[go: up one dir, main page]

WO2005083890A1 - 時系列データ次元圧縮装置 - Google Patents

時系列データ次元圧縮装置 Download PDF

Info

Publication number
WO2005083890A1
WO2005083890A1 PCT/JP2004/002252 JP2004002252W WO2005083890A1 WO 2005083890 A1 WO2005083890 A1 WO 2005083890A1 JP 2004002252 W JP2004002252 W JP 2004002252W WO 2005083890 A1 WO2005083890 A1 WO 2005083890A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time series
series data
data
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2004/002252
Other languages
English (en)
French (fr)
Inventor
Shigenobu Takayama
Shinsuke Azuma
Shigeo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006519068A priority Critical patent/JP4298749B2/ja
Priority to CNA2004800372032A priority patent/CN1894856A/zh
Priority to PCT/JP2004/002252 priority patent/WO2005083890A1/ja
Priority to US10/582,846 priority patent/US7433527B2/en
Priority to CA002548461A priority patent/CA2548461C/en
Publication of WO2005083890A1 publication Critical patent/WO2005083890A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction

Definitions

  • An object of the present invention is to perform dimensional compression without losing the characteristics of data in order to more efficiently search for time-series data. Also, the purpose is not to improve the compression efficiency, but to compress it to a fixed dimension and extract more information from it. Background art
  • PAA compresses time-series data by dividing the time-series data into segments and using the average value of the segments as the representative value of each segment.
  • the calculation of the average value can be performed more easily than the Fourier transform or the singular value decomposition, and the dimensional compressed time series data can be generated more quickly.
  • Other conventional techniques for reducing the dimension of time-series data include, for example, F. K or ⁇ , HV Jagadis, C. Faloutsos "Efficienty S upporting Ad Hoc
  • the singular value decomposition method compresses time-series data by using only major singular values (large singular values) instead of using all components after singular value decomposition.
  • Compression of dimensions by singular value decomposition has the advantage of better search efficiency because data shapes can be extracted better than other methods.
  • Image data is divided into blocks and compressed into blocks.
  • DCT DisrceCosineTransform
  • transform representing the vertical and horizontal inclination angles of the row j!
  • PAA can perform dimensional compression faster by using the average value of each segment as the representative value, but has the following problems when searching for time-series data or similar search.
  • the search procedure for time-series data involves first searching for a solution candidate in the compressed space, and then searching for a final solution in the real space for each solution candidate. Therefore, if it is selected as a solution candidate in the compressed space but is a true solution in the real space, If there are not many items, the search efficiency will deteriorate.
  • the average value is used as the representative value of each segment, the shape of the time series is erased, so that the information after compression becomes poor and the search efficiency mentioned above is poor. For example, if the average value is the same for a flat time series, a time series that rises to the right, and a time series that declines to the right, the values after compression will be the same.
  • SVD can successfully extract the shape of data by singular value decomposition, and although the search efficiency mentioned above is high, the problem is that the singular value decomposition takes a long time as the amount of data increases and the singular value decomposition cannot be performed in realistic time There is.
  • Japanese Patent Application Laid-Open No. Sho 61-2858570 "transform coding method” aims to improve the compression ratio, but has the following problems when it is used for searching time-series data.
  • searching for time series data all segments (blocks) must first be compressed at the same compression rate in order to search for a solution candidate in a compressed space.
  • a different compression rate is used for each block. Disclosure of the invention
  • the start position is shifted by a predetermined interval on the time axis with respect to the time series original data, which is a series of data measured at regular intervals along the time axis, and multiple time series data of the specified length Time series data creation unit to create
  • a partial time series creation unit that creates a partial time series divided into a specified segment width for each of the plurality of time series data.
  • the specified number of higher order singular value decomposition components are A dimension-compressed time-series data generation unit that generates dimension-compressed time-series data as a representative value of the partial time series decomposed into Brief Description of Drawings
  • FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention.
  • FIG. 2 is a graph showing the time series original data 150.
  • FIG. 3 is a diagram illustrating a method of creating the time series data 151.
  • FIG. 4 is a flowchart for creating the time-series data 151.
  • Figure 5 is a graph of the time series 151.
  • FIG. 6 shows a state in which the time series data is divided into segments.
  • FIG. 8 shows a time series 15 1 starting from k and a time series 25 1 starting from k + 2N.
  • FIG. 9 is a diagram showing the results of singular value decomposition in the contents of the SVD execution result storage unit.
  • FIG. 10 is an example of a graph of the dimensionally compressed time series data 153 in which representative values are plotted.
  • FIG. 11 is a flowchart of creating compressed data.
  • FIG. 12 is a configuration diagram showing Embodiment 2 of the present invention.
  • FIG. 13 is a flowchart of the second embodiment.
  • FIG. 14 is a schematic diagram when the segment width is set to 16 and 32.
  • FIG. 16 is a configuration diagram showing Embodiment 3 of the present invention.
  • FIG. 17 schematically shows a new calculation result of the average value calculation execution unit 182.
  • Figure 18 is an intermediate time series graph.
  • Fig. 19 shows the SVD execution results when the dimension after compression is set to 8 dimensions.
  • Fig. 20 is a hardware configuration diagram. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram showing an embodiment of the present invention.
  • reference numeral 120 denotes a secondary storage device or a primary storage device, which is a time-series original data storage unit that stores time-series original data 150.
  • the time series data creation unit 110 reads the time series original data 150 from the time series original data storage unit 120 and creates the time series data 151.
  • Reference numeral 121 denotes a time series data storage unit for storing a plurality of time series data 151 generated by the secondary storage device or the primary storage device 110.
  • the partial time series creation unit 112 reads sequentially the time series data 151 from the time series data storage unit 121, creates a partial time series 152, and stores it in the partial time series storage unit 122. .
  • the partial time series storage unit 122 is a primary storage device or a secondary storage device.
  • the 30 execution unit 113 reads the partial time series 152 from the partial time series storage unit 122, executes singular value decomposition, and stores it in the SVD execution result storage unit 124.
  • the SVD execution result storage unit 124 is a primary storage device or a secondary storage device.
  • the dimensionally compressed time series data generation unit 114 reads the SVD result from the SVD execution result storage unit 124, creates dimensionally compressed time series data 153, and stores it in the dimensionally compressed time series data storage unit 123. 2D compressed time-series data storage Secondary storage device or primary storage device.
  • FIG. 2 is a graph showing the time-series original data 150.
  • the X axis represents time t, and the y axis represents time series values.
  • Possible values for time t are natural numbers between 1 and m, with m data points.
  • the number of data points is called the length, and the length in this case is m (time series length 160).
  • FIG. 3 is a diagram of a method of creating the time-series data 151.
  • the time-series data creation unit 110 reads the time-series original data 150 from the time-series original data storage unit 120, and shifts the time series of length n by one at a time t at the start point of the time-series original data. , M—n + 1 are created.
  • the length n is determined in advance.
  • n-N time series with a length less than n and N or more. This is called the compensation time series.
  • the value of the start time t is a time series from m ⁇ n + 2 to m ⁇ N + 1, and all the values of t at the end point are m.
  • the time series starting from m—n '+ 2 has length n—1,
  • the time series starting from m—n + 3 has length n—2,
  • the time series starting from m_N + 1 has length N.
  • FIG. 4 is a flowchart for creating the time series data 151.
  • the start time t of the time-series data is set to 1 in the time-series original data.
  • time series length n is set.
  • S 303 Read the original time series data at.
  • the time-series end point is calculated from the time-series start time and the time-series length, and it is checked whether it is m or less. If the end point of the time series is m or less, a time series data can be created, and the process proceeds to S305.
  • time series data is created from the time series source data based on the time series start time and the time series length.
  • the start point t is incremented in order to create the next time series data, and the process returns to S303. If the end point of the time series exceeds m in S 304, no more time series data of the time series length n can be created. Proceed to In S308, the time series length is decremented. In S309, it is decremented to check whether the time series length is N or more. If it is N or more, proceed to S3110 to create supplementary time series data. In S 311, the start point is incremented to prepare for the next supplementary time-series data, and the process proceeds to S 307. In step S307, the time series original data is read. Next, proceed to S308 again. When the time series length becomes smaller than N in S309, the creation of the time series data ends.
  • FIG. 5 is a graph of the time-series data 15 1.
  • the start position is k
  • the end position is k + n-1, consisting of n data points.
  • the time series data 15 1 is a time series whose length is n (search time series length 16 1).
  • FIG. 6 shows how time-series data is divided into segments.
  • Each time series data 15 1 is divided into segments of length N (segment width 16 2).
  • One piece of time-series data 1 51 is divided into n ZN segments.
  • each segment of length N be a partial time series 15 2
  • the partial time series 15 2 is composed of N data points and has a length of N.
  • the first N data is also read for the supplementary time series created by the time series data creation unit 110 and also created as supplemental partial time series data, and the partial time series storage unit 1 2 2 is also created.
  • the segment width N is determined in advance.
  • the partial time series of the third segment of the time series 151, starting from k is the same as the first segment of the time series 251, starting from k + 2N. That is, it matches the partial time series created from the time series 25 1.
  • the SVD execution unit 113 reads the partial time series data 152 from the partial time series creation unit 112 and executes singular value decomposition as a matrix having m_N + l rows and N columns.
  • Singular value decomposition is a well-known expression that expresses an arbitrary mXn matrix Y by the product of three matrices U, S, and V as follows.
  • r is ⁇ in the following vector, Upsilon tau Upsilon the eigenvalues s ⁇ , s 2 2, ' ⁇ , eigenvectors corresponding to sr 2.
  • r is 1 and orthogonal to each other.
  • U !, U 2,..., ur are vectors of order m, defined by u j.
  • u is an m X r matrix with u 2,..., ur in columns
  • V is ⁇ , v ⁇
  • S is si, s o, ..., r following the diagonal matrix with s on the diagonal.
  • FIG. 9 shows the results of singular value decomposition in the contents of the SVD execution result storage unit.
  • the above Ml is extracted as a representative value of each row by the singular value decomposition.
  • the rth row is the product of the rth component of the u1 vector and s1 Use a representative value.
  • the SVD execution unit creates representative values for all segments (all partial time series).
  • the dimensionally compressed time series data generation unit 114 generates the dimensionally compressed time series data using the first component of the above singular value decomposition as a representative value of each segment.
  • the first representative value is the product of the k-th component of ul vector and s1
  • the second representative value is the k + N-th component of the u1 vector and s1 It is a product.
  • FIG. 10 is an example of a graph of the dimensionally compressed time-series data 153 in which the above representative values are plotted.
  • the dimensionally compressed time series data 153 is composed of nZN points. SVD is executed for each partial time-series data obtained by segmenting the time-series data 15 1 into segments, and the first component is plotted.
  • FIG. 11 is a flowchart of creating compressed data.
  • the time series data creation unit 110 reads the time series original data 150 from the time series original data storage unit 120, creates time series data 151, and stores it in the time series data storage unit 121.
  • the partial time series creation section 112 reads the time series data 151 sequentially from the time series data storage section 121, creates a partial time series 152, and stores it in the partial time series storage section 122. I do.
  • the SVD execution unit 113 reads the partial time series from the partial time series storage unit 122, executes the singular value decomposition, and stores it in the SVD execution result storage unit 124.
  • the dimensional compression time series data generation unit 114 creates dimensional compression time series data 153 using the data of the SVD execution result storage unit 124 and stores it in the dimensional compression time series data storage unit 12.3.
  • the time-series data dimension compression method is characterized in that the time-series data dimension compression method is provided with means for compressing the dimension of the time-series data having the designated length by combining the representative values.
  • FIG. 12 is a configuration diagram showing an embodiment of the present invention. 11, 11, 11, 11, 14, 120, 121, 122, 123, and 124 are the same as in FIG. 1.
  • the data analyzer 1 17 reads and analyzes the time series data 1 51 from the time series data storage 1 2 1 and determines which component of the segment width and singular value decomposition result is valid. is there.
  • FIG. 13 is a flowchart of the second embodiment.
  • the time series data creation unit 110 reads the time series original data 150 from the time series original data storage unit 120, creates the time series data 1501, and creates the time series data storage unit 1 2 1 Stored in
  • the data analysis unit 117 reads and analyzes the time-series data from the time-series data storage unit 121.
  • the segment width and the components of the singular value decomposition result that are to be used are determined so that the hit rate becomes the highest during retrieval. In this case, use up to the second component.
  • the partial time series creation unit 112 sequentially reads the time series data 151 from the time series data storage unit 121, creates a partial time series 152, and stores it in the partial time series storage unit 122.
  • the segment width of the partial time series is a value determined by the data analysis unit 117.
  • the SVD execution unit 113 reads the partial time series from the partial time series storage unit 122 and executes singular value decomposition.
  • Data analysis unit 1 17 to determine which component of the SVD result to use Are stored in the SVD execution result storage unit up to the value determined by. In this case, up to the second component is stored in the SVD execution result storage unit.
  • the dimensional compression time-series data generation unit 114 creates dimensional compression time-series data 153 using the contents of the SVD execution result storage unit, and stores it in the dimensional compression time-series data storage unit 123.
  • FIG. 14 is a schematic diagram when the segment width is set to 16 and 32. When the segment width is 16 and the first component of SVD is used, the dimension after compression can be obtained from the following.
  • the dimension after compression can be obtained from the following.
  • FIG. 15 shows the contents of the SVD execution result storage unit when the second component of the SVD result is used. If the first component of a segment has almost the same value in all segments, the feature of time-series data can be extracted in more detail by increasing the segment width and using the second component of the SVD. The hit rate is improved.
  • the representative value of the partial time series is calculated by using the segment width for dividing the time series data and any component of the singular value decomposition.
  • the time-series data dimension compression method according to claim 1 having means for determining whether to perform the compression has been described.
  • the target matrix has the same number of rows but has N / n columns, so it can be executed faster.
  • FIG. 16 is a configuration diagram showing an embodiment of the present invention. In the figure, 1 1
  • the intermediate dimension determining unit 181 determines a width for calculating an average value.
  • the average value calculation execution unit 182 calculates the average value of the time-series data using the average value width specified by the intermediate dimension determination unit, and stores the result in the average value calculation result storage unit 191.
  • the intermediate time series creation unit 183 creates an intermediate time series 155 by using the representative value of the average width as the average value, and stores the intermediate time series 155 in the intermediate time series storage unit 192.
  • the SVD execution unit 113 executes singular value decomposition on the intermediate time series storage unit 192.
  • the intermediate dimension determination unit 181 reads and analyzes the time-series original data, and determines the intermediate dimension p and the segment width to be averaged.
  • the width of the average is within the range where the time series data monotonically increases or decreases.
  • FIG. 17 schematically shows a new calculation result of the average value calculation execution unit 182.
  • the average segment width is nZp.
  • the average value calculation execution unit 182 starts the time-series The average value is calculated for each data point while shifting the time t one by one, and the result is stored in the average value calculation result storage unit 191.
  • Figure 18 is an intermediate time series graph.
  • the intermediate time series creation unit 18 3 decomposes each time series 15 1 into a segment width that takes an average, extracts each representative value from the contents of the average value calculation result storage unit 19 1, and 55 is created and stored in the intermediate time series storage unit 192.
  • FIG. 19 shows the contents of the SVD execution result storage section 124 when the dimension after compression is set to 8 dimensions.
  • the SVD execution unit 1 13 reads the intermediate time series 1 5 5 from the intermediate time series storage unit 19 2, executes the singular value decomposition as a matrix with the number of rows m — n + l, and the number of columns p. It is stored in the execution result storage unit 124. In order to make the dimension after compression 8 dimensions, up to the value of the 8th component is stored.Next, the dimensional compression time series data generation unit 1114 calculates the up to the 8th component of the above singular value decomposition. To generate dimensionally compressed time-series data. That is, each time series 15 1 is approximately represented by the following eight data to generate dimensionally compressed time series data.
  • the width in which the time-series data monotonously changes By taking the average value in, the amount of data can be reduced without losing the characteristics of the data. Furthermore, by executing SVD on the reduced amount of data, singular value decomposition can be executed at high speed, and data features can be extracted.
  • the time-series data dimension compression device is a computer, and each element can execute processing by a program.
  • the program can be stored in a storage medium, and can be read from the storage medium by a computer.
  • FIG. 20 is a diagram illustrating an example of a hardware configuration of the time-series data dimension compression device.
  • the arithmetic device 200, the memory 200, the hard disk 200, and the display device 204 are connected to the bus.
  • the programs are stored in, for example, the hard disk 203, and sequentially loaded into the arithmetic unit 200 in a state of being loaded into the memory 202, and are processed.
  • Dimensional compression that improves the efficiency of time-series data retrieval can be performed without losing data characteristics.
  • it can be compressed to a fixed dimension, and more information can be extracted from it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 時系列データ次元圧縮装置に係り、データの特徴を失わずに、時系列データの検索の効率をよくする次元圧縮を行うことを課題とする。また、決まった次元に圧縮し、そのなかにより多くの情報を抽出できるようにする。部分時系列作成部112は、時系列データ作成部110で生成した複数の時系列データについて、指定のセグメント幅に分割した部分時系列を作成する。特異値分解実行部113は、全ての部分時系列を対象として特異値分解を行い、次元圧縮時系列データ生成部114は、上位の特異値分解の成分を、部分時系列の代表値として次元圧縮時系列データを生成する。

Description

明 細 書 時系列データ次元圧縮装置 技術分野
本発明は、 時系列データの検索をより効率よく行うために、 データの 特徴を失わずに次元圧縮することを目的とする。 また、 圧縮効率をよく することを目的とするのではなく、 決まった次元に圧縮し、 そのなかに より多くの情報を抽出することを目的とする。 背景技術
時系列データの次元を減らす従来技術としては、 例えば
E . K e o g h , K. Ch a k r a b a r t i , M. P a z z a n i , Me r o t r a
"D i me n s i o n a l i t y Re du c t i o n f o r F a s t S i m i l a r i t y S e a r c h i n L a r g e T i me S e r i e s D a t a b a s e s . J o u n a 1 o f K n o w 1 e d g e a n d I n f o rma t i o n S y s t ems , 2000
に示されている P AA (P i e s ew i s e Ag g r e g a t e A p p r o x ima t i o n) がある。
PA Aでは、 時系列データをセグメントに分割し、 セグメントの平均 値を各セグメントの代表値とすることで、 時系列データを圧縮するもの である。
平均値の計算はフーリエ変換や特異値分解に比べて簡単に実行でき、 より高速に次元圧縮時系列データを生成することができる。 時系列データの次元を減らす他の従来技術としては、 例えば、 F . K o r η , H. V. J a g a d i s , C . F a l o u t s o s" E f f i c i e n t y S u p p o r t i n g Ad Ho c Q u e r i e s i n L a r e D a t a s e t s o f T i me S e q u e n c e s"
P r o c e e d i n g s o f S I GMOD ' 97 p p 289 - 300
に示されている特異値分解による方法もある。 特異値分解による方法で は、 特異値分解後の全ての成分を用いるのではなく、 主要な特異値 (特 異値の大きいもの) のみを採用することで時系列データを圧縮するもの である。
特異値分解により次元を圧縮すると、 データの形状を他の方法よりう まく抽出できるため、 検索効率がよいという利点がある。
また、 画像データの次元を減らす従来技術としては、 例えば特開昭 6 1 - 285870 「変換符号化方式」 がある。 画像データをブロックに 分割してブロックとに圧縮する。 分割したブロックの圧縮では、 DCT (D i s c r e t e C o s i n e T r a n s f o rm) と行歹 !Jの縦 •横の傾斜角度をあらわす変換との組合せを用いる。
このように 2つの変換を組み合わせることで、 ブロックごとにその特 徴を抽出して最適な変換を選択することでより高い圧縮率を実現できる
PAAは、 各セグメントの平均値を代表値とすることで、 より高速に 次元圧縮ができるが、 時系列データの検索時または類似検索時には次の ような問題がある。 時系列データの検索手順は、 まず圧縮空間で解の候 補を探し、 各解の候補に対して実空間で最終的な解を検索する。 したが つて、 圧縮空間では解の候補として選択されたが実空間で真の解となら ないものが多いと検索効率が悪くなる。 P A Aの場合は平均値を各セグ メントの代表値とするために、 時系列の形状が消されるため圧縮後の情 報が乏しくなり、 上記で言う検索効率が悪いという問題がある。 例えば 、 平らな時系列も右上がりの時系列も右下がりの時系列も平均値が同じ になると、 圧縮後の値は同じとなってしまう。
S V Dは、 特異値分解によりデータの形状をうまく抽出でき、 上記で 言う検索効率は高いものの、 データ量が多くなると特異値分解にかかる 時間が多くなり現実的な時間では特異値分解ができないという問題があ る。
特開昭 6 1 - 2 8 5 8 7 0 「変換符号化方式」 は、 圧縮率を向上する ことが目的であるが、 時系列データの検索に用いる場合には以下の問題 がある。 時系列データの検索はまず解の候補を圧縮空間で探すために、 全てのセグメント (ブロック) を同じ圧縮率で圧縮する必要があるが、 上述の方式では各ブロックごとに異なる圧縮率となる。 発明の開示
本発明に係る時系列データ次元圧縮装置は、
以下の要素を有することを特徴とする
( 1 ) 時間軸に沿って一定間隔で測定された一連のデータである時系列 元データに対して、 時間軸上で所定間隔ずつ開始位置をずらして、 指定 の長さの時系列データを複数作成する時系列データ作成部
( 2 ) 複数の上記時系列データのそれぞれについて、 指定のセグメント 幅に分割した部分時系列を作成する部分時系列作成部
( 3 ) 上記分割した全ての部分時系列を対象として特異値分解を行う特 異値分解実行部
( 4 ) 指定された数の上位の特異値分解の成分を、 上記各セグメント幅 に分解した部分時系列の代表値として、 次元圧縮時系列データを生成す る次元圧縮時系列データ生成部。 図面の簡単な説明
図 1は、 この発明の実施の形態 1を示す構成図である。
図 2は、 時系列元データ 1 50を表したグラフである。
図 3は、 時系列デ一夕 1 5 1の作成方法の図である。
図 4は、 時系列データ 15 1の作成のためのフローチヤ一トである。 図 5は、 時系列デ一夕 15 1のグラフである。
図 6は時系列デ一夕をセグメントに分割した様子を示したものである 図 7は、 開始位置 t =k + 2Nの部分時系列 1 52を示したものであ る。
図 8は、 kから始まる時系列 1 5 1と k + 2 Nから始める時系列 25 1を示したものである。
図 9は、 S VD実行結果記憶部の内容で特異値分解の結果を示す図で ある。
図 10は、 代表値をプロットした次元圧縮時系列データ 1 53のダラ フの例である。
図 1 1は、 圧縮データ作成のフローチャートである。
図 12は、 この発明の実施の形態 2を示す構成図である。
図 1 3は、 実施の形態 2のフローチャートである。
図 14は、 セグメント幅を 16にした場合と 32にした場合の模式図 である。
図 1 5は、 SVDの結果の第 2成分まで用いる場合の SVD実行結果 である。 図 16は、 この発明の実施の形態 3を示す構成図である。
図 1 7は、 平均値計算実行部 182の計算結果を模式的に新たしたも のである。
図 1 8は、 中間時系列のグラフである。
図 1 9は、 圧縮後の次元を 8次元にする場合の SVD実行結果である 図 20は、 ハードウェア構成図である。 発明を実施するための最良の形態
実施の形態 1.
図 1は、 この発明の実施例を示す構成図である。 図において、 120 は 2次記憶装置もしくは 1次記憶装置で、 時系列元データ 1 50を格納 した時系列元データ格納部である。 時系列データ作成部 1 1 0は、 時系 列元データ格納部 1 20から時系列元データ 1 50を読み込み、 時系列 データ 1 5 1を作成する。 121は 2次記憶装置もしくは 1次記憶装置 で 1 10によって生成された複数の時系列データ 1 5 1を格納する時系 列データ格納部である。 部分時系列作成部 1 1 2は、 時系列データ格納 部 12 1から時系列デ一夕 1 5 1を順次読込み、 部分時系列 1 52を作 成し、 部分時系列記憶部 1 22に格納する。 部分時系列記憶部 1 22は 、 1次記憶装置もしくは 2次記憶装置である。 3 0実行部1 13は、 部分時系列記憶部 122から部分時系列 1 52を読込み特異値分解を実 行し、 SVD実行結果記憶部 124に格納する。 SVD実行結果記憶部 124は、 1次記憶装置もしくは 2次記憶装置である。 次元圧縮時系列 データ生成部 1 14は、 S VD実行結果記憶部 124から S VDの結果 を読込み、 次元圧縮時系列データ 1 53を作成し、 次元圧縮時系列デー 夕格納部 123に格納する。 次元圧縮時系列データ格納部 1 23は、 2 次記憶装置もしくは 1次記憶装置である。
図 2は、 時系列元データ 150を表したグラフである。 X軸が時刻 t 、 y軸が時系列の値である。 時刻 tの取りうる値は 1から mの間の自然 数であり、 m個のデータポイントがある。 最初のデータポイントは t = 1であらわし、 最後のデータポイントは t=mとする。 また、 データポ イン卜の数を長さと呼び、 この場合の長さは m (時系列長 160) で ある。
図 3は、 時系列データ 151の作成方法の図である。 時系列データ作 成部 1 10は、 時系列元データ格納部 120から時系列元データ 150 を読み込み、 長さ nの時系列を時系列元データの開始ポイントの時刻 t を一つづつずらすことで、 m— n+1個作成する。 ここでは、 長さ nは あらかじめ決めておくこととする。 t = 1から始める時系列が時系列 1 、 t = 2から始める時系列が時系列 2、 そして t =m— n+ 1から始め る時系列が時系列 m— n+ 1である。 t =m— n+1から始める時系列 の終点は t=mとなり、 これ以降の tの値から始めると長さが n未満と なる。
さらに、 部分時系列作成のことを考慮し、 長さが n未満で N以上の時 系列をその後に n—N個追加する。 これを補填時系列とよぶ。 開始時刻 tの値が、 m— n + 2から m— N+ 1までの時系列であり、 終点の tの 値は全て mである。
m— n'+ 2から始まる時系列は、 長さが n— 1であり、
m— n+ 3から始まる時系列は、 長さが n— 2であり、
m_N+ 1から始まる時系列は、 長さが Nである。
図 4は、 時系列データ 151の作成のためのフローチャートである。 S 301にて、 時系列元データにて時系列データの開始時刻 t = 1にセ ットする。 S 302においては、 時系列長 =nにセットする。 S 303 にて、 時系列元データを読み込む。 S 3 0 4では、 時系列開始時刻と時 系列長から時系列終了ポイントを計算し、 m以下であるか調べる。 時系 列終了ポイントが m以下であれば時系列デ一夕を作成できるので、 S 3 0 5にすすむ。 S 3 0 5にて時系列開始時刻と時系列長をもとに、 時系 列元デ一夕から時系列データを作成する。 S 3 0 6では次の時系列デー 夕を作成するために開始ポイント tをインクリメントして、 再ぴ S 3 0 3に戻る。 S 3 0 4にて、 時系列の終了ポイントが mを超えている場合 は、 時系列長 nの時系列データはこれ以上作成できないので、 補填時系 列データを作成するために S 3 0 8にすすむ。 S 3 0 8では、 時系列長 をデイクリメントする。 S 3 0 9では、 デイクリメントして時系列長が N以上であるか調べる。 N以上であれば、 S 3 1 0にすすみ補填時系列 データを作成する。 S 3 1 1では、 開始ポイントをインクリメントして 次の補填時系列データを作成するための準備をして、 S 3 0 7にすすむ 。 S 3 0 7では時系列元デ一夕を読み込む。 次に再び S 3 0 8にすすむ 。 S 3 0 9にて、 時系列長が Nより小さくなつたら時系列データ作成は 終了する。
図 5は、 時系列データ 1 5 1のグラフである。 開始位置は k、 終了位 置が k + n— 1で n個のデータポイントで構成される。 時系列データ 1 5 1は長さが n (検索時系列長 1 6 1 ) の時系列である。
図 6は時系列データをセグメントに分割した様子を示したものである 。 各時系列データ 1 5 1を長さ N (セグメント幅 1 6 2 ) のセグメン トに分割する。 一つの時系列データ 1 5 1は n ZN 個のセグメントに 分割される。 それぞれの長さ Nのセグメントを部分時系列 1 5 2とする 図 7は、 開始位置 t = k + 2 Nの部分時系列 1 5 2をあらわす。 部分 時系列 1 5 2は N個のデータポイントから構成され、 長さは Nである。 部分時系列作成部 1 1 2は、 それぞれの時系列データ 1 5 1の最初の N個のデータのみを選択することで、 部分時系列データ 1 5 2を作成す る。 全ての時系列に対して実行することで開始位置が t = 1から t =m _ n + 1の長さ Nの部分時系列を作成できる。 さらに、 時系列データ作 成部 1 1 0が作成した補填時系列についても最初の N個のデータを読み 込みそれも補填部分時系列データとして作成し、 あわせて部分時系列記 憶部 1 2 2に格納する。 ここでセグメント幅 Nはあらかじめ決めておく こととする。 上記のようにすることで、 時系列元データに対して、 開始 位置 t = 1カゝら t =m— N + 1までの長さ Nの全ての部分時系列を作成 できる。
全ての時系列データがもともとは一つの時系列元データ 1 5 0であつ たことから、 各時系列データのいずれのセグメントも上記の部分時系列 のいずれかと一致する。
図 8に示すように、 kから始まる時系列 1 5 1の 3番目のセグメント の部分時系列は、 k + 2 Nから始める時系列 2 5 1の最初のセグメント と同じである。 つまり、 時系列 2 5 1から作成した部分時系列と一致す る。
S V D実行部 1 1 3は、 部分時系列作成部 1 1 2から部分時系列デー 夕 1 5 2を読込み、 行数 m _ N + l、 列数 Nの行列として特異値分解を 実行する。
特異値分解とは、 任意の m X n行列 Yを、 以下のように U, S, Vの 3 つの行列の積で表わすもので一般に良く知られている式である。
Y = USV + s2u2v2 +■■ " + S,U ,V,
Figure imgf000010_0001
ただし、 r = r a nk (Y) ,
S ! , S 2 : , …, s は Υτ Y の正の固有値の平方根 (特 異値という) で、 S ≥ S S ,
1 2 … ≤ r
, …, V
r は η 次のベクトルで、 Υτ Υ の固 有値 s ι , s 22 , '··, s r 2 に対応する固有ベクトル。
, ···, V
r は大きさが 1 で互いに直交する。
U ! , U 2 , …, u r は m 次のべクトルで、 uj り で定義される。
Figure imgf000011_0001
u は , u 2 , …, u r を列にもつ m X r 行列
V は ェ , v ·
2 , ··, V
r を列にもつ n X r 行列
S は s i , s o , …, s を対角要素にもつ r 次の対 角行列。
図 9は、 SVD実行結果記憶部の内容で特異値分解の結果を示す。 特 異値分解により、 各行の代表値として上記 Ml を抽出する。
すなわち特異値分解の対象となる行数 m— N+ 1列数 Nの行列に対して 、 行方向で見た場合に、 r番目の行は u 1ベクトルの r番目の成分と s 1の積を代表値とする。
r番目の行は、 開始位置の t = rで始まる部分時系列であり、 その代表 値が u 1べクトルの r番目の成分と s 1の積である。 S VD実行部は、 全てのセグメント (全ての部分時系列) の代表値を作成する。
次に、 次元圧縮時系列データ生成部は 1 14 は、 上記の特異値分解 の第一成分を各セグメントの代表値として、 次元圧縮時系列データを生 成する。 開始位置 t =kで始まる部分時系列 1 5 1は、 以下の部分時系 列で構成される。
開始位置 t =k、 k+N, k + 2N, ···。
したがって、 その次元圧縮時系列データは、 最初の代表値は u lベタ トルの k番目の成分と s 1の積であり、 次の代表値は u 1ベクトルの k + N番目の成分と s 1の積である。
図 10は、 上記の代表値をプロットした、 次元圧縮時系列データ 1 5 3のグラフの例である。
次元圧縮時系列データ 1 53は nZN個のポイントで構成される。 時系 列データ 1 5 1をセグメント分割したそれぞれの部分時系列データにた いして、 SVDを実行してその第一成分をプロットしたものである。 図 1 1は、 圧縮データ作成のフローチャートである。 時系列データ作 成部 1 10は、 時系列元データ格納部 120から時系列元データ 1 50 を読み込み、 時系列データ 1 5 1を作成し、 時系列データ格納部 12 1 に格納する。 次に、 部分時系列作成部 1 1 2は、 時系列データ格納部 1 2 1から時系列データ 1 5 1を順次読込み、 部分時系列 1 52を作成し 、 部分時系列記憶部 1 22に格納する。 次に、 SVD実行部 1 1 3は、 部分時系列記憶部 1 22から部分時系列を読込み特異値分解を実行し、 SVD実行結果記憶部 1 24に格納する。 次元圧縮時系列データ生成部 1 14は、 SVD実行結果記憶部 124のデータを用いて次元圧縮時系 列データ 1 53を作成し、 次元圧縮時系列デ一夕格納部 12.3に格納す る。
上述のように時間軸に沿って一定間隔で測定された一連のデータに対 して、 指定の長さの時系列データを時間軸上で開始位置をずらして複数 作成する手段と、 上記指定の長さの各時系列データを指定のセグメント 幅に分割した部分時系列を作成する手段と、 上記分割した全ての部分時 系列を対象として特異値分解を行う手段と、 指定された数の上位の特異 値分解の成分 (この場合は第一成分までとした) を上記各セグメント幅 に分解した部分時系列の代表値とする手段と、 上記代表値を組み合わせ ることで上記指定の長さの時系列データの次元を圧縮する手段とを備え たことを特徴とする時系列データ次元圧縮方式について説明した。 実施の形態 2.
図 1 2は、 この発明の実施例を示す構成図である。 1 1 0、 1 12、 1 1 3、 1 14、 120、 12 1、 122、 1 23、 1 24は図 1と同 様である。 データ解析部 1 1 7は、 時系列データ格納部 1 2 1から時系 列データ 1 5 1を読み込み解析し、 セグメント幅と特異値分解の結果の どの成分までを有効とするかを決めるものである。
図 13は実施の形態 2のフローチャートである。 時系列データ作成部 1 10は、 時系列元データ格納部 120から時系列元デ一夕 1 50を読 み込み、 時系列デ一夕 1 5 1を作成し、 時系列データ格納部 1 2 1に格 納する。
次に、 データ解析部 1 1 7は時系列データ格納部 1 2 1から時系列デ 一夕を読込み解析を行う。 解析の結果、 検索時にヒット率が最も高くな るように、 セグメント幅と特異値分解の結果のどの成分までを有効とす るかを決める。 この場合は、 第 2成分までを使用することとする。 部分時系列作成部 1 1 2は、 時系列データ格納部 12 1から時系列デ 一夕 1 5 1を順次読込み、 部分時系列 1 52を作成し、 部分時系列記憶 部 122に格納する。 この際に、 部分時系列のセグメント幅はデータ解 析部 1 17が決めた値とする。 次に、 SVD実行部 1 1 3は、 部分時系 列記憶部 122から部分時系列を読込み特異値分解を実行する。 実行し た結果、 SVDの結果のどの成分までを採用するかデータ解析部 1 1 7 が決めた値までを S V D実行結果記憶部に記憶する。 この場合は第 2成 分までを SVD実行結果記憶部に格納する。 次元圧縮時系列データ生成 部 1 14は、 SVD実行結果記憶部の内容を用いて次元圧縮時系列デー 夕 1 53を作成し、 次元圧縮時系列データ格納部 1 23に格納する。 図 14は、 セグメント幅を 16にした場合と 32にした場合の模式図 である。 セグメント幅を 16にして、 S VDの第 1成分まで使用した場 合の圧縮後の次元は、 以下より求まる。
セグメント数 128÷16=8、 セグメント代表値 = 1
セグメント数 Xセグメント代表値 = 8
すなわち 8次元に圧縮できる。
一方、 セグメント幅を 32にして、 SVDの第 2成分まで使用した場 合の圧縮後の次元は、 以下より求まる。
セグメント数 128÷32=4、 セグメント代表値 =2
セグメント数 Xセグメント代表値二 8
すなわち 8次元に圧縮できる。
圧縮後の次元を同じにする場合でも、 セグメント幅とセグメント代表 値の取り方にはいくつかの選択肢があり、 そのなかでもっともヒット率 が高くなるようにセグメント幅とセグメント代表値の数をきめるのがデ 一夕解析部 1 17の機能である。
図 1 5は、 SVDの結果の第 2成分まで用いる場合の SVD実行結果 記憶部の内容である。 セグメントの第 1成分が全セグメン卜でほぼ同じ 値の場合には、 セグメント幅を長くして SVDの第 2成分までを利用す ることでより詳細に時系列データの特徴を抽出でき、 検索時のヒット率 が向上する。
時系列データを解析して、 上記時系列データを分割するセグメント幅 および特異値分解のどの成分までを利用して上記部分時系列の代表値と するかを判断する手段をそなえた請求項 1記載の時系列データ次元圧縮 方式について説明した。
以上のように、 この発明によれば、 セグメント分割して SVDを実行 することで、 全データと比較した各セグメントの特徴を抽出できるため に、 検索効率の高い圧縮データを作成できる。 また、 単純に SVDを実 行する場合に比べると、 対象となる行列の行数は同じであるが列数が N /n になるためにより高速に実行できる。 実施の形態 3.
図 16は、 この発明の実施例を示す構成図である。 図において、 1 1
0、 1 14、 1 20、 12 1、 123、 1 24は図 1と同様である。 中 間次元決定部 181は、 平均値を計算するための幅を決定する。 平均値 計算実行部 182は中間次元決定部の指定した平均値幅で時系列データ の平均値を計算し、 結果を平均値計算結果記憶部 1 9 1に格納する。 中 間時系列作成部 183は、 平均値幅の代表値をその平均値とすることで 中間時系列 1 55を作成して、 中間時系列記憶部 1 92に格納する。 S VD実行部 1 1 3は、 中間時系列記憶部 192に対して、 特異値分解を 実行する。
中間次元決定部 181は、 時系列元データを読込み解析して、 中間次 元 pおよび平均をとるセグメント幅を決定する。 平均をとる幅は、 時系 列データが単調に増加または減少する範囲内とする。
図 1 7は、 平均値計算実行部 182の計算結果を模式的に新たしたも のである。 時系列 1 51の長さを nとし、 中間次元を pとすると、 平均 をとるセグメント幅は nZpとなる。 例えば、 時系列長が 1 28で中間 次元が 32の場合は、 平均をとるセグメント幅は 128 32 = 4とな る。 平均値計算実行部 182は、 時系列元データ 1 50に対して開始時 刻 tを一つづつずらしながら、 データボイントごとに平均値を計算して 結果を平均値計算結果記憶部 1 9 1に格納する。
図 1 8は、 中間時系列のグラフである。 中間時系列作成部 1 8 3は、 各時系列 1 5 1を平均をとるセグメント幅に分解し、 それぞれの代表値 を平均値計算結果記憶部 1 9 1の内容から取り出して、 中間時系列 1 5 5を作成して、 中間時系列記憶部 1 9 2に格納する。
図 1 9は、 圧縮後の次元を 8次元にする場合の S V D実行結果記憶部 1 2 4の内容である。 S V D実行部 1 1 3は、 中間時系列記憶部 1 9 2 から中間時系列 1 5 5を読込み、 行数 m— n + l、 列数 pの行列として 特異値分解を実行し、 結果を S V D実行結果記憶部 1 2 4に格納する。 圧縮後の次元を 8次元にするために、 第 8成分の値までを格納している 次に、 次元圧縮時系列データ生成部は 1 1 4 は、 上記の特異値分解 の第 8成分までを用いて次元圧縮時系列データを生成する。 すなわち、 各時系列 1 5 1は以下の 8つのデータで近似的に表し、 次元圧縮時系列 データを生成する。
( S J u 1 , s 2 u 2 , S 3 u 3 > s , u Λ , s 5 u s, s 6 u 6, s 7 u 7 , s 8 u 8)
指定の長さの複数の時系列デ一夕に対して、 平均をとるセグメント幅 を決める手段と、 上記の各時系列に対して平均をとるセグメント幅ごと に平均値を計算する手段と、 平均値をセグメント代表値とした中間時系 列を作成する手段と、 それぞれの中間時系列を対象として特異値分解を 行う手段と、 指定された数の上位の特異値分解の成分を上記中間時系列 の圧縮データとする手段とを備えたことを特徴とする時系列データ次元 圧縮方式について説明した。
以上のように、 この発明によれば、 時系列データが単調に変化する幅 で平均値をとることでデータの特質を失うことなくデータ量を削減でき る。 さらに、 削減したデータ量に対して S V Dを実行することで高速に 特異値分解を実行でき、 またデータの特徴も抽出することができる。 時系列データ次元圧縮装置は、 コンピュータであり、 各要素はプログ ラムにより処理を実行することができる。 また、 プログラムを記憶媒体 に記憶させ、 記憶媒体からコンピュー夕に読み取られるようにすること ができる。
図 2 0は、 時系列データ次元圧縮装置のハードウェア構成例を示す図 である。 この例では、 バスに、 演算装置 2 0 0 1、 メモリ 2 0 0 2、 ハ ードディスク 2 0 0 3、 表示装置 2 0 0 4が接続されている。 プロダラ ムは、 例えばハードディスク 2 0 0 3に記憶されており、 メモリ 2 0 0 2にロードされた状態で、 順次演算装置 2 0 0 1に読み込まれ処理を行 ラ。 産業上の利用可能性
データの特徴を失わずに、 時系列データの検索の効率をよくする次元 圧縮を行うことができる。 また、 決まった次元に圧縮し、 そのなかによ り多くの情報を抽出することがでる。

Claims

請求の範囲
1 . 以下の要素を有することを特徴とする時系列データ次元 圧縮装置
( 1 ) 時間軸に沿って一定間隔で測定された一連のデータである時系列 元データに対して、 時間軸上で所定間隔ずつ開始位置をずらして、 指定 の長さの時系列データを複数作成する時系列データ作成部
( 2 ) 複数の上記時系列データのそれぞれについて、 指定のセグメント 幅に分割した部分時系列を作成する部分時系列作成部
( 3 ) 上記分割した全ての部分時系列を対象として特異値分解を行う特 異値分解実行部
( 4 ) 指定された数の上位の特異値分解の成分を、 上記各セグメント幅 に分解した部分時系列の代表値として、 次元圧縮時系列データを生成す る次元圧縮時系列デー夕生成部。
2 . 時系列データ次元圧縮装置は、 上記代表値を組み合わせ ることで上記指定の長さの時系列データの次元を圧縮することを特徴と する請求項 1記載の時系列データ次元圧縮装置。
3 . 前記時系列デ一夕を解析して、 当該時系列データを分割 するセグメント幅および特異値分解について、 どの成分までを利用して 上記部分時系列の代表値とするかを判断するデータ解析部を備えること を特徴とする請求項 1記載の時系列データ次元圧縮装置。
4 . 以下の要素を有することを特徴とする時系列データ次元 圧縮装置
( 1 ) 時間軸に沿って一定間隔で測定された一連のデ一夕である時系列 元データに対して、 時間軸上で所定間隔ずつ開始位置をずらして、 指定 の長さの時系列データを複数作成する時系列データ作成部 (2) 複数の上記時系列データのそれぞれについて、 前記指定の長さの 複数の時系列データに対して、 平均をとる為のセグメント幅を決める中 間次元決定部
(3) 前記各時系列に対して、 上記平均をとる為のセグメント幅ごとに 平均値を計算する平均値計算実行部
(4) 計算した上記平均値をセグメント代表値とした中間時系列を作成 する中間時系列作成部
(5) それぞれの中間時系列を対象として特異値分解を行う特異値分解 実行部
(6) 指定された数の上位の特異値分解の成分を上記中間時系列の圧縮 データとする次元圧縮時系列データ生成部。
PCT/JP2004/002252 2004-02-26 2004-02-26 時系列データ次元圧縮装置 Ceased WO2005083890A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006519068A JP4298749B2 (ja) 2004-02-26 2004-02-26 時系列データ次元圧縮装置
CNA2004800372032A CN1894856A (zh) 2004-02-26 2004-02-26 时序数据维压缩装置
PCT/JP2004/002252 WO2005083890A1 (ja) 2004-02-26 2004-02-26 時系列データ次元圧縮装置
US10/582,846 US7433527B2 (en) 2004-02-26 2004-02-26 Time series data dimensional compression apparatus
CA002548461A CA2548461C (en) 2004-02-26 2004-02-26 Time series data dimensional compression apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/002252 WO2005083890A1 (ja) 2004-02-26 2004-02-26 時系列データ次元圧縮装置

Publications (1)

Publication Number Publication Date
WO2005083890A1 true WO2005083890A1 (ja) 2005-09-09

Family

ID=34897914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002252 Ceased WO2005083890A1 (ja) 2004-02-26 2004-02-26 時系列データ次元圧縮装置

Country Status (5)

Country Link
US (1) US7433527B2 (ja)
JP (1) JP4298749B2 (ja)
CN (1) CN1894856A (ja)
CA (1) CA2548461C (ja)
WO (1) WO2005083890A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670751B2 (en) 2007-09-05 2010-03-02 Shin-Etsu Chemical Co., Ltd. Photoacid generator, resist composition, and patterning process
US9866653B2 (en) 2013-08-02 2018-01-09 Hitachi, Ltd. Data transfer system and method
US10771088B1 (en) 2019-02-28 2020-09-08 International Business Machines Corporation Optimal multi-dimensional data compression by tensor-tensor decompositions tensor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398777B2 (ja) * 2004-04-28 2010-01-13 株式会社東芝 時系列データ分析装置および方法
US7310652B1 (en) * 2005-08-08 2007-12-18 At&T Corp. Method and apparatus for managing hierarchical collections of data
US8886689B2 (en) * 2009-02-17 2014-11-11 Trane U.S. Inc. Efficient storage of data allowing for multiple level granularity retrieval
US8219574B2 (en) * 2009-06-22 2012-07-10 Microsoft Corporation Querying compressed time-series signals
US20110050702A1 (en) * 2009-08-31 2011-03-03 Microsoft Corporation Contribution based chart scaling
US8588587B2 (en) 2010-06-30 2013-11-19 International Business Machines Corporation Navigation interface with ghost region
JP5678620B2 (ja) * 2010-12-03 2015-03-04 株式会社日立製作所 データ処理方法、データ処理システム、及びデータ処理装置
CN102522999B (zh) * 2011-12-09 2014-06-25 电子科技大学 一种三维声波测井数据的实时压缩方法
US8972415B2 (en) 2012-04-30 2015-03-03 Hewlett-Packard Development Company, L.P. Similarity search initialization
US9702963B2 (en) 2012-05-30 2017-07-11 Nokia Technologies Oy Method, apparatus, and computer program product for high accuracy location determination
CN103794006B (zh) 2012-10-31 2016-12-21 国际商业机器公司 用于处理多个传感器的时序数据的方法和装置
CN103914449B (zh) * 2012-12-29 2017-06-16 上海可鲁系统软件有限公司 一种多源时间序列数据压缩存储方法
US9607067B2 (en) 2013-01-25 2017-03-28 International Business Machines Corporation Synchronization of time between different simulation models
US9805143B2 (en) 2013-01-25 2017-10-31 International Business Machines Corporation Composite simulation modeling and analysis
US9201989B2 (en) 2013-01-25 2015-12-01 Globalfoundries Inc. Interpolation techniques used for time alignment of multiple simulation models
EP3005569A4 (en) * 2013-05-31 2017-01-11 Nokia Technologies Oy Calibration data
US9361329B2 (en) 2013-12-13 2016-06-07 International Business Machines Corporation Managing time series databases
GB2521442A (en) 2013-12-19 2015-06-24 Nokia Corp Method, apparatus, and computer program product for location determination using WiFi
CN105260404B (zh) * 2015-09-22 2019-03-26 北京百度网讯科技有限公司 存储时间序列数据的方法和装置
US10685306B2 (en) * 2015-12-07 2020-06-16 Sap Se Advisor generating multi-representations of time series data
US11036715B2 (en) 2018-01-29 2021-06-15 Microsoft Technology Licensing, Llc Combination of techniques to detect anomalies in multi-dimensional time series
CN110620586B (zh) * 2019-09-17 2021-07-13 河北省科学院应用数学研究所 数据压缩方法、装置和终端设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288294A (ja) * 1998-04-03 1999-10-19 Honda Motor Co Ltd 音声認識装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61285870A (ja) 1985-06-13 1986-12-16 Toshiba Corp 変換符号化方式
JPH0654500B2 (ja) 1985-07-25 1994-07-20 株式会社日立メデイコ デ−タ圧縮方法
JPH06139345A (ja) 1992-10-23 1994-05-20 Toshiba Corp 特異値展開符号化方式
JP2795119B2 (ja) * 1993-02-03 1998-09-10 日本ビクター株式会社 多次元画像圧縮伸張方式
DE69717359T2 (de) * 1996-07-29 2003-04-30 Matsushita Electric Industrial Co., Ltd. Verfahren zur Komprimierung und Dekomprimierung von eindimensionalen Zeitserien
US5818463A (en) * 1997-02-13 1998-10-06 Rockwell Science Center, Inc. Data compression for animated three dimensional objects
JPH1128894A (ja) 1997-07-10 1999-02-02 Shinjirou Toyoshima 楕円形コンパス
JP2000048047A (ja) * 1998-01-19 2000-02-18 Asahi Glass Co Ltd 時系列デ―タの保存方法及び時系列デ―タベ―スシステム、時系列デ―タの処理方法及び時系列デ―タ処理システム、時系列デ―タ表示システム、並びに記録媒体
US6373986B1 (en) * 1998-04-08 2002-04-16 Ncr Corporation Compression of data transmission by use of prime exponents
EP0973129A3 (en) * 1998-07-17 2005-01-12 Matsushita Electric Industrial Co., Ltd. Motion image data compression system
US6486881B2 (en) * 2000-06-15 2002-11-26 Lifef/X Networks, Inc. Basis functions of three-dimensional models for compression, transformation and streaming
US6947045B1 (en) * 2002-07-19 2005-09-20 At&T Corporation Coding of animated 3-D wireframe models for internet streaming applications: methods, systems and program products
US7103222B2 (en) * 2002-11-01 2006-09-05 Mitsubishi Electric Research Laboratories, Inc. Pattern discovery in multi-dimensional time series using multi-resolution matching
US6871165B2 (en) * 2003-06-20 2005-03-22 International Business Machines Corporation Method and apparatus for classifying time series data using wavelet based approach
US7551785B2 (en) * 2003-07-03 2009-06-23 Canadian Space Agency Method and system for compressing a continuous data flow in real-time using cluster successive approximation multi-stage vector quantization (SAMVQ)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288294A (ja) * 1998-04-03 1999-10-19 Honda Motor Co Ltd 音声認識装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAKRABARTI K. ET AL: "Locally adaptive dimensionality reduction for indexing large time series data bases", ACM TRANSACTIONS ON DATABASE SYSTEMS, vol. 27, no. 2, June 2002 (2002-06-01), pages 188 - 228, XP002977680 *
KEOGH E. ET AL: "Dimensionality reduction for fast similarity search in Large time series databases", KNOWLEDGE AND INFORMATION SYSTEMS, vol. 3, no. 3, 2000, pages 263 - 286, XP002977681 *
KORN F. ET AL: "Efficiently supporting ad hoc queries in Large datasets of time sequences", PROCEEDINGS OF SIGMOD'97, 1997, pages 289 - 300, XP002977682 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670751B2 (en) 2007-09-05 2010-03-02 Shin-Etsu Chemical Co., Ltd. Photoacid generator, resist composition, and patterning process
US9866653B2 (en) 2013-08-02 2018-01-09 Hitachi, Ltd. Data transfer system and method
US10771088B1 (en) 2019-02-28 2020-09-08 International Business Machines Corporation Optimal multi-dimensional data compression by tensor-tensor decompositions tensor

Also Published As

Publication number Publication date
JP4298749B2 (ja) 2009-07-22
CA2548461A1 (en) 2005-09-09
JPWO2005083890A1 (ja) 2007-08-30
CA2548461C (en) 2009-08-11
US20070147519A1 (en) 2007-06-28
CN1894856A (zh) 2007-01-10
US7433527B2 (en) 2008-10-07

Similar Documents

Publication Publication Date Title
WO2005083890A1 (ja) 時系列データ次元圧縮装置
JP3658761B2 (ja) 画像検索システムとその画像検索方法、及び画像検索プログラムを記録した記憶媒体
CN110874636B (zh) 一种神经网络模型压缩方法、装置和计算机设备
EP2050043A2 (en) Face recognition with combined pca-based datasets
CN113870283A (zh) 人像抠图方法、装置、计算机设备及可读存储介质
JP4549314B2 (ja) イオン化分子フラグメントを分類するための方法、装置、及びプログラム製品
CN113507608A (zh) 图像编码方法、装置、电子设备
JP2001134768A (ja) デジタル映像テクスチャー分析方法
EP3848827A1 (en) Noise estimation method, noise estimation program, and noise estimation apparatus
JP2002082985A (ja) 画像検索装置及び方法並びに画像検索プログラムを記録した記憶媒体
JPH0738760A (ja) 直交変換基底生成方式
CN111026935B (zh) 基于自适应度量融合的跨模态检索重排序方法
JP4652698B2 (ja) 画像認識装置、画像認識方法及びプログラム
JPH0766448B2 (ja) 画像信号分析装置
CN102713971A (zh) 图像处理设备以及方法
JP2000004164A (ja) ベクトル量子化装置および方法、記録媒体
CN111773700A (zh) 一种动画数据的处理方法和装置
JP2000004166A (ja) ディジタル信号処理
CN115510089B (zh) 一种向量特征比对方法、电子设备及存储介质
JP2005078579A (ja) 信号分離方法、信号分離プログラム及びそのプログラムを記録した記録媒体
Huang et al. Variable selection by perfect sampling
CN116629321B (zh) 数据处理方法、语音处理方法、装置、介质及芯片
JPH10200890A (ja) 画像符号化方法
US9350383B2 (en) Run total encoded data processing
CN117407638A (zh) 加速典型多元分解的电子装置和方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480037203.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006519068

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2548461

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007147519

Country of ref document: US

Ref document number: 10582846

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10582846

Country of ref document: US