又はCACNA1G、LOX、SLC30A10、ELMO1、HAND1、IBN2、及びTHBDから選ばれる1以上の遺伝子を含む、上記[14]記載のキット。
本発明は、大腸癌患者のがん薬物療法応答性を判定する方法に関する。以下、本発明及び本明細書中で使用される用語の意味について説明する。
β値=(メチル検出用プローブの蛍光値の最大値)/(非メチル検出用プローブの蛍光値の最大値+メチル検出用プローブの蛍光値の最大値+100)
本発明は、大腸癌患者のがん薬物療法に対する応答性を、前記患者の大腸癌組織又は大腸癌細胞を含む検体におけるDNAメチル化レベルに基づいて判定するものである。
(1)被験者の大腸癌組織、大腸癌細胞、又は大腸癌細胞由来のDNAを含む検体中のDNAメチル化レベルを測定する工程(測定工程)、
(2)β値が0.5以上の遺伝子をメチル化陽性とし、メチル化陽性の遺伝子の割合が60%以上の場合に当該被験者を高メチル化群に、60%未満である場合に低メチル化群に分類する工程(解析・分類工程)、
(3)低メチル化群に分類された場合に前記被験者をがん薬物療法感受性と判定し、高メチル化群に分類された場合に前記被験者をがん薬物療法抵抗性と判定する工程(判定工程)。
(1)DNAの抽出
まず、被験者から単離した検体よりゲノムDNAを抽出する。DNAの抽出は、当該分野で公知の方法にしたがって実施すればよく、例えば市販のキット(QIAamp DNA Micro Kit(QIAGEN)、NucleoSpinR Tissue(TAKARA)等)を用いて実施することができる。
DNAメチル化レベルの測定は、特に限定されず、(A)バイサルファイト処理してシーケンスする解析方法、(B)メチル化DNAを断片化、濃縮してメチル化DNAを解析する方法、(C)メチル化感受性の制限酵素を利用した解析方法、(D)メチル化特異的PCR法を利用した解析方法等があり、そのいずれを利用してもよい。
(1)DNAメチル化レベルの解析
次いで、前記測定結果を解析し、被験者を高メチル化群または低メチル化群のいずれかに分類する。DNAメチル化レベルは、例えば前述したβ値等により定量化することができる。このβ値を、全遺伝子あるいは前記した特定の遺伝子について算出・解析することで、被験者が高メチル化群か低メチル化群かに分類することができる。
高メチル化群か低メチル化群かの分類は、あらかじめ取得された大腸癌患者の検体におけるDNAメチル化レベルのプロファイルと比較解析することにより行ってもよいし、データの蓄積により経験的に設定された一定のカットオフ値に基づいて分類してもよい。
発明者らは、本願実施例に示すとおり、前述のマーカー遺伝子について、β値が0.5以上の遺伝子をメチル化陽性とし、メチル化陽性の遺伝子の割合が60%以上の場合に当該被験者を高メチル化群に、60%未満である場合に低メチル化群に分類することができることを見出した。この方法によれば、少なくとも4つのマーカー遺伝子のメチル化レベルに基づき、簡便に被験者を高メチル化群か低メチル化群に分類することができる。
上記の分類結果により、被験者が低メチル化群に分類された場合に前記被験者をがん薬物療法感受性と判定し、高メチル化群に分類された場合にがん薬物療法抵抗性と判定する。
本発明の方法は、メチル化状態の相違に基づき、大腸癌、とくに治癒切除不能進行再発大腸癌における、化学療法の治療選択に応用できる。すなわち、1次治療を開始する際に、現在ではいずれでも良いとされるイリノテカンベースとオキザリプラチンベースの化学療法のレジメンを、高メチル化群の患者に関してはイリノテカンベースを使うべきと診断でき、また高メチル化群の患者では、イリノテカンベースで化学療法を開始した場合には、2次治療ではオキサリプラチンベースを用いるべきと診断することができる。一方、低メチル化群の患者では、イリノテカンベースとオキザリプラチンベースの化学療法は、いずれを先に行ってもよいと診断することができる。
本発明はまた、大腸癌患者のがん薬物療法に対する応答性を予測するためのプローブセット及びキットを提供する。
(a)表7又は表8記載の遺伝子群から選ばれる4以上のマーカー遺伝子について、その少なくとも1つのCpG部位を含む領域と相補的な配列を含み、前記CpG部位のメチル化の有無を検出可能なプローブ、及び
(b)表7又は表8記載の遺伝子群から選ばれる4以上のマーカー遺伝子について、その少なくとも1つのCpG部位を含む領域に結合し、前記CpG領域を含む領域を増幅可能なプライマーペア、を含む。
なお、上記マーカー遺伝子は、好ましくは、遺伝子シンボルCACNA1G、LOX、SLC30A10、ELMO1、HAND1、IBN2、及びTHBDから選ばれる1以上の遺伝子を含む。あるいは、好ましくは、表8記載の染色体番号と位置情報で特定される24遺伝子から選ばれる遺伝子を含む。
抗EGFR抗体薬使用歴を有する大腸癌45例より外科的に切除された大腸癌腫瘍組織のホルマリン固定パラフィン包埋組織(FFPE検体)を用いてInfinium 450K(Illumina)による網羅的DNAメチル化解析を行った。なお、対象症例はSanger法にてKRASエクソン2に変異を認めない症例とした。
実施例1における45例とは独立した抗EGFR抗体薬使用歴を有する大腸癌52例を用いてInfinium 450Kによる網羅的DNAメチル化解析を行った。実施例1と同様に、対象症例はSanger法にてKRASエクソン2に変異を認めない症例とした。
先述の通り、近年ではKRASエクソン2に加え、KRASエクソン2,3,4およびNRASエクソン2,3,4に変異を有する症例では抗EGFR抗体薬の治療効果に乏しいことが報告され、バイオマーカーとして本邦でも臨床応用されつつある。
Yagiらは7つの遺伝子のメチル化状態を調べることにより、大腸癌を3つのサブタイプに分類((HME(高メチル化群)、IME(中メチル化群)、LME(低メチル化群))し、IMEにはKRAS変異を有する症例が濃縮されることを示している(前掲:Yagi K.et al.Clin Cancer Res.2010 Jan 1;16(1):21−33)。また、IMEかつKRAS変異を有する症例は全生存期間が他の症例群に比べ有意に短縮していることを示している。
実施例1及び実施例2に含まれる97例を用いて限定されたプローブ数による分類方法を検討した。実施例1及び2はそれぞれ抽出された3,163、2,577のプローブを解析に使用し、教師なしクラスター解析により対象症例を分類したものである。各々の実施例で解析に使用されたプローブのうち、1744のプローブが両実施例で共通していた。このうち、HMCC群に分類された症例群とLMCC群に分類された症例群の間で、β値に差のある1053のプローブを抽出した(表7:実施例の最後に記載する)。
1)1次治療成績とメチル化分類の相関
進行再発大腸癌94例について、実施例1にしたがって網羅的メチル化解析を行い、HMCC群(34例)とLMCC群(60例)に分類し、それぞれの群で1次治療の無増悪生存期間を比較した。
進行再発大腸癌84例について、網羅的メチル化解析を行い、HMCC群(31例)とLMCC群(53例)に分類し、それぞれの群で2次治療の無増悪生存期間を比較した。
進行再発大腸癌84例について、網羅的メチル化解析を行い、HMCC群(31例)とLMCC群(53例)に分類し、それぞれの群で1次、2次治療におけるオキサリプラチンあるいはイリノテカンを含む併用療法の治療成績及び全生存期間を比較した。
1)1次治療成績とCIMP分類の相関
進行再発大腸癌108例について、公知の方法にしたがいCIMP解析を行い、CIMP陽性(24例)とCIMP陰性(84例)に分類し、それぞれの群で1次治療の無増悪生存期間を比較した。
進行再発大腸癌78例について、CIMP解析を行い、CIMP陽性(17例)とCIMP陰性(61例)に分類し、それぞれの群で2次治療の無増悪生存期間を比較した。
進行再発大腸癌(78例)について、CIMP解析を行い、CIMP陽性(17例)とCIMP陰性(61例)に分類し、それぞれの群で1次、2次治療におけるオキサリプラチンあるいはイリノテカンを含む併用療法の治療成績を比較した。
実施例1及び2の患者群をそれぞれ第1コホート(C1)及び第2コホート(C2)として、以下の手順で、解析に使用するプローブの絞り込みと検証を行った(図16)。
1)まず、Random Forestというアルゴリズムを用いて、HMCCとLMCCの分類に関する予測モデルを作成した。
2)第1コホート抽出された3,163プローブ及び第2コホートで抽出された2,577プローブのうち、共通する1744のプローブを抽出した。
3)抽出した1744のプローブを用いて、Random ForestによりC1でモデルを作り、C2の分類結果を予測した。
4)抽出した1744のプローブを用いて、Random ForestによりC2でモデルを作り、C1の分類結果を予測した。
5)上記3)及び4)においてRandom Forestsがモデルを作る時の変数の重要性を確認し、0.002以上で変数を絞り込んだ。
6)上記5)の結果、C1モデルから140プローブ、C2モデルから128プローブが抽出された。
7)上記6)において、共通プローブを抽出すると24プローブが残った。
8)この24プローブを用いて3)、4)の予測を行った。
8−1)C1でモデルを作り、C2の分類結果を予測した場合は正解率が98.1%であった(1例のみ正解と異なっていた)。
8−2)C2でモデルを作り、C1の分類結果を予測した場合は正解率が100%であった。
例えば、染色体番号が3、位置情報が150802997と記載されている場合は、3番染色体の150802997に存在する特定の1塩基がメチル化されているということを表わす。本分類で述べているメチル化とは、「ヒトゲノム上に存在するある特定の箇所の1塩基がメチル化されている」ことを意味する。
すなわち、臨床応用に向けたより簡便な検出系への移行が可能であることが示された。
Claims (15)
- 大腸癌患者のがん薬物療法に対する応答性を予測する方法であって、被験者の大腸癌組織、大腸癌細胞、又は大腸癌細胞由来のDNAを含む検体におけるDNAメチル化レベルを解析し、前記DNAメチル化レベルに基づき前記被験者のがん薬物療法応答性を判定することを特徴とする方法。
- 以下の工程を含む請求項1に記載の方法:
(1)被験者の大腸癌組織、大腸癌細胞、又は大腸癌細胞由来のDNAを含む検体中のDNAメチル化レベルを測定する工程、
(2)β値が0.5以上の遺伝子をメチル化陽性とし、メチル化陽性の遺伝子の割合が60%以上の場合に当該被験者を高メチル化群に、60%未満である場合に低メチル化群に分類する工程、及び
(3)低メチル化群に分類された場合に前記被験者をがん薬物療法感受性と判定し、高メチル化群に分類された場合に前記被験者をがん薬物療法抵抗性と判定する工程。 - 高メチル化群と低メチル化群でβ値に有意な差がある遺伝子群から選ばれる少なくとも4以上のマーカー遺伝子を対象として解析を行うことを特徴とする、請求項1又は2記載の方法。
- 表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる少なくとも4以上のマーカー遺伝子を対象として解析を行うことを特徴とする、請求項1又は2記載の方法。
- 表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる4~20のマーカー遺伝子を対象として解析を行うことを特徴とする、請求項1又は2記載の方法。
- 表7記載又は表8記載の遺伝子群の遺伝子群から選ばれる4~10のマーカー遺伝子を対象として解析を行うことを特徴とする、請求項1又は2記載の方法。
- マーカー遺伝子が表8記載の24遺伝子又はCACNA1G、LOX、SLC30A10、ELMO1、HAND1、IBN2、及びTHBDから選ばれる少なくとも1以上の遺伝子を含む、請求項4~6のいずれか1項に記載の方法。
- がん薬物療法が化学療法である、請求項1~7のいずれか1項に記載の方法。
- がん薬物療法が分子標的薬を用いた療法である、請求項1~7のいずれか1項に記載の方法。
- 分子標的薬が抗EGFR抗体である、請求項9に記載の方法。
- 複数のがん薬物療法の適用順序の適否を判定できることを特徴とする、請求項1~10のいずれか1項に記載の方法。
- 大腸癌患者のがん薬物療法に対する応答性を予測するためのプローブセットであって、
表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる4以上のマーカー遺伝子について、その少なくとも1つのCpG部位を含む領域と相補的な配列を含み、前記CpG部位のメチル化の有無を検出可能なプローブを含むプローブセット。 - 表8記載の24遺伝子又はマーカー遺伝子CACNA1G、LOX、SLC30A10、ELMO1、HAND1、IBN2、及びTHBDから選ばれる1以上の遺伝子を含む、請求項12記載のプローブセット。
- 大腸癌患者のがん薬物療法に対する応答性を予測するためのキットであって、
(a)表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる4以上のマーカー遺伝子について、その少なくとも1つのCpG部位を含む領域と相補的な配列を含み、前記CpG部位のメチル化の有無を検出可能なプローブ、及び
(b)表7記載の遺伝子群又は表8記載の遺伝子群から選ばれる4以上のマーカー遺伝子について、その少なくとも1つのCpG部位を含む領域に結合し、前記CpG領域を含む領域を増幅可能なプライマーペア、を含むキット。 - マーカー遺伝子が表8記載の24遺伝子又はCACNA1G、LOX、SLC30A10、ELMO1、HAND1、IBN2、及びTHBDから選ばれる1以上の遺伝子を含む、請求項14記載のキット。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/518,305 US20170356051A1 (en) | 2014-10-17 | 2015-10-16 | Method for estimating sensitivity to drug therapy for colorectal cancer |
| JP2016554153A JP6709541B2 (ja) | 2014-10-17 | 2015-10-16 | 大腸癌に対する薬物療法の感受性を予測する方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014-212503 | 2014-10-17 | ||
| JP2014212503 | 2014-10-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016060278A1 true WO2016060278A1 (ja) | 2016-04-21 |
Family
ID=55746807
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2015/079909 Ceased WO2016060278A1 (ja) | 2014-10-17 | 2015-10-16 | 大腸癌に対する薬物療法の感受性を予測する方法 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20170356051A1 (ja) |
| JP (1) | JP6709541B2 (ja) |
| WO (1) | WO2016060278A1 (ja) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018202666A1 (en) * | 2017-05-03 | 2018-11-08 | Deutsches Krebsforschungszentrum | Cpg-site methylation markers in colorectal cancer |
| CN111850115A (zh) * | 2019-04-25 | 2020-10-30 | 罗俊航 | 用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型 |
| WO2020241770A1 (ja) | 2019-05-31 | 2020-12-03 | 国立大学法人東北大学 | 大腸癌に対する薬物療法の感受性の検査方法 |
| US11396679B2 (en) | 2019-05-31 | 2022-07-26 | Universal Diagnostics, S.L. | Detection of colorectal cancer |
| US11530453B2 (en) * | 2020-06-30 | 2022-12-20 | Universal Diagnostics, S.L. | Systems and methods for detection of multiple cancer types |
| CN116597902A (zh) * | 2023-04-24 | 2023-08-15 | 浙江大学 | 基于药物敏感性数据的多组学生物标志物筛选方法和装置 |
| US11898199B2 (en) | 2019-11-11 | 2024-02-13 | Universal Diagnostics, S.A. | Detection of colorectal cancer and/or advanced adenomas |
| US12467096B2 (en) | 2020-05-15 | 2025-11-11 | Universal Diagnostics, S.A. | Methods and systems for identifying methylation biomarkers |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109777875B (zh) * | 2019-02-01 | 2020-01-17 | 广州金域医学检验中心有限公司 | Shh型髓母细胞瘤甲基化位点的应用 |
| WO2020251851A2 (en) * | 2019-06-14 | 2020-12-17 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Dna methylation biomarkers for cancer diagnosing and treatment |
| CN110317874A (zh) * | 2019-07-19 | 2019-10-11 | 江苏元丞生物科技有限公司 | Vav3基因甲基化检测试剂盒及其应用 |
| CN110423814A (zh) * | 2019-07-19 | 2019-11-08 | 江苏元丞生物科技有限公司 | Elmo1基因甲基化检测试剂盒及其应用 |
| CN115315529A (zh) * | 2020-01-17 | 2022-11-08 | 小利兰·斯坦福大学董事会 | 用于诊断肝细胞癌的方法 |
| CN112430657B (zh) * | 2020-10-27 | 2022-09-09 | 哈尔滨医科大学 | 结直肠癌相关的甲基化标志物以及用于检测结直肠癌的试剂盒 |
| CN114507740B (zh) * | 2022-04-19 | 2022-07-29 | 广州滴纳生物科技有限公司 | 用于胃肠癌诊断的生物标志物、核酸产品和试剂盒 |
| CN114908166B (zh) * | 2022-04-27 | 2025-04-22 | 哈尔滨医科大学 | 一组与结直肠癌相关的特异性甲基化标志物及其检测试剂盒 |
| CN116042820B (zh) * | 2022-09-07 | 2023-09-29 | 浙江大学 | 一组结肠癌dna甲基化分子标志物及其在制备用于结肠癌早期诊断试剂盒中的应用 |
| CN117551762B (zh) * | 2023-10-19 | 2024-05-10 | 嘉兴允英医学检验有限公司 | 作为结直肠肿瘤标志物的dna甲基化位点组合及其应用 |
| CN119491038A (zh) * | 2024-11-27 | 2025-02-21 | 上海市第十人民医院 | 一种基于三维荧光光谱的一锅式高维多靶标检测方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001019845A1 (en) * | 1999-09-15 | 2001-03-22 | The Johns Hopkins University School Of Medicine | Cacna1g polynucleotide, polypeptide and methods of use therefor |
| JP2010088406A (ja) * | 2008-10-11 | 2010-04-22 | Kanazawa Univ | 癌患者の外科的手術後の治療選択方法及び予後診断 |
| WO2011002029A1 (ja) * | 2009-07-03 | 2011-01-06 | 国立大学法人東京大学 | 癌細胞の存否を判定する方法および癌患者の予後を判定する方法 |
| WO2011024999A1 (ja) * | 2009-08-28 | 2011-03-03 | 北海道公立大学法人札幌医科大学 | 浸潤性大腸腫瘍検出用の検体 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1000438A (en) * | 1910-06-02 | 1911-08-15 | Int Harvester Co | Hay-rake. |
| EP1826279B1 (en) * | 2006-02-28 | 2011-05-04 | Charité - Universitätsmedizin Berlin | Detection and quality control of regulatory T cells through DNA-methylation analysis of the FoxP3 gene |
| JP2011097833A (ja) * | 2009-11-04 | 2011-05-19 | Takeshi Zama | 特定の遺伝子のメチル化の頻度を、頭頸部腫瘍のバイオマーカーとして使用する方法 |
| JP2011160711A (ja) * | 2010-02-09 | 2011-08-25 | Keio Gijuku | 特定の遺伝子のメチル化の頻度を、婦人科がんのバイオマーカーとして使用する方法 |
| WO2012167145A2 (en) * | 2011-06-01 | 2012-12-06 | University Of Southern California | Genome-scale analysis of aberrant dna methylation in colorectal cancer |
| KR20140066783A (ko) * | 2011-09-30 | 2014-06-02 | 제넨테크, 인크. | 종양 또는 종양 세포에서의 상피 또는 중간엽 표현형 및 egfr 키나제 억제제에 대한 반응의 진단 메틸화 마커 |
| JP6335118B2 (ja) * | 2012-05-11 | 2018-05-30 | 国立研究開発法人国立がん研究センター | 腎細胞癌の予後予測方法 |
| EP2891720B1 (en) * | 2012-08-31 | 2020-04-08 | National Defense Medical Center | Method for screening cancer |
-
2015
- 2015-10-16 JP JP2016554153A patent/JP6709541B2/ja active Active
- 2015-10-16 US US15/518,305 patent/US20170356051A1/en not_active Abandoned
- 2015-10-16 WO PCT/JP2015/079909 patent/WO2016060278A1/ja not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001019845A1 (en) * | 1999-09-15 | 2001-03-22 | The Johns Hopkins University School Of Medicine | Cacna1g polynucleotide, polypeptide and methods of use therefor |
| JP2010088406A (ja) * | 2008-10-11 | 2010-04-22 | Kanazawa Univ | 癌患者の外科的手術後の治療選択方法及び予後診断 |
| WO2011002029A1 (ja) * | 2009-07-03 | 2011-01-06 | 国立大学法人東京大学 | 癌細胞の存否を判定する方法および癌患者の予後を判定する方法 |
| WO2011024999A1 (ja) * | 2009-08-28 | 2011-03-03 | 北海道公立大学法人札幌医科大学 | 浸潤性大腸腫瘍検出用の検体 |
Non-Patent Citations (5)
| Title |
|---|
| HAMILTON, S.R.: "Targeted therapy of cancer: new roles for pathologists in colorectal cancer.", MODERN PATHOLOGY, vol. 21, no. Suppl.2, May 2008 (2008-05-01), pages S23 - S30, ISSN: 0893-3952 * |
| KIM, J.C. ET AL.: "Genome-wide identification of possible methylation markers chemosensitive to targeted regimens in colorectal cancers.", J. CANCER RES. CLIN. ONCOL., vol. 137, no. 10, October 2011 (2011-10-01), pages 1571 - 1580, XP019951977, ISSN: 0171-5216, DOI: doi:10.1007/s00432-011-1036-7 * |
| OUCHI, K. ET AL.: "DNA methylation status as a biomarker of anti-EGFR treatment for metastatic colorectal cancer.", CANCER SCIENCE, vol. 106, no. 12, December 2015 (2015-12-01), pages 1722 - 1729, ISSN: 1347-9032 * |
| SHEN, L. ET AL.: "Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5- fluorouracil based chemotherapy.", CLINICAL CANCER RESEARCH, vol. 13, no. 20, 15 October 2007 (2007-10-15), pages 6093 - 6098, ISSN: 1078-0432 * |
| SOOD, A. ET AL.: "PTEN gene expression and mutations in the PIK3 CA gene as predictors of clinical benefit to anti-epidermal growth factor receptor antibody therapy in patients with KRAS wild-type metastatic colorectal cancer.", CLINICAL COLORECTAL CANCER, vol. 11, no. 2, June 2012 (2012-06-01), pages 143 - 150, ISSN: 1533-0028 * |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018202666A1 (en) * | 2017-05-03 | 2018-11-08 | Deutsches Krebsforschungszentrum | Cpg-site methylation markers in colorectal cancer |
| CN111850115A (zh) * | 2019-04-25 | 2020-10-30 | 罗俊航 | 用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型 |
| CN111850115B (zh) * | 2019-04-25 | 2024-03-05 | 罗俊航 | 用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型 |
| WO2020241770A1 (ja) | 2019-05-31 | 2020-12-03 | 国立大学法人東北大学 | 大腸癌に対する薬物療法の感受性の検査方法 |
| JPWO2020241770A1 (ja) * | 2019-05-31 | 2020-12-03 | ||
| US11396679B2 (en) | 2019-05-31 | 2022-07-26 | Universal Diagnostics, S.L. | Detection of colorectal cancer |
| JP7578959B2 (ja) | 2019-05-31 | 2024-11-07 | 国立大学法人東北大学 | 大腸癌に対する薬物療法の感受性の検査方法 |
| US11898199B2 (en) | 2019-11-11 | 2024-02-13 | Universal Diagnostics, S.A. | Detection of colorectal cancer and/or advanced adenomas |
| US12467096B2 (en) | 2020-05-15 | 2025-11-11 | Universal Diagnostics, S.A. | Methods and systems for identifying methylation biomarkers |
| US11530453B2 (en) * | 2020-06-30 | 2022-12-20 | Universal Diagnostics, S.L. | Systems and methods for detection of multiple cancer types |
| CN116597902A (zh) * | 2023-04-24 | 2023-08-15 | 浙江大学 | 基于药物敏感性数据的多组学生物标志物筛选方法和装置 |
| CN116597902B (zh) * | 2023-04-24 | 2023-12-01 | 浙江大学 | 基于药物敏感性数据的多组学生物标志物筛选方法和装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20170356051A1 (en) | 2017-12-14 |
| JPWO2016060278A1 (ja) | 2017-08-31 |
| JP6709541B2 (ja) | 2020-06-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6709541B2 (ja) | 大腸癌に対する薬物療法の感受性を予測する方法 | |
| Zhu et al. | Potential clinical utility of liquid biopsies in ovarian cancer | |
| Morganti et al. | Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life | |
| AU2020223754B2 (en) | Methods and materials for assessing loss of heterozygosity | |
| Rimbert et al. | Association between clinicopathological characteristics and RAS mutation in colorectal cancer | |
| Jones et al. | Circulating tumour DNA as a biomarker in resectable and irresectable stage IV colorectal cancer; a systematic review and meta-analysis | |
| Jover et al. | 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer | |
| JP5955557B2 (ja) | 膵臓腫瘍形成の根底にある経路および遺伝性の膵癌遺伝子 | |
| TWI532843B (zh) | 與癌症有關之基因或分子變異之檢測 | |
| Voutsina et al. | Combined analysis of KRAS and PIK3CA mutations, MET and PTEN expression in primary tumors and corresponding metastases in colorectal cancer | |
| US20100062440A1 (en) | markers for cancer | |
| US10585100B2 (en) | Method of predicting effect of treatment by PD-1/PD-L1 blockade using abnormality of PD-L1 (CD274) as index | |
| JP2015512630A5 (ja) | ||
| US20220025466A1 (en) | Differential methylation | |
| Heitzer et al. | Differential survival trends of stage II colorectal cancer patients relate to promoter methylation status of PCDH10, SPARC, and UCHL1 | |
| WO2022157764A1 (en) | Non-invasive cancer detection based on dna methylation changes | |
| Yu et al. | Arms-qPCR improves detection sensitivity of earlier diagnosis of papillary thyroid cancers with worse prognosis determined by coexisting BRAF V600E and Tert promoter mutations | |
| WO2017119510A1 (ja) | 乳がんの診断のための検査方法、遺伝子マーカー、および検査薬 | |
| Li et al. | Comprehensive analysis of epidermal growth factor receptor gene status in lung adenocarcinoma | |
| JP2022548993A (ja) | Dnaメチル化異常を用いた免疫抗癌治療反応性予測方法 | |
| US20140242583A1 (en) | Assays, methods and compositions for diagnosing cancer | |
| Caban | Mutation pattern of KRAS and BRAF oncogenes in colorectal cancer patients | |
| Oakley III et al. | Higher dosage of the epidermal growth factor receptor mutant allele in lung adenocarcinoma correlates with younger age, stage IV at presentation, and poorer survival | |
| CN115472294B (zh) | 预测小细胞转化肺腺癌患者转化速度的模型及其构建方法 | |
| Banila | Epigenetic profiling in cancer: triage, prognosis, and precision oncology |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15850222 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2016554153 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15518305 Country of ref document: US |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 15850222 Country of ref document: EP Kind code of ref document: A1 |