[go: up one dir, main page]

WO2002003441A1 - Operation monitoring method for treatment apparatus - Google Patents

Operation monitoring method for treatment apparatus Download PDF

Info

Publication number
WO2002003441A1
WO2002003441A1 PCT/JP2001/005758 JP0105758W WO0203441A1 WO 2002003441 A1 WO2002003441 A1 WO 2002003441A1 JP 0105758 W JP0105758 W JP 0105758W WO 0203441 A1 WO0203441 A1 WO 0203441A1
Authority
WO
WIPO (PCT)
Prior art keywords
residual
processing
state
score
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2001/005758
Other languages
English (en)
French (fr)
Inventor
Shinji Sakano
Tsuyoshi Sendoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000201729A external-priority patent/JP4570736B2/ja
Priority claimed from JP2000201731A external-priority patent/JP4610021B2/ja
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to AU2001267913A priority Critical patent/AU2001267913A1/en
Priority to US10/332,011 priority patent/US7054786B2/en
Publication of WO2002003441A1 publication Critical patent/WO2002003441A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H10P74/23
    • H10P50/283

Definitions

  • the present invention relates to a method for monitoring an operation state and evaluating characteristics of a processing apparatus for performing, for example, etching processing of a semiconductor wafer using plasma. Background technology
  • processing equipment such as semiconductor manufacturing equipment and inspection equipment are used. These processing units monitor the operating conditions using various types of operating data, and if abnormalities are found in the operating conditions, investigate the cause. When investigating the cause, collect and analyze various operation data to grasp the operation state of the processing equipment, and investigate where the abnormality occurred.
  • a plasma processing apparatus is used for an etching process, a film forming process, and the like.
  • This type of plasma processing apparatus includes, for example, an upper electrode and a lower electrode disposed in parallel with each other in a processing container, applies high-frequency power to the lower electrode, and introduces a process gas into the processing container.
  • a process gas plasma is generated by a discharge between the electrode and the lower electrode, and a predetermined plasma is applied to an object to be processed such as a semiconductor wafer.
  • the operating state of the plasma processing apparatus is determined by detecting 30 types of data, such as the pressure in the processing chamber, the power applied to the lower electrode, and the supply flow rate of the process gas, using the respective detectors and the detected values. Is used as operating data to monitor the operating state of the processing equipment.
  • the operating state may fluctuate over time, or in some cases, the operating state may suddenly fluctuate.
  • statistical data such as average, maximum, minimum and dispersion values are obtained individually for operation data such as high frequency power, process gas flow rate, process gas pressure in the processing vessel, etc.
  • the operating status of the processing unit based on its statistics Is to be evaluated.
  • due to the large number of detectors it is complicated and enormous effort and time to obtain statistical data for all detector operation data and evaluate the operation data for each detector. There is a problem of needing.
  • the operation data obtained by the test operation is compared with the operation data obtained by the corresponding detector of the reference processor (hereinafter referred to as “reference processor”). As shown in Fig. 5, they are compared and analyzed one by one. For this reason, there is a problem that evaluation of such a processing apparatus requires a great deal of labor and time.
  • this type of plasma processing apparatus applies, for example, high-frequency power to an electrode in a processing vessel and introduces a process gas into the processing vessel, thereby generating plasma of the process gas in the processing vessel and generating a semiconductor wafer or the like.
  • a predetermined plasma process is performed on the object to be processed.
  • the processing of the object to be processed is performed after the high frequency power supply for supplying the high frequency power is stabilized according to the state in the processing container.
  • the high-frequency power supply is unstable and not stable for a long time until it adapts to the state of the processing container.
  • Figure 23a shows the variation of the parameter (voltage) related to the high frequency of the matching circuit
  • Figure 23b shows the parameter (characteristics) of the capacitor that characterizes the matching state of the matching circuit.
  • FIG. All parameters vary greatly with time, making it difficult to determine a stable state. For example, in the parameters shown in Fig. 23a, peaks at the beginning of the lot are observed, but it is difficult to determine whether or not the stabilization has been achieved. In addition, it takes a considerable amount of time to adjust to the environment to which high-frequency power is applied, and the inside of the processing vessel is not stable.
  • Figures 8a and 8b show the results under operating conditions with little deposition after evacuating the inside of the processing vessel for 4 days after maintenance and inspection of the equipment. The condition for the low deposition will be described later.
  • the present invention has been made to solve the above-described problems, and a large number of operation data is statistically collected into a small number of data to analyze and analyze the operation state of the processing device. It is an object of the present invention to provide a method that can easily and surely evaluate an object. '
  • the present invention uses a plurality of detectors attached to a processing apparatus to monitor the operation of the processing apparatus by using a plurality of detection values detected for each object to be processed as operation data.
  • the present invention provides a method of monitoring the operation of the plasma processing apparatus using a plurality of detection values detected using a plurality of detectors attached to the plasma processing apparatus as an operation data.
  • a plurality of operation data is obtained for each of a plurality of objects to be processed, and a principal component analysis is performed using the obtained operation data, and a result of the principal component analysis is used for the plasma processing apparatus.
  • An operation monitoring method for evaluating an operation state is provided.
  • the present invention provides a method for monitoring the operation of a processing apparatus using a plurality of detection values detected for each object to be processed using a plurality of detectors attached to the processing apparatus as operation data,
  • the driving data is divided into a principal component having a relatively high contribution ratio and a principal component having a relatively low contribution ratio, and a residual matrix of the driving data belonging to the principal component having a low contribution ratio is obtained.
  • the operation state of the processing device is evaluated based on the residual score obtained from the residual matrix.
  • the present invention further provides a method for evaluating a characteristic difference between a plurality of processing apparatuses by using a plurality of detection values detected for each processing object using a plurality of detectors attached to the processing apparatus as operation data.
  • the present invention provides a method for determining a characteristic difference between a plurality of processing apparatuses by using detection values of the respective detectors detected for each processing object using a plurality of detectors attached to the processing apparatus as operation data.
  • the process is performed by comparing the residual matrix based on the first operation data with the residual matrix based on the second operation data by calculating the residual matrix by applying the result to the principal component analysis. Evaluating the performance difference between the devices.
  • an object of the present invention is to provide a method for monitoring the operation of a processing apparatus, which is capable of optimizing the processing conditions and operating by optimizing the processing conditions by objectively determining the stable state of the processing apparatus after starting. It is another object of the present invention to provide a method for detecting an abnormality in a processing device that can reliably detect an abnormality in the device without opening the processing device.
  • the present invention provides a method for processing a processing object by applying high-frequency power from a high-frequency power source to an electrode in a processing container to generate plasma in a processing apparatus.
  • a plurality of electrical data of the high frequency An operation monitoring method of a processing device for measuring the evening with a measuring device and performing a multivariate analysis using a plurality of measured electrical data to detect an application state of the high-frequency power source. Measuring the plurality of electrical data as reference data when the application state of the high-frequency power supply is stabilized according to the state in the processing container; and using the obtained plurality of reference data.
  • Performing a multivariate analysis for comparison using the plurality of data for comparison, and comparing the result of the multivariate analysis for comparison with the result of the multivariate analysis for reference, from the difference between the two, High frequency in the comparison processor Determining whether or not the applied state of the power supply has reached a stable state in accordance with the state inside the processing container.
  • the state changes according to a state in the processing vessel.
  • a plurality of electrical data of the high-frequency power supply is measured by a measuring instrument, and a multivariate analysis is performed using the plurality of measured electrical data to detect an applied state of the high-frequency power supply, thereby detecting an abnormality of the processing device. Measuring the plurality of electrical data when the application state of the high-frequency power supply is stabilized according to the state in the processing container as a reference data in a normal reference processing apparatus.
  • FIG. 1 is a configuration diagram showing an example of a plasma processing apparatus to which the operation monitoring method of the present invention is applied,
  • FIG. 2 shows the plasma processing apparatus shown in FIG. 1 obtained according to one embodiment of the present invention.
  • FIG. 3 is a graph showing the variation of the high-frequency voltage for the plasma processing apparatus shown in FIG. 1
  • FIG. 4 is a graph showing the variation of the second principal component score for the plasma processing apparatus shown in FIG. 1 obtained by one embodiment of the present invention.
  • FIG. 5 is a graph showing the sudden change of the reflected wave of the high-frequency power related to the second principal component score shown in FIG. 4,
  • FIG. 6 is a graph showing a sudden change in the high-frequency voltage related to the second principal component score shown in FIG. 4,
  • FIG. 7 is a graph showing a sudden change in the C 0 gas supply amount related to the second principal component score shown in FIG. 4,
  • FIG. 8 is a graph showing the fluctuation state of the residual score for each wafer
  • FIG. 9 is a graph showing residual scores of the reference processing device and the comparison processing device obtained by one embodiment of the processing device evaluation method of the present invention.
  • FIG. 10 is a graph showing the residuals of the parameters of the comparison processor in which the residual score is shifted from the reference processor in the graph shown in FIG. 9,
  • Figure 11 is a graph showing the differences in parameters between processing units used to compare and evaluate the differences in performance between conventional processing units.
  • FIG. 12 is a graph corresponding to FIG. 11 showing other parameters
  • FIG. 13 is a graph corresponding to FIG. 11 showing other parameters
  • FIG. 14 is a graph corresponding to FIG. 11 showing other parameters
  • FIG. 15 is a graph corresponding to FIG. 11 showing other parameters.
  • FIG. 16 is a configuration diagram showing an example of a processing apparatus to which the operation monitoring method and the abnormality detection method of the processing apparatus of the present invention are applied.
  • Fig. 17a and Fig. 17b are graphs showing the transition until the electrical data of the processing device stabilizes using the harmonic measurement device.
  • FIGS. 18a and 18b are graphs showing the transition until the residual score of the electrical data corresponding to FIGS. 17a and 17b stabilizes, respectively.
  • FIG. 19a and Fig. 19b are graphs showing the transition until the electrical data of the processing device stabilizes using the harmonic measurement device.
  • FIG. 20 is a graph showing the transition (in state A and state B) of the electrical data corresponding to FIGS. 17a and 17b until the residual score is stabilized,
  • FIG. 21 is a graph showing residual scores based on electrical data of normal processing units and abnormal processing units.
  • Fig. 22a, Fig. 22b and Fig. 22c are graphs showing the residual components of the electrical data of the abnormal processing device, respectively.
  • FIG. 23a and FIG. 23b are graphs showing the fluctuation of the electric data immediately after the start of the conventionally used processing apparatus.
  • the plasma processing apparatus 1 shown in FIG. 1 includes a processing container 11 made of a conductive material such as aluminum.
  • a lower electrode 12 also serving as a mounting table for mounting a semiconductor wafer W as an object to be processed is provided on the bottom surface of the container.
  • a hollow and grounded upper electrode 13 also serving as a process gas supply unit is disposed at a predetermined interval.
  • a magnetic field forming means 14 for applying a rotating magnetic field is provided around the outer periphery of the processing container 11.
  • a gas supply pipe 15 connected to the upper electrode 13 is connected to the upper surface of the processing vessel 11.
  • a process gas is supplied from a gas supply source (not shown) into the processing vessel 11 via the gas supply pipe 15 and the upper electrode 13.
  • a gas discharge pipe 16 connected to a not-shown evacuation device is connected to a side surface of the processing container 11.
  • a high frequency power supply 19 is connected to the lower electrode 12, and high frequency power is applied from the high frequency power supply 19 to the lower electrode 12.
  • the device 1 is configured to process the electric field generated between the upper and lower electrodes 13 and 12 under the control of the control device 10 by applying the rotating magnetic field B by the magnetic field forming means 14 to the processing capacity.
  • the apparatus 11 is configured to form a high-density plasma of a process gas in the chamber 11. This plasma is intended to perform a uniform plasma process such as a predetermined etching process on the wafer W in the processing chamber 11.
  • the plasma processing apparatus 1 is equipped with, for example, 36 types of detectors, and using these detectors, for example, a high-frequency voltage Vpp, a high-frequency power P, a process gas flow rate F, etc., as an operation data during plasma processing.
  • the detection is performed sequentially.
  • These operation data are sequentially taken into the control device 10 respectively.
  • the control device 10 stores, for example, a principal component analysis program as a multivariate analysis program, and performs a principal component analysis through this program to monitor the operation state. That is, the operation state is monitored by evaluating the operation state of the apparatus using the operation time, which is the detection value of each detector, as a parameter.
  • an etching process is performed in advance on a plurality of (for example, 25) sample wafers serving as a reference. Then, for each wafer to be processed, the high frequency voltage Vpp, the high frequency power P, the process gas flow rate F, and the like are sequentially detected by each detector as operation data. These data are standardized for each voltage Vpp and other types by performing centering to subtract the average value and scaling by deviation. At this time, the correspondence between the original operation schedule and the standardized schedule is clarified, for example, according to the arrangement order of the schedule. For example, if there are n detection values for each of m wafers, the matrix containing the standardized operation data is represented by equation (1). r n X 1 2 X I n,
  • the controller 10 calculates an average value, a maximum value, a minimum value, and a variance value of the detection values for each wafer. Then, a principal component analysis of a plurality of driving data is performed using a variance-covariance matrix based on these calculated values, and an eigenvalue and its eigenvector are obtained.
  • the eigenvalue represents the magnitude of the variance of the driving data, and is defined as the first principal component, the second principal component, ⁇ , and the eleventh principal component in the order of the magnitude of the eigenvalue.
  • Each eigenvalue has an eigenvector belonging to it. In general, the higher the order n of the principal component, the lower the contribution to the data evaluation, and the less useful its value.
  • Equation (2) the j-th principal component corresponding to the j-th eigenvalue of the i-th wafer is expressed by Equation (2).
  • t i j X i 1 P j 1 + X i 2 P j 2 + + XxnPjn (2) Then, the i-th detection value (Xii, ⁇ 2,
  • the value obtained by substituting Xin) is the score of the j-th principal component of the i-th wafer. Therefore, the score t j of the j-th principal component is defined by equation (3), and the eigenvector Pj of the j-th principal component is defined by equation (4).
  • tj is a score representing the relationship between the measured values.
  • Pj is a unique vector representing the weight between measured values.
  • the score tj of the j-th principal component is expressed by Equation (5).
  • t ⁇ ⁇ , ⁇ ⁇ ⁇ ⁇ ⁇ (5)
  • the matrix X is given by equation (6) using the scores of the principal components and their eigenvectors.
  • ⁇ ⁇ is the transpose of ⁇ . Therefore, in the principal component analysis, even if there are many types of driving data, they are summarized as a small number of statistical data, for example, the first principal component and the second principal component, and at most the third principal component.
  • the operating state can be evaluated and grasped only by examining these small numbers of statistical data. For example, in general, if the cumulative contribution ratio of the eigenvalues of the first and second principal components exceeds 90%, the evaluation based on the first and second principal components becomes highly reliable.
  • the first principal component indicates the direction in which the operating data is most dispersed as described above, and serves as an index for comprehensive evaluation of the operating state of the processing unit.It is used to judge and evaluate temporal changes in the operating state of the processing unit.
  • the second principal component is dispersed in a direction orthogonal to the first principal component and serves as an indicator of an instantaneous deviation from a normal operating state, and is suitable for judging and evaluating sudden changes in the operating state. If the same type of wafer is processed using the same processing apparatus, the eigenvalues of the first and second principal components and their eigenvectors are basically the same. Therefore, in the present embodiment, a plurality of sample wafers are processed under a predetermined condition using a predetermined processing apparatus, and an eigenvalue and an eigenvector under the condition are obtained in advance. The eigenvalues and their eigenvectors are applied to actual wafers to determine and evaluate the operating state of the processing apparatus during operation.
  • the wafer is etched under the following conditions, and the detection value of each detector at this time is subjected to principal component analysis.
  • the eigenvalue is the variance-covariance It is determined using the value.
  • the largest eigenvalue is the first principal component with the largest variance.
  • the eigenvector of the first principal component is obtained using the eigenvalue and the variance-covariance value.
  • the driving condition is evaluated using the first principal component and the second principal component having the next largest size.
  • the principal component score ti of the 25 wafers is within ⁇ 3. Is in.
  • the first principal component score t is within the range of ⁇ 3, it can be considered that the plasma processing apparatus is operating in a normal state.
  • Electrode gap 27 hires
  • the operation data of each detector and the unique vector of the first principal component obtained from the sample wafer the first main data is obtained for each wafer.
  • This first principal component score is As shown in the figure, the results are as shown on the 26th sheet in FIG. From Fig. 2, the first principal component score belongs to the normal driving range up to the 120th wafer position, but the first principal component score thereafter gradually falls out of the normal driving range. I understand. This may be because plasma by-products adhere to and accumulate in the processing chamber as the number of processed wafers increases, and operating conditions gradually change.
  • FIG. 3 is a diagram showing a temporal change of the high-frequency voltage Vpp during etching. It can be seen that the fluctuation tendency of the high-frequency voltage Vpp shown in FIG. 3 and the fluctuation tendency of the first principal component score shown in FIG. 2 show the same tendency. From this, it can be understood that the score of the first principal component indicates a temporal change in the operation state of the plasma processing apparatus. Therefore, it is preferable to stop the operation at a favorable time point outside the normal operation range and perform maintenance, etc.
  • multivariate analysis is performed on the operation data detected in advance on the sample wafer. The principal component analysis was performed to evaluate the operating state.
  • the first principal component score of the principal component analysis is used as the operation monitoring method, it is possible to grasp a temporal change in the operation state due to a change in the first principal component score for each wafer.
  • the stop time of the plasma processing apparatus that is, the maintenance time, etc. Can be grasped easily and reliably.
  • FIG. 4 illustrates the second principal component score when the etching process is performed on the sample wafer and the actual wafer.
  • the second principal component score is basically small and stable throughout the time, and is concentrated around 0.However, there are times when the second principal component score suddenly fluctuates and greatly deviates from the driving range. It is. Immediately after the start of etching, a large change in the score of the second principal component is not observed, but a large change is observed at one place after exceeding 40 sheets, and a relatively large change is observed after the 120th sheet. appear. The magnitude of the fluctuation is divided into three groups Therefore, it is considered that the cause of variation differs depending on the group.
  • the first group G1 which fluctuates the most in Fig. 4, corresponds to the sudden fluctuation of the reflected wave of high-frequency power at the position enclosed by ⁇ in Fig. 5.
  • the horizontal axis in Fig. 5 indicates the number of wafers in the funnel, and does not directly correspond to Fig. 4).
  • the second group G 2 is, it was found that corresponds to the sudden change of the high frequency voltage V PP at a position surrounded by ⁇ 6 (time on the horizontal axis while processing a single wafer of FIG. 6 Shown).
  • the third group, G3, corresponded to a sudden change in the flow rate of the CO gas in the process gas at the position enclosed by ⁇ in Fig. 7 (the horizontal axis in Fig. 7 is Indicates the time during processing of one wafer).
  • a change in the operating state that cannot be fully grasped by the first and second principal components can be grasped more reliably by the following method. For example, if the cumulative contribution ratio up to the k-th principal component with a high contribution ratio exceeds 90%, fluctuations in the operating state can be determined and evaluated by performing main component analysis. % May be missed. Therefore, a residual matrix E defined by Equation (7) is created by combining the higher-order main components of the (k + 1) or higher order with a low contribution ratio (the components of each row are The components in each column correspond to the number of wafers corresponding to the detected values.) r e e 1 2 e ⁇ ⁇ ,
  • the residual score is expressed as the product of the vector ei and its transposed vector, and is the sum of the squares of the residuals, so that the positive and negative components can be obtained as residuals without canceling each other. It is.
  • the residual score Q it is possible to determine and evaluate the operating state from many aspects. Since only the first and second principal components determine their respective eigenvectors, it is not possible to evaluate the operation data (detected values) of each detector from multiple aspects. On the other hand, by obtaining the residual matrix E, it is possible to evaluate the weight of each detected value as statistical data from multiple aspects, and the driving state in the low-order first to k-th components cannot be grasped. We can grasp change. Therefore, the residual score Qi of a certain wafer is the residual score Q of the sample wafer. If the value deviates from the range, the component of the vector ei can be seen to determine which detected value of the wafer has a large deviation during the processing of the wafer, and the cause of the abnormality can be identified.
  • the first and second principal components can be used to determine the chronological and sudden fluctuations in the operating state. Changes that cannot be fully grasped by the first and second principal components can be grasped by the residual score Qi.
  • Equation (11) is obtained.
  • X ti P i T + t 2 P 2 T + E ⁇ ⁇ ⁇ ⁇ (1 1) a recording of the residual score Q i of each wafer when treated wafers in the processing condition is FIG. As is clear from FIG.
  • the residual score Qi like the first principal component score ti, also tends to change with time as the number of processed wafers increases. Also, it can be seen that the residual score Q i suddenly fluctuates similarly to the second principal component score. From this, by grasping the residual score Q, it is possible to grasp the phenomena that can be grasped by the first and second principal components, and there are many other phenomena that cannot be grasped by the first and second principal components. It can be understood that it can be grasped. Then, in the row corresponding to the wafer with the residual matrix E, by focusing on the parameter that has a residual that is particularly larger than the other parameters (operation data), It is possible to accurately confirm whether an abnormality has occurred.
  • the characteristic difference between the processing apparatuses is grasped using the residual score Q.
  • the change in each detected value can be grasped from many angles by the residual score Q, and the changed detected value can be specified.
  • first, 25 wafers are processed using the reference processing apparatus, Similarly, the detection values of the plurality of detectors are obtained as the first operation data. Multivariate analysis is performed using these first operation data (as parameters) to obtain the residual matrix E and its residual score Qo. Then, the characteristics of the reference processor are grasped based on the residual score Qo. And the residual score Q of the reference processor as described above. The value of is used as a reference value for judging and evaluating the characteristics of another processing device (comparative processing device) to be compared.
  • the wafer is processed using the comparison processing device under the same conditions as the reference processing device, and the detection value of each detector is obtained as the second operation data. Then, the second operation data obtained by the comparison processing device is applied to the equation (11) for obtaining the residual score Qo obtained by the reference processing device, and the residual score Q of the comparison processing device is obtained. Ask for. Furthermore, the residual score Q of the comparison processor and the residual score Q of the reference processor. And check whether the former value and the latter value match. The residual score Q of the comparison processor is the residual score Q of the reference processor. If the values deviate from the reference values, it is understood that one of the detected values of the comparison processing device deviates from the reference value. In the present embodiment, a row of a certain residual matrix E is composed of the residual of each detector for each wafer in the processing apparatus.
  • 25 wafers are etched under the same conditions as those of the above-described embodiment using the devices F and I as reference processing devices.
  • Principal component analysis is performed in the same manner as in the above embodiment, using the first operation data, which is the detection value of each of the detectors of the reference processors F and I, as a parameter, and the eigenvalues and eigenvalues of the first and second principal components are obtained. Find the vector and the residual score Q. Then, constants such as eigenvalues and eigenvectors obtained by the principal component analysis on the reference processors F and I are set in the principal component analysis programs of the comparison processors A to E, G, H, and J.
  • FIG. 9 shows the result of obtaining the residual score Q for each processing device.
  • the above equation (10) is used to obtain the residual score Q.
  • the residual scores Q of the processing units A, D, G, and J are almost the same as the residual scores Q of the reference processing units F, I, but the processing units B, C, E, H residual
  • the score Q deviates greatly from the residual score Q of the reference processor. Therefore, it can be seen that the residuals of any of the parameters of the processing units B, C, E, and H are significantly different from those of the reference processing units F and I.
  • the processing unit: B, C, E, H Looking at FIG. 10 displaying the residual of each parameter overnight, c
  • the residuals of parameters G, H, and K are large.
  • the residuals of parameters C, H, J, and K are large in processor C.
  • the residuals of parameters C and H are large in processor ⁇ .
  • processor H the residuals of parameters G, H, and J were large.
  • each detector of the processing device has the remaining parameters. By comparing the differences, the detector that caused the displacement can be easily identified.
  • the residual score Q of the comparison processor was obtained, and the value was used as the residual score Q of the reference processor.
  • the comparison processing device having characteristics deviating from those of the reference processing device can be easily evaluated.
  • the residuals of each parameter of the comparison processor—evening residuals can be seen at a glance as shown in FIG. 10, and when a specific parameter with a large residual is recognized, the parameter is regarded as the reference processor. It is easy to see that it is out of the way. Therefore, when adjusting the performance of a newly manufactured processing unit or a processing unit after maintenance, simply finding the residual matrix E and residual score Q of the processing unit can easily eliminate performance problems. It can be found, and its defects can be specified, and performance adjustment can be performed in a short time.
  • each detection value is directly used for principal component analysis. If it is used overnight, it may not be possible to make an evaluation that accurately reflects operating data. Therefore, by performing principal component analysis using a correlation matrix by standardizing all the detected values, it is possible to accurately evaluate the operating state by eliminating the influence of the difference in the unit of each detected value in advance.
  • characteristics between processing devices for example, differences in performance can be grasped using the residual score Q, and the relative performance of the processing devices can be evaluated.
  • the residual components it is possible to easily and quickly identify areas with poor performance. Therefore, Performance judgment and performance evaluation of newly manufactured processing equipment and processing equipment after maintenance can be performed easily and quickly.
  • Processing equipment dual-frequency plasma processing, soching processing equipment (both upper and lower electrodes applied)
  • Processing content Through-hole, via contact
  • Processing equipment dual frequency plasma etching processing equipment (both upper and lower electrodes applied)
  • Gap between electrodes 170mm Processing pressure: 30 mTorr.
  • top electrode 80.
  • Side wall-60 ° C, lower electrode 60 ° C [Treatment condition 5]
  • Processing equipment Dual frequency plasma etching processing equipment (both upper and lower electrodes applied)
  • Gap between electrodes 170 mm
  • the processing apparatus 1 ′ shown in FIG. 16 includes a processing container 11 made of a conductive material such as aluminum.
  • the upper surface 1 la of the grounded processing vessel 11 is mounted.
  • An upper electrode facing the lower electrode 12 also serving as a table is formed.
  • the processing device 1 is configured such that a rotating magnetic field B generated by the magnetic field forming means 14 acts on an electric field generated between the upper and lower electrodes 11 a and 12 under the control of the control device 10 ′, whereby the processing vessel It is configured to form high-density plasma of the process gas introduced in 11.
  • This plasma is intended to perform a uniform plasma process such as a predetermined etching process on the wafer W in the processing chamber 11.
  • a focus ring 20 is arranged around the lower electrode 12, and is configured to converge plasma onto the wafer W via the focus ring 20.
  • a matching circuit 18 and a high-frequency measuring device 17 are sequentially provided between the high-frequency power supply 19 and the lower electrode 12. Then, a high frequency power of 13.56 MHz is applied from the high frequency power supply 19 to the lower electrode 12. In this case, other harmonics (for example, 27.12 MHz, 40.68 MHz) having a fundamental frequency of 13.56 MHz are applied to the electrode 12. .
  • the electrical data such as the voltage, current, phase, and impedance of the high-frequency power applied to the lower electrode 12 by the high-frequency power supply 19 are unstable and quite stable during the start-up of the processor 1 '. do not do. Moreover, there is no way to objectively know the state inside the processing container 11.
  • electrical data such as voltage, current, phase, and impedance are measured, and the measured values are used to stabilize the processing apparatus 1 ′, specifically, inside the processing vessel 11.
  • a stable state required for a predetermined plasma processing in the above is detected. That is, the voltage, current, phase and impedance of the fundamental wave of the high-frequency power supply 19 and its harmonics as electrical data are measured using the harmonic measuring device 17 from the start of the processing device 1 ′. Measurement is performed intermittently until the high-frequency power supply 19 is stabilized, and their electrical data are sequentially taken into the control device 10 '.
  • a principal component analysis program as a multivariate analysis program is stored in the control device 10 ', and a principal component analysis of measured values is performed through this program to detect a stable state of the processing device.
  • the fundamental wave of the high frequency power supply 19 and its harmonics are used by using a reference processing device in which the applied state from the high frequency power supply 19 to the electrode 12 is stable.
  • the voltage V, current I, phase P and impedance Z which are the electrical data of the wave, are measured intermittently as reference data. This allows each round Wave number: Measured value as reference data for V (fn), I (fn), P (fn), Z
  • the controller 10 finds an average value, a maximum value, a minimum value, and a variance value for all the standardized measurement values, and uses a variance-covariance matrix based on these calculated values to calculate a principal component of a plurality of standardized measurement values. Perform an analysis to determine the eigenvalues and their eigenvectors.
  • n standardized measured values are respectively taken in m measurements, and the :) 'principal component corresponding to the j-th eigenvalue of the i-th measurement is represented by the above formula (2).
  • the value obtained by substituting the i-th standardized measurement value (X, X i 2 , ⁇ , Xin) into the j-th principal component t ij is the j-th principal component in the i-th measurement. Will be scored. Therefore, the score of the j-th principal component is defined by the above equation (3), and the eigenvector Pj of the j-th principal component is defined by the above equation (4).
  • tj is a score representing the relationship between the measured values.
  • ⁇ ⁇ is an eigenvector representing the weight between the measured values.
  • the score tj of the j-th principal component is expressed by the above equation (5) when the matrix X and the eigenvector Pi are used.
  • the score of each principal component and the eigenvector of each are used for the matrix X, it is expressed by the above equation (6).
  • the operating condition can be evaluated and grasped simply by examining the statistics.
  • the first main component indicates the direction in which the measured data is most dispersed as described above, and serves as an index for comprehensive evaluation of the operating state of the processing equipment, and determines the change over time in the operating state of the processing equipment. Suitable for evaluation.
  • the second principal component is dispersed in a direction orthogonal to the first principal component and serves as an indicator of an instantaneous deviation from a normal operating state, and is suitable for judging and evaluating sudden changes in the operating state.
  • the first principal component can generally evaluate the data by looking at the eigenvector and the first principal component score, etc., but the first and second principal components do not. Since the inherent vector is uniquely determined, it is not possible to grasp from various aspects how the individual measurement data is in each measurement and how it changes.
  • the (k + 1) -th or higher (higher) Create a residual matrix E defined by the above equation (7) that combines the principal components of
  • the residual score is expressed as the product of the vector ei and its transposed vector, which is the sum of the squares of the residual components, and can be reliably obtained as the residual without canceling out the plus and minus components. I have to be able to. Therefore, by comparing the residual score Q 0 of the reference processor for each measurement with the residual score Q i of the comparison processor, it can be determined whether or not the comparison processor has reached a stable state. Then, the residual score Qi of the comparison processor at a certain time is the residual score Q of the reference processor at the same time. If the values deviate from the values, by observing the components of the row vector ei of each row represented by the above equation (10) of the residual matrix E, it is possible to determine which measured value has a large deviation at that time. The cause can be identified.
  • the residual score Q of the residual matrix E is set in advance for the reference processing device. Ask for. And the score residual Q obtained by the reference processor. And constants such as eigenvectors in the principal component analysis program of the comparison processor. Then, the residual score Q is obtained from the electrical data measured by the comparison processor under the set conditions. Next, the residual score Q of the reference processor with respect to the residual score Q of the comparison processor. (The amount of deviation) from the difference, and based on the difference (Q—Q.) Of the residual score, it is determined whether or not the applied state of the high-frequency power supply 19 in the comparison processor has reached a stable state.
  • the normalized measured value of Z (fn) and the residual score Q are shown in FIGS.
  • the principal component analysis results obtained by the reference processor are set in the principal component program of the comparison processor.
  • the plot in each figure shows the average value per wafer. In the following processing conditions, the value of deposition is set to 1 for the condition with a small amount of deposition, and the condition of a large amount of deposition is shown as a relative value to the condition for a small amount of deposition.
  • State A A state in which the inside of the processing container is evacuated for 12 1
  • State B A state where the inside of the processing container is evacuated for 4 days
  • Processing condition A (less deposition conditions)
  • Wafer processing time 1 minute
  • Wafer processing time 1 minute
  • the processing apparatus was set to the processing condition A with a small deposition.
  • the wafer W loaded into the processing container 11 was processed.
  • the voltage, current, phase, and impedance of the fundamental wave and harmonics of the high-frequency power supply 19 are measured every 0.2 seconds using the harmonic measuring device 17, and each time.
  • the average values of the measured values V (f n ), I (f n ), P (f n ), and Z (f n ) of each wafer were obtained. These averages were converted into relative values for the corresponding values (reference values) of the reference processor, and the state of the change was shown in Fig. 17a.
  • the residual score Q was obtained from the measured values by the method of the present embodiment, the result was as shown in FIG. 18A.
  • Fig. 18a multiple measured values are combined into one as the residual score Q.
  • the stable state is 100 to 120 wafers processed. In the range Can be determined. Even thereafter, the residual score Q tends to increase slightly periodically.
  • the residual score Q when the residual score Q is obtained by the method of the present embodiment, as shown in FIG. 18b, the residual score Q converges to the reference value earlier than in the case of (1) and becomes stable. It is clear that it is easy to judge the point of the stable state. If the residual score as a reference for determining the stable state using the reference processing device is determined in advance, the stable state of the comparison processing device can be reliably determined.
  • the processing apparatus was set to the processing condition A with a small deposition. Then, the wafer W loaded into the processing container 11 was processed. After obtaining the measured values from immediately after the start-up of the processing equipment until the applied state of the high-frequency power supply 19 was stabilized, the measured values were taken as relative values to the reference values in the same way as in (1), and the results are shown in Fig. 1. 9a. According to the results shown in Fig. 19a, each measured value slowly converges to the reference value and reaches a stable state slowly. The number of processed wafers is considered to be stable near the mark of about 1,200 wafers.
  • the residual score Q was obtained by the method of the present embodiment, and the result was as shown in state A of FIG.
  • the results shown in condition A in Fig. 20 unlike the results shown in Fig. 18a, it took an unexpected time for the residual score Q to converge to the reference value, and the number of processed wafers was 1 It can be seen that the state becomes stable for the first time around the mark of about 80 sheets.
  • each measured value is taken as a relative value to the reference value as in (1), and the result is calculated.
  • Figure 19b According to the results shown in Fig. 19b, each measured value converges to the reference value earlier than in the case of (3), and reaches a stable state sooner. Further, as a result of obtaining the residual score Q by the method of the present embodiment, the result is as shown in a state B of FIG.
  • the residual score Q reaches the reference value quickly, but fluctuates within 100 wafers processed, and complete stability becomes 1 It can be clearly seen that the number is 100 or more.
  • the measured values of the electrical waves such as the fundamental wave and the harmonics of the stabilized processing device 1 ′, such as the voltage value, the current value, the phase, and the impedance V ( f lake), I (f rental), P (fn), and Z (fn) are used to perform principal component analysis as a reference in advance to obtain a reference residual score Qo.
  • the electrical data was measured with the harmonic measuring instrument 17 immediately after the start of the comparison processing measure 1 ′ after the maintenance and inspection, and the measured values V (fn), I (fn), P (fn), Z (fn ) Is used to perform a main component analysis for comparison to obtain a residual score Q for comparison. Then, a residual score Q for comparison and a residual score Q for reference. Then, the stable state of the high-frequency power supply 19 in the comparison processor 1 ′ after maintenance and inspection was detected from the difference (Q–Q.) Between the two. For this reason, even if there are a large number of measured values, the comparison processing device 1 after maintenance and inspection, specifically, the processing container, simply compares these data with a single residual score Q and compares it with the reference value.
  • the abnormality detection method of the processing device of the present embodiment is also common to the operation monitoring method of the third embodiment in that the residual score Q in the principal component analysis is used.
  • the reference is based on a normal processing apparatus, that is, a processing apparatus that is correctly assembled in accordance with the design specifications without a component mounting error or the like in the processing container 11 or the high-frequency power supply 19. Used as a processing device.
  • a normal processing apparatus that is, a processing apparatus that is correctly assembled in accordance with the design specifications without a component mounting error or the like in the processing container 11 or the high-frequency power supply 19. Used as a processing device.
  • the present embodiment it is said that when the applied state of the high-frequency power supply 19 after the start of the processing device has escaped from the unstable state and has reached the stable state, the electrical data of the fundamental wave and its harmonics are measured. Not even.
  • the voltage, current, phase and impedance of the fundamental wave and its harmonics related to the reference processing device are intermittently measured as electrical data and the measured value V of each frequency is obtained.
  • the residual score Qo defined by the equation (9) for the reference processing device is obtained in advance.
  • the constants such as eigenvectors obtained by the reference processor are set in the principal component analysis program of the comparison processor, and the residual score Q is obtained from the electrical data of the comparison processor under these setting conditions.
  • the residual score Q of the reference processor is calculated, and it is determined whether or not the comparison processor has an abnormality based on the difference (Q-Qo) between the residual scores.
  • the processing device determines whether the difference (Q-Qo) between the residual scores is large, it indicates that the comparison processing apparatus has an abnormality such as a mounting error of the processing container 11 or the component of the high-frequency power supply 19.
  • the difference (Q-Qo) is equal to or less than the allowable value, the processing device is determined to be normal.
  • a certain residual score Q represents a value different from other residual scores, attention is paid to a residual component of a row indicating a different value in the residual matrix E.
  • the residual score of the ith measurement result is the reference residual score Q.
  • the value is different from, by looking at the residual component of ei in the ith row, it is possible to determine which variable (measured value) contributes to the deviation of the residual score Q. . From this, it is possible to classify the cause of the abnormality by associating the cause of the abnormality with variables with large residuals (such as the fundamental wave and the voltage and current of harmonics).
  • FIG. 21 is a graph specifically showing a relationship between the residual score Q and a component mounting error.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Description

明 細 書 処理装置の運転監視方法 技 術 分 野
本発明は、 例えばプラズマを用いた半導体ウェハのエッチング処理などを行う ための処理装置において、 その運転状態の監視や特性の評価などを行うための方 法に関する。 背 景 技 術
半導体製造工程は多種類の半導体製造装置や検査装置等の処理装置が用いられ ている。 これらの処理装置は各種の運転データを用いてそれぞれの運転状態を監 視し、 運転状態に異常が認められれば、 その原因究明に当たる。 原因究明を行う 場合には処理装置の運転状態を把握するための各種の運転データを収集し、 解析 することによって如何なる箇所に異常があつたかを調べる。
例えばブラズマ処理装置はェッチング処理や成膜処理等に用いられる。 この種 のプラズマ処理装置は、 例えば、 処理容器内に互いに平行に配設された上部電極 と下部電極を備え、 下部電極に高周波電力を印加すると共に処理容器内にプロセ スガスを導入し、 上部電極と下部電極間の放電によりプロセスガスのプラズマを 発生させ、 半導体ウェハ等の被処理体に所定のプラズマを施すようにしている。 そして、 プラズマ処理装置の運転状態は処理容器内の圧力や下部電極の印加電力 やプロセスガスの供給流量等の 3 0数種類のデータをそれそれの検出器を用いて 検出し、 それそれの検出値を運転データとして利用して処理装置の運転状態を監 視している。
しかしながら、 処理装置によって長時間に渡り所定の処理を継続すると、 運転 状態が経時的に変動したり、 場合によっては運転状態が突発的に変動することが ある。 その場合、 例えば高周波電力、 プロセスガスの流量、 処理容器内のプロセ スガスの圧力等の運転デ一夕について平均値、 最大値、 最小値および分散値等の 統計デ一夕を個別に求め、 それそれの統計デ一夕に基づいて処理装置の運転状態 を評価するようにしている。 しかし、 検出器の数が多いため、 全ての検出器の運 転データについて統計デ一夕を求めて、 各検出器毎に運転デ一夕を評価するには、 繁雑で多大な労力と時間を必要とするという問題がある。
また、 例えば新たな処理装置ゃメンテナンス後の処理装置を評価する場合には、 それそれの処理装置について試運転を行っている。 そして、 試運転で得られた運 転データを、 基準となる処理装置 (以下、 「基準処理装置」 と称す。 ) の対応す る検出器で得られた運転データとを、 図 1 1〜図 1 5に示すように一つ一つ比較、 分析している。 このため、 そのような処理装置の評価にも多大な労力と時間を必 要とするという問題がある。
次に、 この種のプラズマ処理装置は、 例えば、 処理容器内の電極に高周波電力 を印加すると共に処理容器内にプロセスガスを導入し、 処理容器内でプロセスガ スのブラズマを発生させ、 半導体ウェハ等の被処理体に所定のプラズマ処理を施 すようにしている。 この場合、 被処理体の処理は、 高周波電力を供給する高周波 電源が処理容器内の状態に応じて安定した後に行われる。 ところが、 処理装置の 始動直後は、 高周波電源が処理容器の状態に馴染むまでは不安定で長時間に渡つ て安定しない。
例えば、 図 2 3 aはマッチング回路の高周波に関連するパラメ一夕 (電圧) の 変動を示した図であり、 図 2 3 bはマツチング回路の整合状態を特徴づけるコン デンサのパラメ一夕 (電気容量) の変動を示した図である。 いずれのパラメ一夕 も時間による変動が大きく、 安定状態を判断し難い。 例えば、 図 2 3 aに示すパ ラメ一夕では、 ロット初期のピークが観られるが、 安定化したか否かの判断が難 しい。 また、 処理容器内も高周波電力を印加した環境に馴染むには相当の時間を 必要とし、 なかなか安定しない。 そのため、 従来は高周波電源や処理容器内が安 定したか否かをオペレー夕の経験と勘によって判断し、 安定域に達したと判断し た時に所定の処理を施していた。 尚、 図 8 a及び図 8 bは、 装置の保守点検後、 処理容器内を 4日間真空引きした後のデポジションの少ない運転条件による結果 を示している。 このデポジションの少ない条件については後述する。
このように、 従来は、 処理装置の高周波電源や処理容器内が安定したか否かを 客観的に判断する手法がなく、 オペレー夕の経験と勘に頼らざるを得ない。 また、 処理装置を安定状態に導くための処理条件を評価することができないため、 その 評価は試行錯誤に頼らざるを得ない。
また、 処理装置を保守点検する時には消耗品を交換したり、 クリーニングを行 つたりするが、 処理装置は精密機械であるため、 その組立には最新の注意を要す る。 例えば、 高周波電源や処理容器内の各部品のネジ止めの僅かな緩みや、 一部 の部品の取付ミスなどの僅かな異常があってもプラズマが不安定になってしまう c しかし、 従来は万一、 そのような装置の異常に気付かずに処理装置を稼動してし まった場合、 処理装置を開けて点検することなく異常を特定する手法がなかった ため、 その原因究明に多大な時間と労力を必要としている。 発 明 の 開 示
本発明は、 以上のような問題を解決するためになされたもので、 多数の運転デ —夕を統計的に少数のデータに纏めて分析することで、 処理装置の運転状態の監 視ゃ性能の評価を簡単且つ確実に行うことができるような方法を提供することを 目的とする。 '
この目的を達成するために本発明は、 処理装置に付設された複数の検出器を用 いて被処理体毎に検出される複数の検出値を運転データとして利用して当該処理 装置の運転を監視する方法であって、 前記運転データを用いた多変量解析を行つ て処理装置の運転状態を評価する、 ことを特徴とする運転監視方法を提供する。 また本発明は、 プラズマ処理装置に付設された複数の検出器を用いて検出され る複数の検出値を運転デ一夕として利用して当該プラズマ処理装置の運転を監視 する方法であって、 予め基準となる複数の被処理体について、 それぞれ複数の運 転データを得ると共に、 これにより得られた運転データを用いて主成分分析を行 い、 この主成分分析の結果を用いてプラズマ処理装置の運転状態を評価する、 こ とを特徴とする運転監視方法を提供する。
また本発明は、 処理装置に付設された複数の検出器を用いて被処理体毎に検出 される複数の検出値を運転データとして利用して処理装置の運転を監視する方法 であって、 前記運転データを相対的に寄与率の高い主成分と寄与率の低い主成分 とに分けると共に、 前記寄与率の低い主成分に属する運転デ一夕の残差行列を求 め、 この残作行列から得られる残差得点に基づいて処理装置の運転状態を評価す る、 ことを特徴とする運転監視方法を提供する。
本発明は更に、 処理装置に付設された複数の検出器を用いて被処理体毎に検出 される複数の検出値を運転データとして利用して複数の処理装置間の特性差を評 価する方法であって、 基準処理装置を用いて複数の被処理体それそれについての 第 1の運転データを得る工程と、 前記第 1の運転データを用いて多変量解析を行 う工程と、 前記基準処理装置と比較すべき比較処理装置を用いて、 複数の被処理 体それそれについての第 2の運転データを得る工程と、 前記第 2の運転デ一夕を 前記多変量解析の結果に当て填めた解析結果を得る工程と、 前記第 1の運転デー 夕による解析結果と前記第 2の運転データによる解析結果とを比較することで、 処理装置間の性能差を評価する工程とを備えたことを特徴とする処理装置の評価 方法を提供する。
また本発明は、 処理装置に付設された複数の検出器を用いて被処理体毎に検出 される前記各検出器の検出値を運転デ一夕として利用して複数の処理装置間の特 性差を評価する方法であって、 基準処理装置を用いて複数の被処理体それそれに ついての第 1の運転データを得る工程と、 前記第 1の運転データを用いた主成分 分を行って残差行列を求める工程と、 前記基準処理装置と比較すべき比較処理装 置を用いて、 複数の被処理体それそれについての第 2の運転デ一夕を得る工程と、 前記第 2の運転データを前記主成分分析の結果に当て填めて残差行列を求めるェ 程と、 前記第 1の運転データによる残差行列と前記第 2の運転デ一夕による残差 行列とを比較することで、 処理装置間の性能差を評価する工程とを備えたことを 特徴とする処理装置の評価方法を提供する。
次に本発明は、 処理装置の始動後の安定状態を客観的に判断することで、 処理 条件を最適化して運転できるような処理装置の運転監視方法を提供することを目 的とする。 また、 処理装置を開けることなく装置の異常を確実に検出することの できる処理装置の異常検出方法も併せて提供することを目的とする。
この目的を達成するために本発明は、 処理装置において高周波電源から処理容 器内の電極に高周波電力を印加してプラズマを発生させて被処理体を処理する際 に、 前記処理容器内の状態に応じて変化する前記高周波電源の複数の電気的デー 夕を測定器で測定すると共に、 測定された複数の電気的データを用いた多変量解 析を行って前記高周波電源の印加状態を検出する処理装置の運転監視方法であつ て、 基準処理装置において、 処理容器内の状態に応じて前記高周波電源の印加状 態が安定化した時の前記複数の電気的データを、 基準用データとして測定するェ 程と、 得られた複数の基準用データを用いて基準用の多変量解析を行う工程と、 監視すべき比較処理装置において、 前記複数の電気的デー夕を比較用デ一夕とし て装置始動後から径時的に測定する工程と、 得られた複数の比較用データを用い て比較用の多変量解析を行う工程と、 前記比較用の多変量解析の結果と前記基準 用の多変量解析の結果とを比較して、 両者の差から、 前記比較処理装置における 高周波電源の印加状態が前記処理容器内の状態に応じて安定状態に達しか否かを 判断する工程とを備えたことを特徴とする処理装置の運転監視方法を提供する。 また本発明は、 処理装置において高周波電源から処理容器内の電極に高周波電 力を印加してプラズマを発生させて被処理体を処理する際に、 前記処理容器内の 状態に応じて変化する前記高周波電源の複数の電気的データを測定器で測定する と共に、 測定された複数の電気的データを用いた多変量解析を行って前記高周波 電源の印加状態を検出することで処理装置の異常を検出する方法であって、 正常 な基準処理装置において、 処理容器内の状態に応じて前記高周波電源の印加状態 が安定化した時の前記複数の電気的データを、 基準用デ一夕として測定する工程 と、 得られた複数の基準用データを用いて基準用の多変量解析を行う工程と、 異 常を検出すべき比較処理装置において、 前記複数の電気的データを比較用データ として測定する工程と、 得られた複数の比較用データを用いて比較用の多変量解 析を行う工程と、 前記比較用の多変量解析の結果と前記基準用の多変量解析の結 果とを比較して、 両者の差から、 前記比較処理装置の異常を検出する工程とを備 えたことを特徴とする処理装置の異常検出方を提供する。 図面の簡単な説明
図 1は、 本発明の運転監視方法を適用するプラズマ処理装置の一例を示す構成 図、
図 2は、 本発明の一実施態様によって得られた図 1に示すプラズマ処理装置に 関する第 1主成分得点の変動を示すグラフ、
図 3は、 図 1に示すプラズマ処理装置に関する高周波電圧の変動を示すグラフ、 図 4は、 本発明の一実施態様によって得られた図 1に示すプラズマ処理装置に 関する第 2主成分得点の変動を示すグラフ、
図 5は、 図 4に示す第 2主成分得点に関連する高周波電力の反射波の突発的変 動を示すグラフ、
図 6は、 図 4に示す第 2主成分得点に関連する高周波電圧の突発的変動を示す グラフ、
図 7は、 図 4に示す第 2主成分得点に関連する C 0ガス供給量の突発的変動を 示すグラフ、
図 8は、 残差得点のウェハ毎の変動状態を示すグラフ、
図 9は、 本発明の処理装置の評価方法の一実施態様により求めた基準処理装置 および比較処理装置の残差得点を示すグラフ、
図 1 0は、 図 9に示すグラフのうち、 基準処理装置から残差得点がずれた比較 処理装置のパラメ一夕の残差を示すグラフ、
図 1 1は、 従来の処理装置間の性能上の相違点を比較検討する際に用いられる 処理装置間のパラメ一夕の相違を示すグラフ、
図 1 2は、 他のパラメ一夕を示す図 1 1に相当するグラフ、
図 1 3は、 他のパラメ一夕を示す図 1 1に相当するグラフ、
図 1 4は、 他のパラメ一夕を示す図 1 1に相当するグラフ、
図 1 5は、 他のパラメ一夕を示す図 1 1に相当するグラフである。
図 1 6は、 本発明の処理装置の運転監視方法および異常検出方法を適用する処 理装置の一例を示す構成図、
図 1 7 a、 図 1 7 bは、 それそれ高調波測定器を用いて処理装置の電気的デ一 夕が安定化するまでの推移を示すグラフ、
図 1 8 a、 図 1 8 bは、 それそれ図 1 7 a、 図 1 7 bに対応する電気的デ一夕 の残差得点が安定化するまでの推移を示すグラフ、
図 1 9 a、 図 1 9 bは、 それそれ高調波測定器を用いて処理装置の電気的デ一 夕が安定化するまでの推移を示すグラフ、 図 2 0は、 図 1 7 a、 図 1 7 bに対応する電気的データの残差得点が安定化す るまでの推移をそれそれ (状態 A、 状態 Bで) 示すグラフ、
図 2 1は、 正常な処理装置および異常な処理装置の電気的データに基づく残差 得点を示すグラフ、
図 2 2 a、 図 2 2 bおよび図 2 2 cは、 それそれ異常な処理装置の電 的デ一 夕の残差成分を示すグラフ、
図 2 3 a、 図 2 3 bは、 従来使用されていた処理装置の始動直後の電気的デー 夕の変動を示すグラフである。 発明を実施するための最良の形態
以下、 図 1〜図 2 2 cに示す実施形態に基づいて本発明を説明する。
まず、 本発明の方法が適用されるプラズマ処理装置の一例について図 1を参照 しながら説明する。 図 1に示すプラズマ処理装置 1は、 アルミニウム等の導電性 材料からなる処理容器 1 1を備えている。 この処理容器 1 1内において、 被処理 体としての半導体ウェハ Wを載置する載置台を兼ねた下部電極 1 2が、 容器底面 上に設けられている。 この下部電極 1 2の上方には、 プロセスガスの供給部を兼 ねた中空状で接地された上部電極 1 3が所定の間隔を隔てて配設されている。 ま た、 処理容器 1 1の外周を囲んで、 回転磁場を付与する磁場形成手段 1 4が設け られている。
また、 処理容器 1 1の上面には上部電極 1 3に連通させたガス供給管 1 5が接 続されている。 これにより、 ガス供給管 1 5および上部電極 1 3を介してガス供 給源 (図示せず) から処理容器 1 1内へプロセスガスを供給するようになってい る。 処理容器 1 1の側面には、 図示しない真空排気装置に連結されたガス排出管 1 6.が接続されている。 これにより、 真空排気装置およびガス排出管 1 6を介し て処理容器 1 1内を減圧して所定の真空度に保持するようになっている。 下部電 極 1 2には高周波電源 1 9が接続され、 高周波電源 1 9から下部電極 1 2へ高周 波電力を印加するようになっている。
そして、 この装置 1は、 制御装置 1 0の制御下で上下両電極 1 3, 1 2間に発 生する電界に、 磁場形成手段 1 4による回転磁界 Bを作用させることで、 処理容 器 1 1内においてプロセスガスの高密度プラズマを形成するように構成されてい る。 このプラズマにより、 処理容器 1 1内でウェハ Wに対して、 例えば所定のェ ッチング処理などの均一なプラズマ処理を行うように意図されている。
プラズマ処理装置 1には例えば 3 6種類の検出器が取り付けられ、 これらの検 出器を用いて、 例えば高周波電圧 Vpp、 高周波電力 P、 プロセスガス流量 F等を プラズマ処理時の運転デ一夕として逐次検出するようになっている。 これらの運 転データは、 それそれ制御装置 1 0内に逐次取り込まれる。 この制御装置 1 0に は多変量解析プログラムとして例えば主成分分析プログラムが格納され、 このプ ログラムを介して主成分分析を行って運転状態を監視するようにしている。 即ち、 各検出器の検出値である運転デ一夕をパラメータとして装置の運転状態を評価す ることで、 当該運転状態の監視を行うようにしている。
例えば本実施形態で主成分分析を行う場合には、 予め基準となる複数 (例えば 2 5枚) のサンプルウェハに対してエッチング処理を行う。 そして、 処理される ウェハ毎に、 各検出器で高周波電圧 Vpp、 高周波電力 P、 プロセスガス流量 F等 を逐次、 運転デ一夕として検出する。 これらのデータは、 電圧 Vppその他の種類 毎にそれそれ、 平均値を差し引くセンタリングと、 偏差で除するスケーリングと を行うことで標準化される。 この際、 もとの運転デ一夕と標準化したデ一夕との 対応関係は、 例えばデ一夕の配列順に合わせて明確にしておく。 例えば、 m枚の ウェハそれぞれについて n個の検出値が存在すると、 標準化された運転データが 入った行列は数式 (1 ) で表される。 r n X 1 2 X I n 、
X 2 X 2 2 X 2 n
X = ( 1 )
X l X m2 ン そして、 制御装置 10において、 ウェハ毎の検出値の平均値、 最大値、 最小値、 分散値を計算する。 そして、 これらの計算値に基づいた分散共分散行列を用いて 複数の運転データの主成分分析を行って、 固有値およびその固有べクトルを求め る。 固有値は運転データの分散の大きさを表し、 固有値の大きさ順に、 第 1主成 分、 第 2主成分、 · · ,第11主成分として定義されている。 また、 各固有値には それそれに属する固有ベクトルがある。 通常、 主成分の次数 nが高いほどデータ の評価に対する寄与率が低くなり、 その利用価値が薄れる。
例えば m枚のウェハについてそれそれ n個の検出値を採つたときの、 i番目の ウェハの j番目の固有値に対応する第 j主成分は数式 (2) で表される。 t i j = X i 1 P j 1 + X i 2 P j 2 + + XxnPjn (2) そして、 この第 j主成分 t ijに具体的な i番目の検出値 (Xii, Χ 2 , · - ·
Xin ) を代入して得られた値が、 i番目のウェハの第 j主成分の得点になる。 従って、 第 j主成分の得点 t jは数式 (3) で定義され、 第 j主成分の固有べク トル Pjは数式 (4) で定義される。
Figure imgf000011_0001
Figure imgf000011_0002
tjは測定値間の関係を表す得点である。 また、 Pjは測定値間の重みを表す固 有ベクトルである。 そして、 第 j主成分の得点 tjを行列 Xと固有ベクトル を 用いると数式 (5) で表される。 t ί = ΧΡ,· · · · · (5) また、 行列 Xは、 主成分の得点とそれそれの固有ベクトルを用いて数式 (6) で れる。
X=t !PZ--t 2P2 T+ - · · - +t ηΡηΤ · · · · (6)
但し、 ΡηΤは Ρηの転置行列である。 従って、 主成分分析では多種類の運転デ一夕があっても、 それらを例えば第 1 主成分および第 2主成分、 多くても第 3主成分までの少数の統計デ一夕として纏 め、 それら少数の統計データを調べるだけで運転状態を評価し、 把握することが できる。 例えば一般的に第 1ないし第 2主成分までの固有値の累積寄与率が 90 %を超えれば、 第 1, 第 2主成分に基づいた評価は信頼性の高いものになる。 第 1主成分は上述のように運転データが最も大きく分散する方向を示し、 処理装置 の運転状態の総合的な評価を行う指標となり、 処理装置の運転状態の絰時的変化 の判断、 評価に適している。 第 2主成分は第 1主成分とは直交する方向に分散し、 正常な運転状態からの瞬間的なずれの指標となり、 運転状態の突発的変化の判断、 評価に適している。 また、 同一の処理装置を用いて同一種のウェハを処理すれば、 第 1, 第 2主成分の固有値およびその固有べクトルは基本的には同一である。 そこで、 本実施形態では、 所定の処理装置を用いて複数枚のサンプルウェハを 所定の条件下で処理し、 この条件下での固有値およびその固有ぺクトルを予め求 める。 そして、 これらの固有値およびその固有ベクトルを実際のウェハに適用し て稼働時における処理装置の運転状態を判断し、 評価する。
例えば本実施形態では、 下記条件でウェハにエッチングを施し、 この時の各検 出器の検出値を主成分分析する。 この主成分分析において、 固有値は分散共分散 値を用いて求められる。 最も大きな固有値が、 分散値の最も大きい第 1主成分に なる。 第 1主成分の固有ベクトルは、 固有値および分散共分散値を用いて求めら れる。 そして、 第 1主成分と、 これに次ぐ大きさの第 2主成分とを用いて運転状 態を評価する。 処理装置 10が安定状態にある時に 25枚のサンプルウェハにつ いてウェハ毎に第 1主成分得点 t iを求めて記録すると、 図 2の 25枚までのゥ ェハに対応する。 また、 25枚のサンプルウェハの第 1主成分得点 t を用いて 第 1主成分得点 t iの標準偏差 びを求めると、 25枚のウェハの主成分得点 t i はいずれも ± 3びの範囲内に入っている。 第 1主成分得点 t が± 3びの範囲内 にあるときはプラズマ処理装置は正常な状態で運転されているものとみなすこと ができる。
[処理条件]
処理装置:マグネトロン R I E型処理装置
ウエノヽ : 200腿
被ェッチング膜: シリコン酸化膜
下地層:シリコン窒化膜
処理内容: S A C
下部電極の電源高周波数および電力: 13. 56MHz、 1700W
電極間ギヤヅプ: 27雇
処理圧力: 53ΒΙΤΟΓΓ
プロセスガス : C4F8= 16sccm、 CO = 30 Osccnk Ar = 40 Osccm バックサイドガス : He = 7Torr (電極中央部) 、 4 OTorr (電極ェヅジ部) 静電チャック直流電圧: 1. 5KV
処理温度:上部電極 = 60 °C、 側壁- 60 °C、 下部電極- 20°C 上述のようにして 25枚のサンプルウェハを用いて主成分分析を行った後、 同 一の条件で実際にウェハのエツチングを行い、 各検出器で運転データを検出する c そして、 各検出器の運転データとサンプルウェハで得られた第 1主成分の固有べ クトルとを用いて、 ウェハ毎に第 1主成分得点を求める。 この第 1主成分得点を、 図示したところ、 図 2の 2 6枚目以降のようになった。 図 2から、 1 2 0枚目の ウェハ位までは第 1主成分得点は正常な運転圏に属しているが、 それ以降の第 1 主成分得点は正常な運転圏を徐々に外れていることが判る。 その原因としては、 ウェハの処理枚数の増加に伴い処理容器内でプラズマ副生成物が付着、 積層し、 運転条件が徐々に変動していること等が考えられる。
図 3はエツチング時の高周波電圧 V p pの経時的変動を示す図である。 図 3に 示す高周波電圧 V p pの変動傾向と、 図 2に示す第 1主成分得点の変動傾向とは 同一傾向を示していることが判る。 このことからの第 1主成分得点がブラズマ処 理装置の運転状態の経時的変動を示していることが判る。 従って、 正常運転圏を 外れた区切りの好い時点で運転を停止し、 メンテナンス等を行うことが好ましい 以上説明したように本実施態様によれば、 予めサンプルウェハについて検出し た運転データについて多変量解析である主成分分析を行って運転状態を評価する ようにした。 このため、 全ての検出値の意味内容を個別に比較、 評価して運転状 態を観る従来の方法と異なり、 多数の運転データがあっても、 それらを主成分分 析することにより自動的に第 1主成分得点および第 2主成分得点という少数のデ 一夕に纏めて運転状態を簡単且つ正確に把握することができる。
また、 運転監視手法として主成分分析の第 1主成分得点を用いるようにしたた め、 ウェハ毎の第 1主成分得点の変動により運転状態の経時的変化を把握するこ とができる。 また、 ウェハ毎の第 1主成分得点の標準偏差びの ± 3倍の値を基準 にプラズマ処理装置の運転の停止時期を判断することで、 プラズマ処理装置の停 止時期、 つまり、 メンテナンス時期等を簡単且つ確実に把握することができる。 ここで、 図 4はサンプルウェハおよぴ実際のウェハにエツチング処理を施した 場合の第 2主成分得点を図示したものである。 実際のウェハの第 2主成分得点を 求める時にはサンプルウェハで得られた第 2主成分の固有ぺクトルを用いる。 第 2主成分得点は基本的には変化が小さく終始安定して 0の近辺に集中しているが、 所々で第 2主成分得点が突発的に変動して運転圏から大きく外れる時点が認めら れる。 エッチングの開始直後には第 2主成分得点の大きな変動は認められないが、 4 0枚を超えた当たりでは大きな変動が一箇所で認められ、 1 2 0枚目以降では 大きな変動が比較的多く現れる。 変動の大きさは 3つのグループに分かれている ことから、 グループによって変動原因が異なるものと考えられる。
各グループの変動原因について調べたところ、 図 4において最も大きく変動し ている第 1グループ G 1は、 図 5において〇で囲む位置での高周波電力の反射波 の突発的な変動に対応していることが判った (図 5の横軸はロヅト内のウェハ枚 数を示し、 図 4とは直接対応しない) 。 第 2グループ G 2は、 図 6において〇で 囲む位置での高周波電圧 VP Pの突発的な変動に対応していることが判った (図 6 の横軸は 1枚のウェハ処理中の時間を示す) 。 また、 第 3グループ G 3は、 図 7 において〇で囲む位置でのプロセスガスのうち C Oガスの流量が突発的に変動し たことに対応していることが判った (図 7の横軸は 1枚のウェハ処理中の時間を 示す) 。
このようにウェハ毎の第 2主成分得点を用いることで、 第 2主成分得点が突発 的に変化するウェハが認められた場合に、 そのウェハの各検出値を確認するだけ で、 いずれかの検出値に異常のあったことを簡単に知ることができる。
次に、 本実施形態において、 第 1, 第 2主成分では把握しきれない運転状態の 変化を次のような手法によって、 より確実に把握するようにすることもできる。 例えば、 寄与率の高い第 k主成分までの累積寄与率が 9 0 %を超えてれば、 主成 分分析を行うことで運転状態の変動を判別、 評価することができるが、 最大 1 0 %の把握漏れが生じうる。 そこで、 寄与率の低い第 (k + 1 ) 以上の高次の主成 分を一つに纏めた、 数式 (7 ) で定義する残差行列 Eを作る (各行の成分は各検 出器の検出値に対応し、 各列の成分はウェハの枚数に対応する) 。 r e e 1 2 e ΐ ι 、
θ 2 1 θ 2 2 e 2
Ε = ( 7 )
Θ θ m 2 e ノ の残差行列 Eを前記数式 (6 ) に当て填めると、 数式 (6 ) は数式 (8 ) で 表される。 x = t iPJ+t 2P2 T+ - · · - t kPk T + E · · · · (8) この残差行列 Eの残差得点 Qiは数式 (9) で定義される行べクトル eiを用い た数式 ( 10) で定義され、 i番目のウェハの各検出値との残差 (誤差) を表す。
Θ i= [ Θ il θ i 2 · · · * Θ inj . · · · ( 9 )
Figure imgf000016_0001
但し、 eiは i番目測定を示す。 すなわち、 残差得点 は行ぺクトル eiとその転置べクトル の積として表 され、 各残差の 2乗の和となり、 プラス成分およびマイナス成分を相殺すること なく確実に残差として求められるようにしてある。
この残差得点 Qを求めることによって、 運転状態を多面的に判別、 評価するこ とが可能となる。 第 1, 第 2主成分だけでは、 それそれの固有ベクトルが決まる ため、 各検出器の運転デ一夕 (検出値) を多面的に評価することができない。 こ れに対して、 残差行列 Eを求めることにより各検出値の統計データとしての重み を多面的に評価することができ、 低次の第 1〜第 k成分では掴みきれない運転状 態の変化を把握することができる。 従って、 あるウェハの残差得点 Qiがサンプ ルウェハの残差得点 Q。から外れた場合には行べクトル eiの成分を観れば、 その ウェハの処理時にそのウェハのいずれの検出値に大きなズレがあったかが判り、 異常の原因を特定することができる。
例えば、 第 1, 第 2主成分の固有値の累積寄与率が 90%を超えれば第 1, 第 2主成分を用いて運転状態の経時的変動や突発的な変動を判別することができ、 さらに第 1、 第 2主成分で把握しきれない変化を残差得点 Q iによつて把握する ことができる。 k=2として第 1、 第 2主成分までと残差行列 Eとを用いる場合 を数式 (8) に当て填めると数式 ( 1 1) になる。 X = t i P iT + t 2 P 2 T + E · · · · ( 1 1 ) 前記処理条件でウェハを処理した時のウェハ毎の残差得点 Q iを記録したもの が図 8である。 図 8からも明らかなように、 第 1主成分得点 t iと同様に残差得 点 Q iもウェハの処理枚数の増加にともなって経時的に変動する傾向が分かる。 また、 第 2主成分得点と同様に残差得点 Q iも突発的に変動する様子も分かる。 このことから残差得点 Qを把握すれば、 第 1, 第 2主成分によって把握できる現 象をも把握することができ、 更に、 第 1 , 第 2主成分で把握しきれない現象も多 面的に把握できることが分かる。 そして、 残差行列 Eのあるウェハに対応した行 において、 他のパラメ一夕 (運転データ) よりも特に大きな残差のあったパラメ 一夕に注目することにより、 そのウェハではいずれの検出値に異常があつたかを 正確に確認することができる。
以上のように、 運転デ一夕に基づいて第 1、 第 2主成分それそれの得点を求め る際に、 これらの主成分以外の残差の小さい運転データを一つに纏めて残差得点 Qとして求めるようにした。 これにより、 各検出値を多面的に把握することがで き、 第 1、 第 2主成分得点では見落としがちな変化を確実に掴むことができ、 運 転状態をより詳細に把握することができる。 しかも、 残差得点 Qで異常の見つか つたウェハについては、 更に残差行列 Eの行成分を分析することによりどの検出 器による検出値に異常があつたかを知ることができる。 第 2の実施形態 ' 前記の実施態様では、 主成分分析を用いて、 処理装置でウェハを処理する場合 の運転状態を評価する方法について説明したが、 この手法は処理装置間の固体差 (性能などの特性の差) を判断、 評価する場合にも利用することができる。 すな わち、 本実施態様では残差得点 Qを用いて処理装置間の特性差を把握するように している。 上述のように、 残差得点 Qによって、 各検出値の変化を多面的に把握 することができ、 しかも変化した検出値を特定することができる。
例えば、 まず基準処理装置を用いて 2 5枚のウェハを処理し、 前記実施態様と 同様に複数の検出器の検出値を第 1の運転データとして得る。 これらの第 1の運 転データを (パラメ一夕として) 用いて多変量解析を行って残差行列 Eおよびそ の残差得点 Qoを求める。 そして、 この残差得点 Qoに基づいて基準処理装置の特 性を把握する。 そして、 上述のように基準処理装置の残差得点 Q。の値を、 比較 すべき他の処理装置 (比較処理装置) の特性を判断、 評価する場合の基準値とし て利用する。
すなわち、 基準処理装置の残差得点 Q oを得た後、 比較処理装置を用いて基準 処理装置と同一条件でウェハ処理して各検出器の検出値を第 2の運転データとし て得る。 そして、 比較処理装置で得られた第 2の運転データを、 基準処理装置で 得られた残差得点 Qoを得る時の前記数式 (1 1 ) に当て填めて、 比較処理装置 の残差得点 Qを求める。 更に、 比較処理装置の残差得点 Qと基準処理装置の残差 得点 Q。と比較し、 前者の値と後者の値が一致しているか否かを確認する。 比較 処理装置の残差得点 Qが基準処理装置の残差得点 Q。からずれている場合には、 比較処理装置のいずれかの検出値が基準値からずれていることが判る。 本実施態 様では、 ある残差行列 Eの行は、 その処理装置にお ('ナるウェハ毎の各検出器の残 差で構成されている。
本実施態様では、 図 9に示すように、 基準処理装置として装置 F、 Iを用いて 2 5枚のウェハを前記実施態様と同一条件でエッチング処理する。 そして、 基準 処理装置 F、 Iの各検出器の検出値である第 1の運転データをパラメ一夕として 前記実施態様と同様に主成分分析を行い、 第 1、 第 2主成分の固有値および固有 ベクトルを求めると共に残差得点 Qを求める。 そして、 基準処理装置 F、 Iに関 する主成分分析で得られた固有値および固有べクトル等の定数を、 比較処理装置 A〜E、 G、 H、 Jの主成分分析プログラムに設定する。 次いで、 比較処理装置 A〜E、 G、 H、 Jを用いて同一条件のエッチング処理を行ってそれそれの検出 器の検出値を第 2の運転データとして得る。 そして、 各処理装置毎に残差得点 Q を求めた結果を図 9に示す。 残差得点 Qを得るためには前記数式 (1 0 ) が用い られる。
図 9に示す結果によれば、 処理装置 A、 D、 Gおよび Jの残差得点 Qは基準処 理装置 F、 Iの残差得点 Qと殆ど変わらないが、 処理装置 B、 C、 E、 Hの残差 得点 Qは基準処理装置の残差得点 Qから大きくずれている。 従って、 処理装置 B、 C、 E、 Hは、 基準処理装置 F、 Iに対して、 いずれかのパラメ一夕の残差が大 きく変化していることが判る。 そこで、 残差の大きなパラメ一夕を検討するため に、 処理装置: B、 C、 E、 Hの各パラメ一夕の残差を表示した図 1 0を観てみる c すると、 処理装置 Bではパラメ一夕 G、 H、 Kの残差が大きく、 処理装置 Cでは パラメ一夕 C、 H、 J、 Kの残差が大きく、 処理装置 Εではパラメ一夕 C、 Hの 残差が大きく、 処理装置 Hではパラメ一夕 G、 H、 Jの残差が大きくなつている ことが判った。 このように、 比較処理装置の残差得点 Qが基準処理装置 F、 Iの 残差得点 Qから大きくずれている場合には、 その処理装置の各検出器にっ 、ての パラメ一夕の残差を比較することにより、 ずれの原因となった検出器を簡単に特 定することができる。
以上のことから比較処理装置の残差得点 Qを求め、 その値を基準処理装置の残 差得点 Q。 と比較するだけで、 基準処理装置の特性から外れた特性を有する比較 処理装置を簡単に評価することができる。 しかも、 その比較処理装置の各パラメ —夕の残差が図 1 0に示すように一目で判り、 残差が大きい特定のパラメ一夕が 認められた場合にはそのパラメ一夕が基準処理装置から外れていることが簡単に 判る。 従って、 新たな製造された処理装置やメンテナンス後の処理装置の性能調 整を行う場合に、 その処理装置の残差行列 Eおよび残差得点 Qを求めるだけで性 能上の不具合などを簡単に見つけることができ、 しかもその不具合を特定するこ とができ、 性能調整を短時間で行うことができる。
また、 以上の説明は分散共分散を用いた主成分分析についてのものであるが、 複数の検出器の検出値はそれそれ固有の単位を有するため、 それぞれの検出値を そのまま主成分分析用のデ一夕として用いると、 運転データを正確に反映した評 価をできないことがある。 そこで、 全検出値デ一夕を標準化し相関行列を用いた 主成分分析を行うことによって、 各検出値の単位の違いによる影響を予め排除し て運転状態を正確に評価することができる。
本実施態様では、 残差得点 Qを用いて処理装置間の特性、 例えば性能の差を把 握し、 その処理装置の相対的な性能の善し悪しを評価することができる。 しかも 残差成分を観れば、 性能の劣る部位を簡単迅速に特定することができる。 従って、 新たに製造された処理装置やメンテナンス後の処理装置の性能判断や性能評価を 簡単且つ迅速に行うことができる。
なお、 以上の実施形態は、 前記処理条件を下記処理条件 1〜 5のように変更し て行っても同様の作用効果を得ることができた。
[処理条件 1 ]
処理装置:マグネトロン R I E型処理装置
ウエノヽ : 300 mm
被ェヅチング膜: シリコン酸化膜
下地層: S i
処理内容:コンタクトホール
下部電極:電源高周波数 = 13. 56 MH z、 電源電力 = 4000W 電極間ギヤップ: 40mm
処理圧力: 40 mTorr
プロセスガス : C4F8=2 Osccmヽ CO= 100sccm、 Ar = 4 Osccm
Figure imgf000020_0001
バックサイ ドガス : He = 1 OTorr (電極中央部) 、 5 OTorr (電極エッジ 部) 静電チャック直流電圧: 2. 5KV
処理温度:上部電極 = 60 °C、 側壁 = 60 °C、 下部電極 = 10°C
[処理条件 2]
処理装置:マグネトロン R I E型処理装置
ウエノヽ : 300 mm
被ェヅチング膜:シリコン酸化膜
下地層: S i N
処理内容: SAC
下部電極:電源高周波数 = 13. 56MHz, 電源電力 = 4000 W 電極間ギヤヅプ : 40mm
処理圧力: 40 mTorr プロセスガス : C4F8=24sccm、 C 0 = 450sccm、 Ar = 60 Osccm バックサイ ドガス : He = 1 OTorr (電極中央部) 、 5 OTorr (電極ェヅジ 部) 静電チャック直流電圧: 2. 5KV
処理温度:上部電極二 60°C、 側壁 = 60°C、 下部電極 = 10°C
[処理条件 3]
処理装置:二周波ブラズマエ、ソチング処理装置 (上下両電極印加)
ウェハ : 300 mm
被ェッチング膜:シリコン酸化膜
下地層: S i、 金属膜
処理内容:スルーホール、 ビアコンタクト
上部電極:電源周波数二 60 MHz、 電源電力 =3300W
下部電極:電源高周波数 = 2.MH z、 電源電力 = 3800W
電極間ギャップ: 35mm
処理圧力: 25 mTorr
プロセスガス : CsF8 = 32sccm、 A r = 75 Osccm、 02= 45sccm バックサイ ドガス : He = 2 OTorr (電極中央部) 、 35Torr (電極ェヅジ 部) 静電チヤヅク直流電圧: 2. 5KV
処理温度:上部電極 = 60°C、 側壁 = 50° 下部電極 = 20°C
[処理条件 4]
処理装置:二周波プラズマエッチング処理装置 (上下両電極印加)
ウエノヽ : 300 mm
被ェヅチング膜:ポリシリコン
下地層:熱酸化膜
処理内容:ゲート
上部電極:電源周波数 = 60MH z、 電源電力 = 200W
下部電極:電源高周波数二 13. 56MHz, 電源電力 = 150W
電極間ギヤップ: 170mm 処理圧力: 30 mTorr .
プロセスガス : HB r = 40 Osccm
ノ ヅクサイドガス: He = 3Torr (電極中央部) 、 3Torr (電極エッジ部) 静電チャック直流電圧: 3. 0 V
処理温度:上部電極 = 80。 側壁- 60 °C、 下部電極 = 60°C [処理条件 5 ]
処理装置:二周波プラズマェヅチング処理装置 (上下両電極印加)
ウエノ、 : 300mm
被エッチング膜: S i
下地層: 一
処理内容: S T 1
上部電極:電源周波数 = 60 MH z、 電源電力 = 1800 W
下部電極:電源高周波数 = 13. 56 MH z、 電源電力二 300 W
電極間ギヤップ: 170 mm
処理圧力: 100 mTorr
プロセスガス : 02= 5sccm、 H B r = 570 seem, C L 2 = 30 sccm バックサイドガス: He = 3Torr (電極中央部) 、 3Torr (電極エッジ部) 静電チヤヅク直流電圧: 3. 0KV
処理温度:上部電極- 80°C 側壁 = 60°C;、 下部電極 = 60 °C 第 3の実施形態
次に、 処理装置における高周波電源の電気的デ一夕に関連した実施形態につい て説明する。
まず、 本実施形態が適用される処理装置の一例について図 16を参照して説明 する。 なお、 図 16に示す処理装置 1' において図 1に示す処理装置 1と実質的 に同一の構成部分には同一符号を付して、 詳細な説明は省略する。 図 16に示す 処理装置 1' は、 アルミニウム等の導電性材料からなる処理容器 11を備えてい る。 この処理装置 1' においては、 接地された処理容器 11の上面 1 laが、 載 置台を兼ねる下部電極 1 2と対向した上部電極をなしている。 この処理装置 1, は、 制御装置 1 0 ' の制御下で上下両電極 1 1 a, 1 2間で発生する電界に、 磁 場形成手段 1 4による回転磁界 Bを作用させることで、 処理容器 1 1内に導入し たプロセスガスの高密度ブラズマを形成するように構成されている。 このプラズ マにより、 処理容器 1 1内でウェハ Wに対して、 例えば所定のエッチング処理な どの均一なプラズマ処理を行うように意図されている。 なお、 下部電極 1 2の周 縁部にはフォーカスリング 2 0が配置され、 このフォーカスリング 2 0を介して プラズマをウェハ W上へ収束するように構成されている。
ここで本実施形態では、 高周波電源 1 9と下部電極 1 2との間に、 マッチング 回路 1 8および高周波測定器 1 7が順次介設されている。 そして、 高周波電源 1 9から下部電極 1 2に 1 3 . 5 6 MH zの高周波電力を印加している。 この場合、 電極 1 2にはその他に、 1 3 . 5 6 MH zの高周波を基本波とする高調波 (例え ば 2 7 . 1 2 MH z , 4 0 . 6 8 M H z ) が印加される。 ところが、 高周波電源 1 9により下部電極 1 2に印加される高周波電力の電圧、 電流、 位相およびイン ピ一ダンス等の電気的データは処理装置 1 ' の始動直度には不安定でなかなか安 定しない。 しかも、 処理容器 1 1内の状態を客観的に知る術がない。 そこで、 本 実施形態では、 これらの電圧、 電流、 位相およびインピーダンス等の電気的デー 夕を測定し、 各測定値を利用して処理装置 1 ' の安定状態、 具体的には処理容器 1 1内での所定のプラズマ処理に必要な安定状態を検出するようにしている。 即ち、 高調波測定器 1 7を用いて、 高周波電源 1 9の基本波およびその高調波 の電気的デ一夕としての電圧、 電流、 位相およびインピ一ダンスを、 処理装置 1 ' の始動時から高周波電源 1 9が安定するまで間欠的に測定し、 それらの電気的 デ一夕を制御装置 1 0 ' 内に逐次取り込む。 この制御装置 1 0 ' には多変量解析 プログラムとしての主成分分析プログラムが格納され、 このプログラムを介して 測定値の主成分分析を行って処理装置の安定状態を検出する。
例えば、 本実施形態で主成分分析を行う場合には、 電極 1 2への高周波電源 1 9からの印加状態が安定ィヒした基準処理装置を使って、 高周波電源 1 9の基本波 およびその高調波の電気的デ一夕である電圧 V、 電流 I、 位相 Pおよびインピー ダンス Zを、 それそれ基準用データとして間欠的に測定する。 これにより、 各周 波数: の基準用データとしての測定値 V (f n) , I (f n) , P (f n) , Z
(f n) を得る。 そして、 これらの測定値は、 電圧 Vその他の種類毎にそれそれ、 平均値を差し引くセン夕リングと、 偏差で除するスケーリングとを行うことで標 準化される。 この際、 もとの測定値と標準化した測定値との対応関係は、 例えば 測定値の配列順に合わせて明確にしておく。 次いで、 標準化した各種の測定値
(標準化測定値) の測定個数が n個で、.安定するまで m回 (ウェハ m枚) の測定 を行うとすれば、 基準処理装置の基準用デ一夕としての全ての標準化測定値が入 つた行列は前記数式 (1) で表される。
次いで、 制御装置 10' において、 全ての標準化測定値について平均値、 最大 値、 最小値、 分散値を求め、 これらの計算値に基づいた分散共分散行列を用いて 複数の標準化測定値の主成分分析を行って固有値およびその固有べクトルを求め る。
例えば m回の測定でそれそれ n個の標準化測定値を採り、 i番目の測定の j番 目の固有値に対応する第:)'主成分は前記数式 (2) で表される。 そして、 この第 j主成分 t ijに具体的な i番目の標準化測定値 (X 、 Xi 2、 · · ·、 Xin) を 代入して得られた値が i番目の測定における第 j主成分の得点になる。従って、 第 j主成分の得点 は前記数式 (3)で定義され、 第 j主成分の固有ベクトル Pjは前記数式 (4) で定義される。 tjは測定値間の関係を表す得点である。 ま た、 Ρ·は測定値間の重みを表す固有ベクトルである。 そして、 第 j主成分の得 点 tjを行列 Xと固有ベクトル Piを用いると前記数式 (5) で表される。 また、 行列 Xを各主成分の得点とそれそれの固有ベクトルを用いると前記数式 (6) で 表される。
従って、 主成分分析では多種類の測定デ一夕があっても、 それらを例えば第 1 主成分および第 2主成分、 多くても第 3主成分までの少数の統計データとして纏 め、 少数の統計デ一夕を調べるだけで運転状態を評価し、 把握することができる。 上述したように、 一般的に第 1、 第 2主成分の固有値の累積寄与率が 90%を超 えれば、 第 1、 第 2主成分に基づいた評価は信頼性の高いものになる。第 1主成 分は上述のように測定データが最も大きく分散する方向を示し、 処理装置の運転 状態の総合的な評価を行う指標となり、 処理装置の運転状態の経時的変化の判断.、 評価に適している。 第 2主成分は第 1主成分とは直交する方向に分散し、 正常な 運転状態からの瞬間的なずれの指標となり、 運転状態の突発的変化の判断、 評価 に適している。
しかしながら、 第 1主成分は一般的に固有べクトルや第 1主成分得点等を観て データを如何なる傾向にあるかなど総合的に評価することはできるが、 第 1、 第 2主成分ではそれそれの固有べクトルが一義的に決まるため、 個々の測定デ一夕 が測定毎に如何なる状態にあり如何なる変化をしているかまで多面的に把握する ことができない。
そこで、 本実施形態では処理容器 1 1内の状態に応じて高周波電源 1 9の印加 状態が安定状態に達したことを検出する手法として、 寄与率の低い第 (k + 1 ) 以上の高次の主成分を一つに纏めた前記数式 (7 ) で定義する残差行列 Eを作る
(各行の成分は高周波の基本波およびその高調波の各標準化測定値に対応し、 各 列の成分は測定回数に対応する) 。 そして、 この残差行列 Eを前記数式 (6 ) に 当て填めると数式 (6 ) は前記数式 (8 ) で表される。 更に、 基準処理装置の残 差行列 Eの残差得点を基準残差得点 Q。として求める。 そして、 この残差得点 Q。 を基準にして、 基準処理装置との比較において監視対象とすべき処理装置 (比較 処理装置) が始動してから安定状態に達したか否かを検出するようにしている。 一般に、 残差得点 は行べクトル e iとその転置べクトル の積として表さ れ、 各残差成分の 2乗の和となり、 プラス成分およびマイナス成分を相殺するこ となく確実に残差として求められるようにしてある。 従って、 測定毎の基準処理 装置の残差得点 Q 0と比較処理装置の残差得点 Q iを比較することで比較処理装置 が安定状態に達しているか否かを判断することができる。 そして、 比較処理装置 のある時点での残差得点 Q iが同一時点での基準処理装置の残差得点 Q。から外れ た場合には、 残差行列 Eの前記数式 ( 1 0 ) で表される各行の行ベクトル e iの 成分を観れば、 その時点でいずれの測定値に大きなズレがあったかが判り、 異常 の原因を特定することができる。
即ち、 比較処理装置の安定状態を検出するには、 まず予め基準処理装置につい て残差行列] Eの残差得点 Q。を求める。 そして、 基準処理装置で得られた得点残 差 Q。および固有べクトル等の定数を比較処理装置の主成分分析プログラムに設 定し、 この設定条件の下で比較処理装置で測定された電気的デ一夕から残差得点 Qを求める。 次いで、 比較処理装置の残差得点 Qの基準処理装置の残差得点 Q。 からの差 (ずれ量) を求め、 この残差得点の差 (Q— Q。) に基づいて比較処理 装置での高周波電源 1 9の印加状態が安定状態に達しているか否かを判断する。 即ち、 残差得点の差 (Q— Q。) が大きければ、 その比較処理装置は基準処理装 置とのずれが大きく不安定であることを示し、 差 (Q - Q。) が小さければ基準 処理装置とのずれが小さく安定状態に近いことを示す。 基準処理装置の残差得点 Q。 = 0にすれば、 比較処理装置の残差得点 Q自体がその基準レベルからのずれ 量となる。 尚、 変数の値は平均値が 0になるように計算されているものとする。 ここで、 本実施形態の処理装置の運転監視方法に基づいて、 下記の状態 A、 B および処理条件 A、 Bを適宜組み合わせて実際にウェハを処理した。 そして、 そ の処理中の基本波およびその高調波の測定値 V ( f n ) , I ( f n ) , P ( f n ) s
Z ( f n ) の標準化測定値および残差得点 Qを図 1 7 a〜図 2 0に示した。 尚、 比較処理装置の主成分プログラムには、 基準処理装置で得られた主成分分析結果 が予め設定されている。 各図におけるプロットはウェハ 1枚当たりの平均値を示 している。 また、 下記の処理条件におけるデポジションの値は、 デポジション量 の少ない条件の値を 1とし、 デポジション量の多い条件をデポジション量の少な い条件に対する相対値で示してある。
I . 状態
状態 A:処理容器内を 1 2诗間真空引きした状態
状態 B :処理容器内を 4日間真空引きした状態
II . 処理条件
処理条件 A (デポジションの少ない条件)
ウェハ処理時間: 1分
高周波電力: 1 7 0 0 W
処理容器圧力: 4 5 mTorr
プロセスガス : C 4 F 8 = 1 0 sccm、 C 0 = 5 0 sccm. A r = 2 0 O sccm
Figure imgf000027_0001
デポジション: 1 (相対値) 処理条件; B (デポジションの多い条件)
ウェハ処理時間: 1分
高周波電力: 1500W
処理容器圧力: 53 mTorr
プロセスガス : C4 :F 8= 16sccm、 C 0 = 300 seem
A r = 400 sccm
デポジション: 1. 95 (相対値) まず、 図 1 Ί aないし図 18bを参照しながら保守点検後の処理条件の違いに よる安定化の差について説明する。
( 1 ) 状態 A+処理条件 A (図 17 a及び図 18 a)
処理容器 11内を状態 Aに導いた後、 処理装置をデポジションの少ない処理条 件 Aに設定した。 この状態で処理容器 11内に搬入したウェハ Wを処理した。 ゥ ェハ搬入直後 (始動直後) から高調波測定器 17を用いて高周波電源 19の基本 波および高調波の電圧、 電流、 位相およびインピ一ダンスを約 0. 2秒毎に測定 し、 それそれの測定値 V (f n)、 I (f n) 、 P (f n)、 Z (f n) のウェハ毎 の平均値を求めた。 それらの平均値を、 それぞれ基準処理装置の対応する値 (基 準値.) に対する相対値に換算し、 その変動の様子を図 17 aに示した。
図 17 aに示す結果によれば、 処理開始直後から各測定値は緩慢に基準値 (= 1) へ収束して行き、 図の〇印当たりから概ね基準値レベルに達して安定状態に なったと判断される。 しかし、 〇印以降でも上下の振れが認められる。 この図 1 7 aに示す場合でも、 図 23 aおよび図 23 bに示す従来の手法と比較すれば安 定状態を判断し易い。 これに対し、 さらに本実施形態の方法により前記測定値か ら残差得点 Qを求めた結果、 図 18 aに示すようになった。 図 18 aでは複数の 測定値が残差得点 Qとして一つに纏まり、 図 17 aと比較しても基準値からのず れが判断し易く、 安定状態はウェハの処理枚数で 100〜120枚の範囲にある と判断できる。 それ以降でも残差得点 Qが周期的に若干増加する傾向が認められ る。
( 2 ) 状態 A +処理条件 B (図 1 7 b及び図 1 8 b )
次に、 (1 ) と同様に処理容器 1 1内を状態 Aに導いた後、 (1 ) とは違って デポジションの多い処理条件 Bに設定した。 そして、 処理容器 1 1内に搬入した ウェハ Wを処理した。 処理装置の始動直後から高周波電源 1 9の印加状態が安定 するまでの測定値を得た後、 各測定値について (1 ) の場合と同様に基準値に対 する相対値を採り、 その結果を図 1 7 bに示した。 図 1 7 bに示す結果によれば、 各測定値は (1 ) の場合と比較して早く安定状態に向かうが、 振れ幅の小さい安 定状態に達するのは図の〇印当たりからで (1 ) の場合と余り変わらない。 これ に対し、 さらに本実施形態の方法により残差得点 Qを求めると、 図 1 8 bに示す ように、 残差得点 Qが (1 ) の場合よりも早く基準値に収束して安定状態に達し、 安定状態の時点を判断し易いことが判る。 基準処理装置を用いて安定状態を判断 する基準となる残差得点を予め定めておけば、 比較処理装置の安定状態を確実に 判断することができる。
次に、 図 1 9 a、 図 1 9 bおよび図 2 0を参照しながら保守点検後の処理容器 内の状態の違いによる安定化の差について説明する。
( 3 ) 状態 A +処理条件 A (図 1 9 a及び図 2 0 )
処理容器 1 1内を状態 Aに導いた後、 処理装置をデポジションの少ない処理条 件 Aに設定した。 そして、 処理容器 1 1内に搬入したウェハ Wを処理した。 処理 装置の始動直後から高周波電源 1 9の印加状態が安定するまでの測定値を得た後、 各測定値について (1 ) の場合と同様に基準値に対する相対値を採り、 その結果 を図 1 9 aに示した。 図 1 9 aに示す結果によれば、 各測定値が緩慢に基準値へ 収束して行き、 安定状態に達するのが遅いことが判る。 ウェハ処理枚数 1 2 0枚 前後の〇印付近で安定状態になったと判断されるが、 それ以降でも上下に振れる 測定値があり、 安定化の判断が難しいことが判る。 これに対し、 さらに本実施形 態の方法により残差得点 Qを求めた結果、 図 2 0の状態 Aに示すようになった。 図 2 0の状態 Aに示す結果から明らかなように、 図 1 8 aに示す結果とは異なり、 残差得点 Qが基準値に収束するまでに予想外の時間が掛かり、 ウェハ処理枚数 1 8 0枚前後の〇印付近で初めて安定状態になることが判る。
( 4 ) 状態 B +処理条件 A (図 1 9 b及び図 2 0 )
次に、 処理容器 1 1内を状態 Bに導いた後、 (3 ) の場合と同様に処理装置を デポジションの少ない処理条件 Aに設定した。 そして、 処理容器 1 1内に搬入し たウェハ Wを処理した。 処理装置の始動直後から高周波電源 1 9の印加状態が安 定するまでの測定値を得た後、 各測定値について (1 ) の場合と同様に基準値に 対する相対値を採り、 その結果を図 1 9 bに示した。 図 1 9 bに示す結果によれ ば、 各測定値が (3 ) の場合よりも早く基準値に収束し、 早く安定状態に達して いることが判る。 また、 さらに本実施形態の方法により残差得点 Qを求めた結果、 図 2 0の状態 Bに示すようになった。 図 2 0の状態 Bに示す結果から明らかなよ うに、 残差得点 Qは基準値に到達するのが早いが、 ウェハ処理枚数 1 0 0枚以内 では変動があり、 完全に安定するのは 1 0 0枚以上であることが明瞭に判る。 以上説明したように本実施形態によれば、 安定化した処理装置 1 ' の基本波お よび高調波それそれの電圧値、 電流値、 位相およびインピーダンス等の電気的デ 一夕の測定値 V ( f„)、 I ( f„)、 P ( f n )、 Z ( f n ) を用いて、 予め基準 となる主成分分析を行って基準用の残差得点 Qoを求める。 その後、 保守点検後 の比較処理措置 1 ' の始動直後から高調波測定器 1 7で電気的データを測定し、 この測定値 V ( f n ) 、 I ( f n ) , P ( f n )、 Z ( f n ) を用いて比較用の主成 分分析を行って比較用の残差得点 Qを求める。 そして、 比較用の残差得点 Qと基 準用の残差得点 Q。とを比較して、 両者の差 (Q— Q。) から保守点検後の比較処 理装置 1 ' における高周波電源 1 9の安定状態を検出するようにした。 このため、 膨大な測定値があつても、 これらのデータを一つの纏めた残差得点 Qを基準値と 比較するだけで保守点検後の比較処理装置 1, 、 具体的には、 その処理容器 1 1 内の安定状態を客観的且つ確実に評価し、 判断することができる。 また、 本実施 形態によれば、 単に安定状態に達した時点を評価、 判断できるばかりでなく、 安 定状態に導くには処理容器 1 1内の真空引き時間等の処理条件を如何に設定すれ ば良いかを評価、 判断することができる。 第 4の実施形態 次に、 処理装置の異常検出方法に関する実施形態について説明する。
本実施形態の処理装置の異常検出方法も、 主成分分析における残差得点 Qを使 用する点では前記第 3の実施形態の運転監視方法と共通している。 但し、 本実施 形態では、 正常な処理装置、 即ち、 処理容器 1 1内や高周波電源 1 9における部 品の取付ミス等がなく、 設計仕様に則して正確に組み立てられている処理装置を 基準処理装置として使用する。 本実施形態では処理装置の始動後の高周波電源 1 9の印加状態が不安定な状態を脱し安定状態に達した段階で、 基本波およびその 高調波の電気的デ一夕を測定することは云うまでもない。
そこで、 本実施形態においても前記実施形態と同様に、 基準処理装置に関する 基本波およびその高調波の電圧、 電流、 位相およびインピーダンスそれそれ電気 的データとして間欠的に測定して各周波数の測定値 V ( f n )、 I ( f n )、 P ( f n)、 Z ( f n ) を得て、 これらの測定値を標準化する。 そして、 基準処理装 置に関し前記数式 (9 ) で定義される残差得点 Q oを予め求める。 基準処理装置 で得られた固有べクトル等の定数を比較処理装置の主成分分析プログラムに設定 し、 この設定条件の下で比較処理装置の電気的データから残差得点 Qを求める。 次いで、 基準処理装置の残差得点 Q。と比較処理装置の残差得点 Qとの差 (ずれ 量) を求め、 この残差得点の差 (Q— Q o ) に基づいて比較処理装置に異常があ るか否かを判断する。
即ち、 残差得点の差 (Q— Q o ) が大きければ、 その比較処理装置には処理容 器 1 1や高周波電源 1 9の部品の取付ミス等の異常があることを示す。 一方、 こ の差 (Q— Q o ) が許容値以下であれば、 その処理装置は正常と判断される。 ま た、 ある残差得点 Qが他の残差得点と異なる値を表した時には、 残差行列 E中の 異なる値を示した行の残差成分に着目する。 例えば、 i番目の測定結果の残差得 点が基準残差得点 Q。とは異なる値である場合には、 i番目の行の e iの残差成分 を観ることにより、 どの変数 (測定値) が残差得点 Qのズレに寄与している かを判断することができる。 このことから、 異常の原因と残差の大きい変数 (基 本波、 高調波の電圧、 電流等) を関連づけることにより、 異常の原因を分類する ことができる。
図 2 1は、 残差得点 Qと部品取付ミスとの関係を具体的に示すグラフである。

Claims

図 2 1において、 N 1および N 2は正常な処理装置の残差得点、 状態 Aは特定部 分のネジがない時の残差得点、 状態 Cは特定部分のネジ ·カバーがない時の残差 得点、 状態 Dは状態 Aとは別の部分のネジがない時の残差得点、 状態 Eは状態 C とは別の部位のネジ ·カバーがない時の残差得点、 状態 Fは特定部分のネジが緩 んでいる時の残差得点、 状態 Gは特定の部品がない時の残差得点を、 それそれ示 している。 例えば、 図 2 1の状態 Aにおける残差得点を示した行の残差成分を観ると、 図 2 2 aのように、 基本波 (f。) の電圧 Vおよびインピーダンス Zがマイナス側 に特に大きく振れ、 3倍波 (f 3) の電流 Iがプラス側に特に大きく振れている ことが判る。 また図 2 1の状態 Cについては、 図 2 2 bのように、 基本波の電圧 Vおよびインピ一ダンス Zがマイナス側に特に大きく振れ、 基本波の位相 Pがプ ラス側に比較的大きく振れていることが判る。 また図 2 1の状態 Gについては、 図 2 2 cのように、 基本波の電流 Iおよび位相 Pがマイナス側に大きく振れ、 基 本波のィンピ一ダンス Zがプラス側に特に大きく振れていることが判る。 このよ うに、 異常の原因となっている特定の状態 (関連する部品の種類や取付部位) 等 と残差得点の大きい成分との関係を分類することが可能である。従って、 この関 係を予め把握しておくことで、 残差得点への寄与率の高い成分を知ることにより 如何なる異常があるか判断することができる。 以上説明したように本実施形態によれば、 予め正常な基準処理装置の高周波電 源 1 9の測定データを用いて主成分分析を行って基準用の残差得点を求める。 次 に、 比較用処理装置の複数の電気的データを測定して得られた複数の測定デ一夕 を用いて主成分分析を行って、 比較用の残差得点を求める。 次いで、 比較残差得 点 Qと基準残差得点 Q。とを比較して両者の差 (Q— Q。) から比較処理装置の異 常を検出することができる。 このため、 処理装置を開けることなく部品の取付ミ ス等による異常を確実に検出することができる。 また、 処理装置における部品の 取付ミス等の異常を残差行列 Eの成分から分類することができる。 尚、 以上の実施形態では、 多変量解析として主成分分析を用いる場合について 説明したが、 回帰分析などの他の多変量解析の手法を用いても本発明を実現する 29 図 2 1において、 N 1および N 2は正常な処理装置の残差得点、 状態 Aは特定部 分のネジがない時の残差得点、 状態 Cは特定部分のネジ ·カバ一がない時の残差 得点、 状態 Dは状態 Aとは別の部分のネジがない時の残差得点、 状態 Eは状態 C とは別の部位のネジ ·カバーがない時の残差得点、 状態 Fは特定部分のネジが緩 んでいる時の残差得点、 状態 Gは特定の部品がない時の残差得点を、 それそれ示 している。 例えば、 図 2 1の状態 Aにおける残差得点を示した行の残差成分を観ると、 図 2 2 aのように、 基本波 (f Q) の電圧 Vおよびインピーダンス Zがマイナス側 に特に大きく振れ、 3倍波 (f 3) の電流 Iがプラス側に特に大きく振れている ことが判る。 また図 2 1の状態 Cについては、 図 2 2 bのように、 基本波の電圧 Vおよびィンピーダンス Zがマイナス側に特に大きく振れ、 基本波の位相 Pがプ ラス側に比較的大きく振れていることが判る。 また図 2 1の状態 Gについては、 図 2 2 cのように、 基本波の電流 Iおよび位相 Pがマイナス側に大きく振れ、 基 本波のインピーダンス Zがプラス側に特に大きく振れていることが判る。 このよ うに、 異常の原因となっている特定の状態 (関連する部品の種類や取付部位) 等 と残差得点の大きい成分との関係を分類することが可能である。 従って、 この関 係を予め把握しておくことで、 残差得点への寄与率の高い成分を知ることにより 如何なる異常があるか判断することができる。 以上説明したように本実施形態によれば、 予め正常な基準処理装置の高周波電 源 1 9の測定データを用いて主成分分析を行って基準用の残差得点を求める。 次 に、 比較用処理装置の複数の電気的デ一夕を測定して得られた複数の測定データ を用いて主成分分析を行って、 比較用の残差得点を求める。 次いで、 比較残差得 点 Qと基準残差得点 Q oとを比較して両者の差 (Q— Q。) から比較処理装置の異 常を検出することができる。 このため、 処理装置を開けることなく部品の取付ミ ス等による異常を確実に検出することができる。 また、 処理装置における部品の 取付ミス等の異常を残差行列 Eの成分から分類することができる。 尚、 以上の実施形態では、 多変量解析として主成分分析を用いる場合について 説明したが、 回帰分析などの他の多変量解析の手法を用いても本発明を実現する 30 ことが可能である。 また、 以上の実施態様では、 半導体ウェハにエッチング処理 を行うプラズマ処理装置を例に挙げて説明したが、 それ以外の半導体製造装置や その他の一般的な処理装置にも本発明を適用することが可能である。 31 請 求 の 範 囲
1 . 処理装置に付設された複数の検出器を用いて被処理体毎に検出される複 数の検出値を運転デ一夕として利用して当該処理装置の運転を監視する方法であ つて、
前記運転デ一夕を用いた多変量解析を行って処理装置の運転状態を評価する、 ことを特徴とする運転監視方法。
2 . 前記多変量解析として主成分分析を行う、 ことを特徴とする請求項 1に 記載の運転監視方法。
3 . プラズマ処理装置に付設された複数の検出器を用いて検出される複数の 検出値を運転デ一夕として利用して当該プラズマ処理装置の運転を監視する方法 であって、
予め基準となる複数の被処理体について、 それそれ複数の運転データを得ると 共に、 これにより得られた運転データを用いて主成分分析を行い、 この主成分分 析の結果を用いてプラズマ処理装置の運転状態を評価する、 ことを特徴とする運 転監視方法。
4 . 前記主成分分析の結果として第 1主成分得点を用いる、 ことを特徴とす る請求項 3に記載の運転監視方法。
5 . 前記第 1主成分得点の分散値を用いて運転の停止時期を判断する、 こと を特徴とする請求項 4に記載の運転監視方法。
6 . 前記主成分分析の結果として第 2主成分得点を用いる、 ことを特徴とす る請求項 3に記載の運転監視方法。
7 . 処理装置に付設された複数の検出器を用いて被処理体毎に検出される複 数の検出値を運転データとして利用して処理装置の運転を監視する方法であって、 前記運転データを相対的に寄与率の高い主成分と寄与率の低い主成分とに分け ると共に、 前記寄与率の低い主成分に属する運転データの残差行列を求め、 この 残作行列から得られる残差得点に基づいて処理装置の運転状態を評価する、 こと を特徴とする運転監視方法。
8 . 処理装置に付設された複数の検出器を用いて被処理体毎に検出される複 32 数の検出値を運転デ一夕として利用して複数の処理装置間の特性差を評価する方 法であって、
基準処理装置を用いて複数の被処理体それそれについての第 1の運転データを 得る工程と、
前記第 1の運転データを用いて多変量解析を行う工程と、
前記基準処理装置と比較すベき比較処理装置を用いて、 複数の被処理体それそ れについての第 2の運転データを得る工程と、
前記第 2の運転デ一夕を前記多変量解析の結果に当て填めた解析結果を得るェ 程と、
前記第 1の運転データによる解析結果と前記第 2の運転デ一夕による解析結果 とを比較することで、 処理装置間の性能差を評価する工程と
を備えたことを特徴とする処理装置の評価方法。
9 . 処理装置に付設された複数の検出器を用いて被処理体毎に検出される前 記各検出器の検出値を運転データとして利用して複数の処理装置間の特性差を評 価する方法であって、
基準処理装置を用いて複数の被処理体それそれについての第 1の運転データを 得る工程と、
前記第 1の運転データを用いた主成分分を行って残差行列を求める工程と、 前記基準処理装置と比較すベき比較処理装置を用いて、 複数の被処理体それそ れについての第 2の運転データを得る工程と、
前記第 2の運転デ一夕を前記主成分分析の結果に当て填めて残差行列を求める 工程と、
前記第 1の運転データによる残差行列と前記第 2の運転データによる残差行列 とを比較することで、 処理装置間の性能差を評価する工程と
を備えたことを特徴とする処理装置の評価方法。
1 0 . 前記残差行列どうしの比較は残差得点を用いて行われる、 ことを特徴 とする請求項 9に記載の処理装置の評価方法。
1 1 . 処理装置において高周波電源から処理容器内の電極に高周波電力を印 加してプラズマを発生させて被処理体を処理する際に、 前記処理容器内の状態に 33 応じて変化する前記高周波電源の複数の電気的デ一夕を測定器で測定すると共に、 測定された複数の電気的データを用いた多変量解析を行って前記高周波電源の印 加状態を検出する処理装置の運転監視方法であって、
基準処理装置において、 処理容器内の状態に応じて前記高周波電源の印加状態 が安定化した時の前記複数の電気的デ一夕を、 基準用データとして測定する工程 と、
得られた複数の基準用データを用いて基準用の多変量解析を行う工程と、 監視すべき比較処理装置において、 前記複数の電気的データを比較用デ一夕と して装置始動後から径時的に測定する工程と、
得られた複数の比較用データを用いて比較用の多変量解析を行う工程と、 前記比較用の多変量解析の結果と前記基準用の多変量解析の結果とを比較して、 両者の差から、 前記比較処理装置における高周波電源の印加状態が前記処理容器 内の状態に応じて安定状態に達しか否かを判断する工程と
を備えたことを特徴とする処理装置の運転監視方法。
1 2 . 前記電気的データとして少なくとも、 基本波および高調波それそれの 電圧値、 電流値、 インピーダンスおよび位相角を用いる、 ことを特徴とする請求 項 1 1に記載の運転監視方法。
1 3 . 前記多変量解析として主成分分析を行う、 ことを特徴とする請求項 1 1に記載の運転監視方法。
1 4 . 前記主成分分析の結果として残差得点を用いる、 ことを特徴とする請 求項 1 3に記載の運転監視方法。
1 5 . 前記残差得点どうしの比較結果に基づいて、 処理装置における処理条 件および/または稼動条件を判断する、 ことを特徴とする請求項 1 4に記載の運 転監視方法。
1 6 . 処理装置において高周波電源から処理容器内の電極に高周波電力を印 加してプラズマを発生させて被処理体を処理する際に、 前記処理容器内の状態に 応じて変化する前記高周波電源の複数の電気的デ一夕を測定器で測定すると共に、 測定された複数の電気的データを用いた多変量解析を行って前記高周波電源の印 加状態を検出することで処理装置の異常を検出する方法であって、 34 正常な基準処理装置において、 処理容器内の状態に応じて前記高周波電源の印 加状態が安定化した時の前記複数の電気的データを、 基準用データとして測定す る工程と、
得られた複数の基準用デ一夕を用いて基準用の多変量解析を行う工程と、 · 異常を検出すべき比較処理装置において、 前記複数の電気的データを比較用デ
—夕として測定する工程と、
得られた複数の比較用データを用いて比較用の多変量解析を行う工程と、 前記比較用の多変量解析の結果と前記基準用の多変量解析の結果とを比較して、 両者の差から、 前記比較処理装置の異常を検出する工程と
を備えたことを特徴とする処理装置の異常検出方法。
1 7 . 前記電気的データとして少なくとも、 基本波および高調波それそれの 電圧値、 電流値、 インピーダンスおよび位相角を用いる、 ことを特徴とする請求 項 1 6に記載の処理装置の異常検出方法。
1 8 . 前記多変量解析として主成分分析を行う、 ことを特徴とする請求項 1 6に記載の処理装置の異常検出方法。
1 9 . 前記主成分分析の結果として残差得点を用いる、 ことを特徴とする請 求項 1 8に記載の処理装置の異常検出方法。
2 0 . 前記主成分分析によって得られた残差行列の成分に基づいて処理装置 の異常原因を分類する、 ことを特徴とする請求項 1 8に記載の処理装置の異常検 出方法。
PCT/JP2001/005758 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus Ceased WO2002003441A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001267913A AU2001267913A1 (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus
US10/332,011 US7054786B2 (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000201729A JP4570736B2 (ja) 2000-07-04 2000-07-04 運転状態の監視方法
JP2000-201731 2000-07-04
JP2000201731A JP4610021B2 (ja) 2000-07-04 2000-07-04 処理装置の運転方法及び処理装置の異常検出方法
JP2000-201729 2000-07-04

Publications (1)

Publication Number Publication Date
WO2002003441A1 true WO2002003441A1 (en) 2002-01-10

Family

ID=26595307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005758 Ceased WO2002003441A1 (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus

Country Status (5)

Country Link
US (1) US7054786B2 (ja)
CN (1) CN1197130C (ja)
AU (1) AU2001267913A1 (ja)
TW (1) TW499702B (ja)
WO (1) WO2002003441A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098677A1 (en) * 2002-05-16 2003-11-27 Tokyo Electron Limited Method of predicting processing device condition or processed result
WO2003105210A1 (ja) * 2002-06-05 2003-12-18 東京エレクトロン株式会社 処理装置の多変量解析モデル式作成方法、処理装置用の多変量解析方法、処理装置の制御装置、処理装置の制御システム
US7010374B2 (en) 2003-03-04 2006-03-07 Hitachi High-Technologies Corporation Method for controlling semiconductor processing apparatus
CN1295757C (zh) * 2003-03-04 2007-01-17 株式会社日立高新技术 半导体处理装置的控制方法
US7505879B2 (en) 2002-06-05 2009-03-17 Tokyo Electron Limited Method for generating multivariate analysis model expression for processing apparatus, method for executing multivariate analysis of processing apparatus, control device of processing apparatus and control system for processing apparatus
CN103943452A (zh) * 2014-04-28 2014-07-23 南方科技大学 一种等离子体处理的工艺控制方法及装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047885A (ja) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd 半導体製造装置のモニタリングシステム及びモニタリング方法
TWI264043B (en) * 2002-10-01 2006-10-11 Tokyo Electron Ltd Method and system for analyzing data from a plasma process
JP2004335841A (ja) * 2003-05-09 2004-11-25 Tokyo Electron Ltd プラズマ処理装置の予測装置及び予測方法
JP4342921B2 (ja) * 2003-12-09 2009-10-14 東京エレクトロン株式会社 基板処理装置の制御方法及び基板処理装置
US8676538B2 (en) * 2004-11-02 2014-03-18 Advanced Micro Devices, Inc. Adjusting weighting of a parameter relating to fault detection based on a detected fault
JP4972277B2 (ja) * 2004-11-10 2012-07-11 東京エレクトロン株式会社 基板処理装置の復帰方法、該装置の復帰プログラム、及び基板処理装置
US7231321B2 (en) * 2004-11-10 2007-06-12 Tokyo Electron Limited Method of resetting substrate processing apparatus, storage medium storing program for implementing the method, and substrate processing apparatus
JP4569956B2 (ja) * 2005-01-24 2010-10-27 東京エレクトロン株式会社 基板処理装置の復旧処理方法,基板処理装置,プログラム
DE112007002244T5 (de) * 2006-09-28 2009-07-30 Mitsubishi Electric Corp. Fehlerdetektionsvorrichtung, Fehlerdetektionsverfahren und Fehlerdetektionsprogramm
CN101330030B (zh) * 2007-06-21 2010-09-29 中芯国际集成电路制造(上海)有限公司 检测数据中异常点的去除方法
WO2015029777A1 (ja) * 2013-08-28 2015-03-05 堺ディスプレイプロダクト株式会社 プラズマ処理装置及びプラズマ処理装置の監視方法
GB2535456A (en) 2015-02-12 2016-08-24 Edwards Ltd Processing tool monitoring
JP6351862B2 (ja) 2016-01-13 2018-07-04 三菱電機株式会社 運転状態分類装置
JP6676020B2 (ja) 2017-09-20 2020-04-08 株式会社日立ハイテク プラズマ処理装置及びプラズマ処理装置状態予測方法
JP6914211B2 (ja) 2018-01-30 2021-08-04 株式会社日立ハイテク プラズマ処理装置及び状態予測装置
JP7029362B2 (ja) * 2018-08-16 2022-03-03 三菱重工業株式会社 異常検出装置、異常検出方法、及びプログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660211A2 (en) * 1993-12-10 1995-06-28 Eastman Kodak Company Method of controlling a manufacturing process

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691642A (en) * 1995-07-28 1997-11-25 Trielectrix Method and apparatus for characterizing a plasma using broadband microwave spectroscopic measurements
US5658423A (en) * 1995-11-27 1997-08-19 International Business Machines Corporation Monitoring and controlling plasma processes via optical emission using principal component analysis
US6351683B1 (en) * 1997-09-17 2002-02-26 Tokyo Electron Limited System and method for monitoring and controlling gas plasma processes
US6341257B1 (en) * 1999-03-04 2002-01-22 Sandia Corporation Hybrid least squares multivariate spectral analysis methods
US6442445B1 (en) * 1999-03-19 2002-08-27 International Business Machines Corporation, User configurable multivariate time series reduction tool control method
US6368975B1 (en) * 1999-07-07 2002-04-09 Applied Materials, Inc. Method and apparatus for monitoring a process by employing principal component analysis
EP1200982A1 (de) * 1999-08-12 2002-05-02 Infineon Technologies AG Verfahren zur überwachung eines herstellungsprozesses zur bearbeitung eines substrats in der halbleiterfertigung
US6582618B1 (en) * 1999-09-08 2003-06-24 Advanced Micro Devices, Inc. Method of determining etch endpoint using principal components analysis of optical emission spectra
US6419846B1 (en) * 1999-09-08 2002-07-16 Advanced Micro Devices, Inc. Determining endpoint in etching processes using principal components analysis of optical emission spectra
US6413867B1 (en) * 1999-12-23 2002-07-02 Applied Materials, Inc. Film thickness control using spectral interferometry
EP1252652A1 (de) * 2000-01-25 2002-10-30 Infineon Technologies AG Verfahren zur überwachung eines herstellungsprozesses
AU2001247336B2 (en) * 2000-03-10 2006-02-02 Smiths Detection, Inc. Control for an industrial process using one or more multidimensional variables
JP4754757B2 (ja) * 2000-03-30 2011-08-24 東京エレクトロン株式会社 基板のプラズマ処理を調節するための方法、プラズマ処理システム、及び、電極組体
WO2002003256A1 (en) * 2000-07-05 2002-01-10 Camo, Inc. Method and system for the dynamic analysis of data
JP3634734B2 (ja) * 2000-09-22 2005-03-30 株式会社日立製作所 プラズマ処理装置および処理方法
US6627463B1 (en) * 2000-10-19 2003-09-30 Applied Materials, Inc. Situ measurement of film nitridation using optical emission spectroscopy
US6789052B1 (en) * 2000-10-24 2004-09-07 Advanced Micro Devices, Inc. Method of using control models for data compression
US6549864B1 (en) * 2001-08-13 2003-04-15 General Electric Company Multivariate statistical process analysis systems and methods for the production of melt polycarbonate
US6616759B2 (en) * 2001-09-06 2003-09-09 Hitachi, Ltd. Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system therefor
US6723574B1 (en) * 2002-09-26 2004-04-20 Lam Research Corporation Method for quantifying uniformity patterns and including expert knowledge for tool development and control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660211A2 (en) * 1993-12-10 1995-06-28 Eastman Kodak Company Method of controlling a manufacturing process

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE S.F. ET AL.: "RTSPC: A software utility for real-time SPC and tool data analysis", IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, vol. 8, no. 1, 1995, pages 17 - 25, XP002944880 *
MCDONALD C.J.: "The evolution of intel's copy EXACTLY! Technology transfer method", INTEL TECHNOLOGY JOURNAL Q4'98, 1998, XP002944881, Retrieved from the Internet <URL:http://developer.intel.com/technology/itj/q41998/articles/art_2.htm> *
WISE B.M. ET AL.: "Development and benchmarking of multivariate statisitcal process control tools for a semiconductor etch process: impact of measurement selection and data treatment on sensitivity", PROC. IFAC SYMP. ON FAULT DETECTION, SUPERVISION AND SAFETY FOR TECHNICAL PROCESSES, vol. 1, 1997, pages 35 - 42, XP002944879 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098677A1 (en) * 2002-05-16 2003-11-27 Tokyo Electron Limited Method of predicting processing device condition or processed result
US7689028B2 (en) 2002-05-16 2010-03-30 Tokyo Electron Limited Method and apparatus for evaluating processing apparatus status and predicting processing result
WO2003105210A1 (ja) * 2002-06-05 2003-12-18 東京エレクトロン株式会社 処理装置の多変量解析モデル式作成方法、処理装置用の多変量解析方法、処理装置の制御装置、処理装置の制御システム
CN100426471C (zh) * 2002-06-05 2008-10-15 东京毅力科创株式会社 处理装置用的多变量解析方法、处理装置的控制装置、处理装置的控制系统
US7505879B2 (en) 2002-06-05 2009-03-17 Tokyo Electron Limited Method for generating multivariate analysis model expression for processing apparatus, method for executing multivariate analysis of processing apparatus, control device of processing apparatus and control system for processing apparatus
US7010374B2 (en) 2003-03-04 2006-03-07 Hitachi High-Technologies Corporation Method for controlling semiconductor processing apparatus
US7107115B2 (en) 2003-03-04 2006-09-12 Hitachi High-Technologies Corporation Method for controlling semiconductor processing apparatus
CN1295757C (zh) * 2003-03-04 2007-01-17 株式会社日立高新技术 半导体处理装置的控制方法
CN103943452A (zh) * 2014-04-28 2014-07-23 南方科技大学 一种等离子体处理的工艺控制方法及装置

Also Published As

Publication number Publication date
US7054786B2 (en) 2006-05-30
US20040254761A1 (en) 2004-12-16
TW499702B (en) 2002-08-21
AU2001267913A1 (en) 2002-01-14
CN1197130C (zh) 2005-04-13
CN1451174A (zh) 2003-10-22

Similar Documents

Publication Publication Date Title
WO2002003441A1 (en) Operation monitoring method for treatment apparatus
JP3630931B2 (ja) プラズマ処理装置、プロセスモニタ方法及び半導体装置の製造方法
US6197116B1 (en) Plasma processing system
JP4464276B2 (ja) プラズマ処理方法及びプラズマ処理装置
JP4456224B2 (ja) 半導体デバイス製造プロセスの処理状況をモニタするための方法及び装置
JP4317701B2 (ja) 処理結果の予測方法及び予測装置
CN1299226C (zh) 用于监视和控制气体等离子体处理的系统和方法
JP4995419B2 (ja) 材料プロセスツール及びパフォーマンスデータを用いてプロセスを制御する方法及びシステム
US7263463B2 (en) Prediction apparatus and method for a plasma processing apparatus
US20050154482A1 (en) Plasma processing method and apparatus
JP4570736B2 (ja) 運転状態の監視方法
WO2002003440A1 (en) Method for predicting consumption of consumable part, method for predicting deposited-film thickness, and plasma processor
JP2004119753A (ja) エッチング処理装置およびエッチング処理方法
JP2004349419A (ja) プラズマ処理装置の異常原因判定方法及び異常原因判定装置
JP4610021B2 (ja) 処理装置の運転方法及び処理装置の異常検出方法
US7630064B2 (en) Prediction method and apparatus for substrate processing apparatus
JP4220378B2 (ja) 処理結果の予測方法および処理装置
KR20070020226A (ko) V-i프로브 진단을 이용한 플라즈마 에칭 종료점 검출방법
JP2003045846A (ja) 半導体製造装置の監視方法及びその制御方法
JP3959318B2 (ja) プラズマリーク監視方法,プラズマ処理装置,プラズマ処理方法,およびコンピュータプログラム
WO2003077303A1 (fr) Procede de traitement par plasma, methode de detection de fin de stabilisation et dispositif de traitement par plasma
US11721528B2 (en) Plasma processing apparatus and control method
JP4675266B2 (ja) 基板処理装置の処理結果の予測方法及び予測装置
JPH07258853A (ja) プロセスの状態を識別する方法および装置
JP2016009720A (ja) 推定方法及びプラズマ処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 018122485

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10332011

Country of ref document: US

122 Ep: pct application non-entry in european phase