[go: up one dir, main page]

TWM630888U - Family Member Induction Device Based on Search Behavior - Google Patents

Family Member Induction Device Based on Search Behavior Download PDF

Info

Publication number
TWM630888U
TWM630888U TW110207143U TW110207143U TWM630888U TW M630888 U TWM630888 U TW M630888U TW 110207143 U TW110207143 U TW 110207143U TW 110207143 U TW110207143 U TW 110207143U TW M630888 U TWM630888 U TW M630888U
Authority
TW
Taiwan
Prior art keywords
customer
search condition
code
database
objects
Prior art date
Application number
TW110207143U
Other languages
Chinese (zh)
Inventor
劉宏明
Original Assignee
信義房屋股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信義房屋股份有限公司 filed Critical 信義房屋股份有限公司
Priority to TW110207143U priority Critical patent/TWM630888U/en
Publication of TWM630888U publication Critical patent/TWM630888U/en

Links

Images

Landscapes

  • Details Of Garments (AREA)
  • Manipulator (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一種基於搜尋行為的家族成員歸納裝置包含物件資料庫、客戶習慣資料庫、資料收集模組、處理模組、傳送模組。處理模組基於該客戶代碼所發出的該第一搜尋條件中複數個組成特徵,計算出該家族相對的家族成員清單,並透過傳送模組傳送給客戶端裝置。 A family member induction device based on search behavior includes an object database, a customer habit database, a data collection module, a processing module, and a transmission module. The processing module calculates the relative family member list of the family based on the plurality of constituent features in the first search condition sent by the client code, and transmits the list to the client device through the transmission module.

Description

基於搜尋行為的家族成員歸納裝置 Family Member Induction Device Based on Search Behavior

本揭露是關於一顯示處理裝置,且特別是關於一基於搜尋行為的家族成員歸納裝置。 The present disclosure relates to a display processing device, and more particularly, to a search behavior-based family member induction device.

根據購屋意向調查顯示民眾在意於住家周邊的便利性。欲購屋者會考量的物件需求包含:鄰近生活消費商圈、鄰近公園綠地、鄰近捷運/高鐵/車站等。具有良好物件的房屋物件能夠增加住屋者的生活便利性。 According to the survey of home purchase intentions, people are concerned about the convenience of their homes. The property needs that buyers will consider include: proximity to consumer shopping districts, proximity to parks and green spaces, proximity to MRT/high-speed rail/station, etc. Housing features with good features can increase the convenience of living for the occupants.

現今,網路普及,因此民眾習慣於上網搜尋所欲的資訊。對於房地產物件的供給,有些房地產物件提供者會在網站上呈現物件的照片、格局與房屋資訊。有些房地產物件提供者會利用地圖呈現該物件之周邊的學區、醫院等物件。 Nowadays, with the popularity of the Internet, people are accustomed to searching for the desired information on the Internet. For the supply of real estate objects, some real estate object providers will present photos, layouts and housing information of the objects on their websites. Some real estate object providers will use the map to present the surrounding school districts, hospitals and other objects.

為了提升用戶在使用購屋網站時的便利性,大多數購屋網站會提供用戶收藏夾的功能,用戶在流覽和尋找房屋物件的過程中,通過在物件顯示頁面點擊「收藏」按鈕或類似功能按鈕來進行收藏操作,即可將自己喜歡的物件添加到自己的收藏夾中。此後,用戶可以利用自己的收藏夾,對其喜歡或感興趣的物件進行日常查閱、追蹤、比較或購買。 In order to improve the convenience of users when using home-buying websites, most home-buying websites will provide users with the function of favorites. During the process of browsing and searching for house objects, users can click the "Favorite" button or similar function button on the object display page. To do the collection operation, you can add your favorite objects to your favorites. After that, users can use their favorites to check, track, compare, or buy things they like or are interested in on a daily basis.

然而,在很多情況下,使用者只能先以大範 圍的搜尋出具有一定數量的物件,然後逐一看是否符合自己的需求,並納入收藏夾之中,但這樣查找物件的效率仍然過低,將會耗費許多時間與精神才找到具有同性質的物件(例如同樣都在台北市,都具有近醫院、近公園等等條件)。 However, in many cases, users can only Search around a certain number of objects, and then check whether they meet your needs and include them in your favorites, but the efficiency of finding objects in this way is still too low, and it will take a lot of time and effort to find objects of the same nature. (For example, they are all in Taipei City, and they are all close to hospitals, parks, etc.).

為了解決這些問題,進而衍生出各式各樣的物件推薦的機制,但這些推薦機制中往往都未將同屬同一個家族或家庭視為單一個體的存在,導致在設計推薦機制時往往都變得只考慮主導者他的意見。 In order to solve these problems, various object recommendation mechanisms have been derived, but these recommendation mechanisms often do not regard the same family or family as the existence of a single individual, which leads to changes in the design of recommendation mechanisms. Only the opinion of the leader must be taken into account.

為了解決物件太多,不知道從何挑選,本創作揭露的一目的在於提供一基於搜尋行為的家族成員歸納裝置。一種基於搜尋行為的家族成員歸納裝置包含物件資料庫、客戶習慣資料庫、資料收集模組、處理模組、傳送模組。處理模組基於該客戶代碼所發出的該第一搜尋條件中複數個組成特徵,計算出該家族相對的家族成員清單,並透過傳送模組傳送給客戶端裝置。 In order to solve the problem of having too many objects and not knowing where to choose, one purpose of the present invention is to provide a family member induction device based on search behavior. A family member induction device based on search behavior includes an object database, a customer habit database, a data collection module, a processing module, and a transmission module. The processing module calculates the relative family member list of the family based on the plurality of constituent features in the first search condition sent by the client code, and transmits the list to the client device through the transmission module.

10:物件展示系統 10: Object Display System

111、112、113、114:物件 111, 112, 113, 114: Objects

111A、112A、113A、114A:互動關係 111A, 112A, 113A, 114A: Interaction

111P、112P、113P、114P:組成特徵 111P, 112P, 113P, 114P: composition characteristics

121:額外物件 121: Extra Objects

121A:額外所在位置 121A: Extra location

121P:額外組成特徵 121P: Additional composition features

131:推薦物件 131: Recommended objects

131A:所在位置 131A: Location

131P:推薦組成特徵 131P: Recommended composition features

15:客戶代碼 15:Customer code

15P:客戶經常所在位置 15P: Where customers are often located

20:顯示系統 20: Display system

21:資料處理裝置 21: Data processing device

211:物件資料庫 211: Object Database

212:處理模組 212: Processing modules

2121:搜尋組件 2121: Search component

2122:地圖產生器組件 2122: Map Generator Component

2123:推薦組件 2123: Recommended Components

213:資料收集模組 213: Data Collection Module

22:客戶端裝置 22: Client Device

221:顯示螢幕 221: display screen

26:客戶習慣資料庫 26: Customer Habit Database

28:基於搜尋行為的家族成員歸納裝置 28: Family Member Induction Device Based on Search Behavior

31:傳送模組 31: Teleportation Module

91:使用者 91: User

D111、D112、D113、D114:物件標籤 D111, D112, D113, D114: Object Labels

D111A、D112A、D113A、D114A:活動範圍資料單元 D111A, D112A, D113A, D114A: Active Range Data Unit

D111A1、D112A1、D113A1、D114A1:屬性詞語 D111A1, D112A1, D113A1, D114A1: attribute words

D111A2、D112A2、D113A2、D114A2:數量字串 D111A2, D112A2, D113A2, D114A2: Quantity string

D111A3、D112A3、D113A3、D114A3:互動內容詞語 D111A3, D112A3, D113A3, D114A3: Interactive content words

D111H、D112H、D113H、D114H:標籤類別指示符 D111H, D112H, D113H, D114H: Label category indicator

D111P、D112P、D113P、D114P:位置資訊 D111P, D112P, D113P, D114P: Location Information

D121:額外物件標籤 D121: Extra Object Label

D121A:額外活動範圍資料單元 D121A: Additional Activity Area Data Element

D121A1:額外屬性詞語 D121A1: Additional attribute words

D121A2:額外數量字串 D121A2: Extra Quantity String

D121A3:額外互動內容詞語 D121A3: Additional Interactive Content Words

D121H:額外物件類別指示符 D121H: Extra object type indicator

D121P:額外位置資訊 D121P: Additional location information

D131:推薦物件標籤 D131: Recommended Object Label

D131A:實際距離資料單元 D131A: Actual Distance Data Unit

D131A1:推薦屬性詞語 D131A1: Recommended attribute words

D131A2:推薦數量字串 D131A2: Recommended quantity string

D131A3:推薦互動內容詞語 D131A3: Recommend interactive content words

D131H:推薦標籤類別指示符 D131H: Recommended Label Category Indicator

D131P:推薦位置資訊 D131P: Recommended location information

D15:房地產資料單元 D15: Real Estate Information Unit

D15H:房地產類別指示符 D15H: Real estate class indicator

D15P:房地產位置資訊 D15P: Real Estate Location Information

D1A:活動範圍資料單元 D1A: Activity Scope Data Unit

D5:地理資訊 D5: Geographic Information

D51:圖符資料 D51: Icon data

D52:地圖資料區塊 D52: Map Data Block

D53:第二地圖資料區塊 D53: Second map data block

D54:第三地圖資料區塊 D54: The third map data block

D55:第四地圖資料區塊 D55: Fourth map data block

D61:物件屬性圖像資料區塊 D61: Object attribute image data block

D62:物件屬性圖像資料區塊 D62: Object attribute image data block

DA1:第一物件標籤 DA1: first object label

DHA1、DHA2:物件類別指示符 DHA1, DHA2: Object class indicator

DL1:活動範圍值 DL1: Active range value

EA1、EA2、EA3、EA4:物件候選類別項目 EA1, EA2, EA3, EA4: Object candidate category items

EL1、EL2、EL3、EL4:候選距離項目 EL1, EL2, EL3, EL4: Candidate distance items

H111、H112、H113、H114:標籤類別 H111, H112, H113, H114: Label categories

HA1、HA2:物件類別 HA1, HA2: Object class

HB1:額外物件類別 HB1: Additional Object Type

HC1:推薦物件類別 HC1: Recommended Object Category

HD1:房地產類別 HD1: Real estate category

K111、K112、K113、K114:圖符 K111, K112, K113, K114: Icons

K121:圖符 K121: Icon

KA2:第二圖符 KA2: Second Icon

KA3:第三圖符 KA3: The third icon

KB3:第三圖符 KB3: Third Icon

KA4:第四圖符 KA4: Fourth Icon

L1:活動範圍半徑 L1: Active range radius

M1:地圖 M1: Map

M111P、M112P、M113P、M114P:標示位置 M111P, M112P, M113P, M114P: Marking position

M121P:額外標示位置 M121P: Additional marking position

M131P:推薦標示位置 M131P: Recommended marking position

M15P:房地產標示位置 M15P: Real estate marked location

M2:第二地圖 M2: Second map

M3:第三地圖 M3: The third map

M4:第四地圖 M4: Fourth map

M5:第五地圖 M5: Fifth Map

MA1:第一標示位置 MA1: The first marked position

MA2:第二標示位置 MA2: Second marked position

MA3:第三標示位置 MA3: The third marked position

MA4:第四標示位置 MA4: Fourth marked position

MA5:第五標示位置 MA5: Fifth marked position

MR1:特定地圖區域 MR1: specific map area

Q1:可選圖符 Q1: Optional Icons

R1:活動範圍 R1: Active range

S11:第一搜尋條件 S11: First search condition

S12:第二搜尋條件 S12: Second search condition

S13:第三搜尋條件 S13: Third search condition

S14:第四搜尋條件 S14: Fourth search condition

U1:畫面 U1: Screen

本揭露得藉由下列圖式之詳細說明,俾得更深入之瞭解: This disclosure may be better understood through the detailed description of the following figures:

第1圖:在本揭露各式各樣實施例中一顯示系統的示意圖。 FIG. 1 is a schematic diagram of a display system in various embodiments of the present disclosure.

第2圖:在本揭露各式各樣實施例中一物件展示系統的示意圖。 FIG. 2 is a schematic diagram of an object display system in various embodiments of the present disclosure.

第3圖:在第1圖中一物件資料庫的結構示意圖。 Figure 3: A schematic diagram of the structure of an object database in Figure 1.

第4圖:在本揭露各式各樣實施例中一地圖的示意圖。 Figure 4: A schematic diagram of a map in various embodiments of the present disclosure.

第5圖顯示本創作所提依據標籤類別的推薦裝置的具體實施例的分類示意圖。 FIG. 5 shows a schematic diagram of the classification of a specific embodiment of the recommendation device based on the tag category proposed in the present invention.

請參閱第1圖、第2圖和第3圖。第1圖為在本揭露各式各樣實施例中一顯示系統20的示意圖。第2圖為在本揭露各式各樣實施例中一物件展示系統10的示意圖。第3圖為在第1圖中一客戶習慣資料庫26中物件資料庫的結構示意圖。如第1圖所示,該顯示系統20包含一資料處理裝置21、該物件資料庫211、客戶習慣資料庫26及耦合於該資料處理裝置21的一客戶端裝置22。該資料處理裝置21包含一物件資料庫211、處理模組212、及耦合於該處理模組212的一資料收集模組213。該客戶端裝置22包含一顯示螢幕221。例如,該資料收集模組213和該客戶端裝置22之間具有一傳送模組31,且該傳送模組31耦合於其間。 See Figures 1, 2 and 3. FIG. 1 is a schematic diagram of a display system 20 in various embodiments of the present disclosure. FIG. 2 is a schematic diagram of an object display system 10 in various embodiments of the present disclosure. FIG. 3 is a schematic diagram of the structure of the object database in the customer habit database 26 in FIG. 1 . As shown in FIG. 1 , the display system 20 includes a data processing device 21 , the object database 211 , a customer habit database 26 , and a client device 22 coupled to the data processing device 21 . The data processing device 21 includes an object database 211 , a processing module 212 , and a data collection module 213 coupled to the processing module 212 . The client device 22 includes a display screen 221 . For example, there is a transmission module 31 between the data collection module 213 and the client device 22, and the transmission module 31 is coupled therebetween.

如第2圖所示,該物件展示系統10包含複數個物件111、112、113與114。例如,該物件展示系統10可能更包含至少一額外物件121、一推薦物件131和一客戶代碼15。客戶代碼15和該複數個物件111、112、113、114之間分別具有複數個互動關係111A、112A、113A與114A。該複數個物件111、112、113、114分別具有複數個組成特徵111P、112P、113P與114P。該額外物件121具有一額外 所在位置121A和一額外組成特徵121P。該推薦物件131具有一所在位置131A和一推薦組成特徵131P。該客戶代碼15具有一房地產客戶經常所在位置15P。該處理模組212計算出落在所發出的該第一搜尋條件之內的該複數個物件與該客戶經常所在位置之間的一實際距離。 As shown in FIG. 2 , the object display system 10 includes a plurality of objects 111 , 112 , 113 and 114 . For example, the object display system 10 may further include at least one additional object 121 , a recommended object 131 and a customer code 15 . There are a plurality of interactive relationships 111A, 112A, 113A and 114A between the client code 15 and the plurality of objects 111 , 112 , 113 and 114 respectively. The plurality of objects 111 , 112 , 113 and 114 respectively have a plurality of constituent features 111P, 112P, 113P and 114P. The extra object 121 has an extra Location 121A and an additional component feature 121P. The recommended object 131 has a location 131A and a recommended composition feature 131P. The customer code 15 has a frequent location 15P for real estate customers. The processing module 212 calculates an actual distance between the plurality of objects within the issued first search condition and the location where the customer is often located.

該複數個物件111、112、113與114分別屬於複數個標籤類別H111、H112、H113與H114,該複數個標籤類別H111、H112、H113與H114的每一類別是複數個物件類別HA1與HA2的其中之一。該額外物件121屬於一額外物件類別HB1,該額外物件類別HB1不同於該複數個物件類別HA1與HA2的任何一個。該推薦物件121屬於一推薦物件類別HC1。 The plurality of objects 111, 112, 113 and 114 belong to a plurality of label classes H111, H112, H113 and H114, respectively, and each class of the plurality of label classes H111, H112, H113 and H114 is of the plurality of object classes HA1 and HA2 one of them. The extra object 121 belongs to an extra object class HB1 which is different from any one of the plurality of object classes HA1 and HA2. The recommended object 121 belongs to a recommended object category HC1.

例如,該複數個物件類別HA1與HA2分別是醫院類別與商店類別,且該額外物件類別HB1是餐廳類別。例如,二個物件112與113分別屬於該醫院類別與該商店類別,如此該客戶代碼15的房地產客戶經常所在位置15P與該物件112的該實際距離112A、與該物件113的該實際距離113A分別是10公尺與100公尺。 For example, the plurality of object categories HA1 and HA2 are a hospital category and a store category, respectively, and the additional object category HB1 is a restaurant category. For example, two objects 112 and 113 belong to the hospital category and the store category, respectively, so the real estate customer with the customer code 15 is often located at the actual distance 112A and the actual distance 112A of the object 112 and the object 113 113A respectively. 10 meters and 100 meters.

客戶習慣資料庫26中的客戶習慣資料庫,該客戶習慣資料庫用以儲存複數筆客戶習慣資料,每筆客戶習慣資料主要包含客戶代碼、客戶經常所在位置以及第一搜尋條件S11或第二搜尋條件S12,其中該第一搜尋條件S11包含該客戶代碼、以及該客戶代碼的複數個組成特徵,而該組成特徵主要是由這其中,該組成特徵包括選自由該 房地產物件的簡稱、價格、社區名、地址、樓層、建物登記面積、土地登記面積、每單位面積單價、類型、格局、屋齡、車位、座向、電梯、管理費、格局圖、生活機能。複數個組成特徵中每個組成特徵具有一優先性,具有越高的優先性就越會優先比較高度重疊性,而影響到家族成員清單中所呈現的結果。 The customer habit database in the customer habit database 26, the customer habit database is used to store multiple pieces of customer habit data, each customer habit data mainly includes the customer code, the customer's usual location, and the first search condition S11 or the second search Condition S12, wherein the first search condition S11 includes the customer code and a plurality of constituent features of the customer code, and the constituent features are mainly composed of the constituent features selected from the Abbreviation, price, community name, address, floor, building registration area, land registration area, unit price per unit area, type, layout, age of house, parking space, seat orientation, elevator, management fee, layout plan, and living functions. Each of the plurality of constituent features has a priority, and the higher the priority is, the higher the overlap will be, and the results presented in the family member list will be affected.

該資料收集模組213在不同時間接收該第一搜尋條件S11和該第二搜尋條件S12,並在不同時間將該第二地圖資料區塊D53和該第三地圖資料區塊D54往該客戶端裝置22傳輸,以便該客戶端裝置22在不同時間在該顯示螢幕221上顯示該第二地圖M2和該第三地圖M3,並將該第一搜尋條件S11和該第二搜尋條件S12儲存至該客戶習慣資料庫。例如,該資料收集模組213經由該傳送模組31耦合於該客戶端裝置22。 The data collection module 213 receives the first search condition S11 and the second search condition S12 at different times, and sends the second map data block D53 and the third map data block D54 to the client at different times The device 22 transmits, so that the client device 22 displays the second map M2 and the third map M3 on the display screen 221 at different times, and stores the first search condition S11 and the second search condition S12 in the Database of customer habits. For example, the data collection module 213 is coupled to the client device 22 via the transmission module 31 .

在一些實施例中,使用者91曾經針對物件111與114發出過搜尋記錄(即第一搜尋條件),同時使用者91曾經路過物件112與113附近的特殊裝置,而可以發現使用者91所使用的裝置的存在(即第二搜尋條件),並透過上述這幾個地理位置,可以在地圖上圍繞出活動範圍R1。換言之,如果將來使用者91提出購屋需求時,他興趣的物件落在活動範圍R1之中,系統便會註記該使用者91為在地客。只是,系統可以有彈性的向外擴張活動範圍R1所涵蓋到的範圍,讓在地客判斷更準確一點,因為有可能只是剛好使用者91在系統所留下的習慣軌跡資訊不夠多,導致 系統誤判。相對地,使用者91興趣的物件落沒友在活動範圍R1之中,系統便會註記該使用者91為非在地客。 In some embodiments, the user 91 has sent a search record (ie, the first search condition) for the objects 111 and 114, and the user 91 has passed by the special devices near the objects 112 and 113, and can find out what the user 91 uses The existence of the device (ie, the second search condition), and through the above-mentioned several geographic locations, the activity range R1 can be surrounded on the map. In other words, if the object of interest to the user 91 falls within the activity range R1 when the user 91 requests a house in the future, the system will register the user 91 as a local guest. However, the system can flexibly expand the range covered by the activity range R1 outwards, so that local guests can judge more accurately, because it may just happen that the habitual trajectory information left by the user 91 in the system is not enough, resulting in System misjudged. On the other hand, if the object that the user 91 is interested in falls within the activity range R1, the system will mark the user 91 as a non-local guest.

只是,有時候該使用者91只是偶而為之,跑到他不是經常活動的區域,對此該處理模組212先剔除該客戶代碼所發出的該第一搜尋條件S11中複數個組成特徵或該第二搜尋條件S12中的該第二地理位置之中超過預定偏離值,才計算出該客戶代碼相對的活動範圍。相對地,如果數據量太少時,也有可能會讓系統誤判,而需要設立門檻值,因此該處理模組212先確認該客戶代碼所發出的該第一搜尋條件S11中複數個組成特徵或該第二搜尋條件S12中的該第二地理位置超過預定數量,才計算出該客戶代碼相對的活動範圍。 However, sometimes the user 91 only does it occasionally, and runs to the area where he is not often active, and the processing module 212 first removes the plurality of constituent features or the first search condition S11 issued by the client code. Only when the second geographic location in the second search condition S12 exceeds a predetermined deviation value, the relative activity range of the client code is calculated. Correspondingly, if the amount of data is too small, the system may misjudge, and a threshold value needs to be set. Therefore, the processing module 212 first confirms the plurality of constituent features or the The relative activity range of the client code is calculated only when the second geographic location in the second search condition S12 exceeds a predetermined number.

除此之外,處理模組212在電子地圖上可以展示出使用者91曾經有互動過的物件的相關資訊,並透過傳送模組31將該活動範圍、以及該第二地圖傳送給該客戶端裝置22。具體來說,處理模組212還會篩選出落在所發出的該第一搜尋條件之內的該複數個物件,進而產生代表一第二地圖的該第二地圖資料區塊,其中該第二地圖是在該地圖上的該複數個標示位置分別呈現複數個圖符的地圖,且該複數個圖符分別標示該複數個物件。 In addition, the processing module 212 can display the relevant information of the objects that the user 91 has interacted with on the electronic map, and transmit the activity range and the second map to the client through the transmission module 31 device 22. Specifically, the processing module 212 will also filter out the plurality of objects that fall within the sent first search condition, and then generate the second map data block representing a second map, wherein the second The map is a map in which a plurality of icons are respectively displayed at the plurality of marked positions on the map, and the plurality of icons respectively indicate the plurality of objects.

在第1圖中,該資料收集模組213接收來自一使用者91的一第一搜尋條件S11或一第二搜尋條件S12。該第一搜尋條件S11包含該客戶代碼、以及該客戶代碼的複數個組成特徵,而該組成特徵主要是針對該物件111、112、 113與114所發出該組成特徵主要是針對該物件所發出。 In FIG. 1 , the data collection module 213 receives a first search condition S11 or a second search condition S12 from a user 91 . The first search condition S11 includes the customer code and a plurality of constituent features of the customer code, and the constituent features are mainly for the objects 111, 112, The composition features issued by 113 and 114 are mainly issued for the object.

處理模組212基於該客戶代碼所發出的該第一搜尋條件中複數個組成特徵或該第二搜尋條件的該第二地理位置,歸納出相對於該客戶代碼的習慣標籤,以獲取每一個客戶代碼的該組成特徵,並依據複數個客戶代碼的該習慣標籤彼此之間的近似程度,而計算出該家族相對的家族成員清單。 The processing module 212 summarizes a custom tag relative to the client code based on a plurality of constituent features in the first search condition sent by the client code or the second geographic location of the second search condition to obtain each client The composition feature of the code is calculated, and the relative family member list of the family is calculated according to the similarity between the custom tags of the plurality of client codes.

換言之,就是透過分析、歸納第一搜尋條件中複數個組成特徵而產生對於該客戶代碼相對的需求進行判斷,並且將所謂的購屋需求用習慣標籤來簡化,同時習慣標籤與物件標籤其實是採用相當的模式進行彙整,如此而可依據複數個客戶代碼的該習慣標籤彼此之間的近似程度,同時還可以再考慮該客戶代碼的房地產客戶經常所在位置與該物件的該實際距離,以進行家族成員的歸納,因為同一個家族成員除了習慣標籤會有雷同性以外,對於感興趣的物件在地理位置上也會有相關性。 In other words, it is to judge the relative demand of the customer code by analyzing and summarizing the plurality of constituent features in the first search condition, and to simplify the so-called house purchase demand with the custom label, and the custom label and the object label are actually equivalent. In this way, according to the similarity of the customary tags of a plurality of customer codes to each other, and at the same time, the actual distance between the real estate customer of the customer code and the object can also be considered for the family members. Because the same family members will have similarities in habitual labels, they will also be geographically related to objects of interest.

處理模組212基於該客戶代碼所發出的該第一搜尋條件中複數個組成特徵,計算出該家族相對的家族成員清單。更具體來說,處理模組依據如第5圖所示之標籤類別與對應主題對照表計算出該家族成員清單。 The processing module 212 calculates a relative family member list of the family based on the plurality of constituent features in the first search condition sent by the client code. More specifically, the processing module calculates the family member list according to the label category and the corresponding subject comparison table as shown in FIG. 5 .

為了實現這個目的,系統需要先建立物件資料庫,而該物件資料庫中每個物件資料均具有物件索引碼、以及該物件索引碼所屬的複數個組成特徵。 In order to achieve this purpose, the system needs to create an object database first, and each object data in the object database has an object index code and a plurality of constituent features to which the object index code belongs.

物件資料庫211儲存複數標籤類別資料,每 個標籤類別資料均具有物件索引碼、以及該物件;索引碼所屬的複數個組成特徵,而每個組成特徵主要是以單一組成特徵或是多個組成特徵所定義。舉例來說,組成特徵為三代同堂,相對的組成特徵則為換大房(3房以上以及30坪以上),其餘的對應關係則例如第5圖所示。 The object database 211 stores plural tag type data, each Each tag type data has an object index code, and a plurality of constituent features to which the object; index code belongs, and each constituent feature is mainly defined by a single constituent feature or a plurality of constituent features. For example, the composition feature is that three generations live in the same house, and the relative composition feature is a larger room (more than 3 bedrooms and more than 30 pings), and the rest of the correspondence is shown in Figure 5.

處理模組212會利用一個權重計算公式,而針對該客戶代碼所發出的該第一搜尋條件中複數個組成特徵,而獲得主要影響物件以及其相對的標籤類別,再依據該標籤類別的該組成特徵中以單一組成特徵或是多個組成特徵所定義的內容,找出條件互相符合之複數不動產資訊,而產生包含特定數量的複數不動產資訊之家族成員清單。舉例來說,如果主要影響標籤類別為三代同堂(例如適合三代人一起去的物件,例如IKEA傢俱店),處理模組212則以組成特徵3房以上以及30坪以上在物件資料庫211做搜尋。如此,使用者只需簡單的選擇特定物件,即可讓系統搜尋出相對的物件,以供挑選。 The processing module 212 uses a weight calculation formula to obtain the main influence object and its relative label type according to the plurality of constituent features in the first search condition issued by the client code, and then according to the composition of the label class From the content defined by a single component feature or a plurality of component features in the features, find out the plural real estate information that meet the conditions, and generate a family member list including a specific number of plural real estate information. For example, if the main impact tag category is three generations living in the same house (for example, an object suitable for three generations to go together, such as an IKEA furniture store), the processing module 212 uses the composition features of 3 rooms or more and 30 ping or more in the object database 211. search. In this way, the user only needs to simply select a specific object, and the system can search for the corresponding object for selection.

為了收集更多有關於使用者91活動資訊,系統亦可以在特定的實體位置中放置特殊裝置,而可以發現使用者91所使用的裝置的存在,例如一但偵測到手機WIFI訊號即進行記錄,也就是說,使用者91也有可能在被動的狀態下發出第二搜尋條件S12。該第二搜尋條件S12指示客戶代碼、以及該客戶代碼的一第二地理位置(也就是上述特殊裝置所在位置)。 In order to collect more information about the activities of the user 91, the system can also place a special device in a specific physical location, so as to detect the existence of the device used by the user 91, for example, once the mobile phone WIFI signal is detected, it will be recorded. , that is, the user 91 may also issue the second search condition S12 in a passive state. The second search condition S12 indicates the customer code and a second geographic location of the customer code (ie, the location of the above-mentioned special device).

在一些實施例中,該物件展示系統10更包 含一活動範圍R1。該活動範圍R1以該客戶代碼15為中心,並具有以該客戶代碼15為中心算起的一活動範圍半徑L1。該活動範圍半徑L1指示相關於該客戶代碼15的該活動範圍R1。 In some embodiments, the object display system 10 further includes Contains an activity range R1. The activity range R1 is centered on the customer code 15 and has an activity range radius L1 calculated from the customer code 15 as the center. The active range radius L1 indicates the active range R1 with respect to the client code 15 .

此外,該客戶代碼15與該複數個物件111、112、113與114之間的一實際距離,也可以依據街道巷弄的距離資訊,所加總出的步行距離來表示。 In addition, an actual distance between the customer code 15 and the plurality of objects 111 , 112 , 113 and 114 can also be represented by a total walking distance based on the distance information of streets and lanes.

如第1圖和第3圖所示,該客戶習慣資料庫26中的物件資料庫包含地理資訊D5、及分別表示該複數個物件111、112、113與114的複數個物件標籤D111、D112、D113與D114,可能更包含表示該至少一額外物件121的至少一額外物件標籤D121,可能更包含表示該推薦物件131的一推薦物件標籤D131,並可能更包含表示該客戶代碼15的一房地產資料單元D15。 As shown in FIG. 1 and FIG. 3, the object database in the customer habit database 26 includes geographic information D5, and a plurality of object tags D111, D112, D113 and D114 may further include at least one additional object label D121 indicating the at least one additional object 121 , may further include a recommended object label D131 indicating the recommended object 131 , and may further include a real estate data indicating the customer code 15 Unit D15.

在第3圖中,該複數個物件標籤D111、D112、D113與D114分別包含代表該組成特徵111P、112P、113P與114P的第一複數個位置資訊D111P、D112P、D113P與D114P、分別指示該複數個標籤類別H111、H112、H113與H114的複數個標籤類別指示符D111H、D112H、D113H與D114H、和分別表示該複數個互動關係111A、112A、113A與114A的複數個活動範圍資料單元D111A、D112A、D113A與D114A。 In Figure 3, the plurality of object labels D111, D112, D113 and D114 respectively include a first plurality of position information D111P, D112P, D113P and D114P representing the constituent features 111P, 112P, 113P and 114P, respectively indicating the plurality of A plurality of label class indicators D111H, D112H, D113H and D114H of label classes H111, H112, H113 and H114, and a plurality of active range data units D111A and D112A respectively representing the plurality of interaction relationships 111A, 112A, 113A and 114A , D113A and D114A.

該額外物件標籤D121包含代表該額外組成特徵121P的一額外位置資訊D121P、指示該額外物件類別 HB1的一額外物件類別指示符D121H、和表示該額外所在位置121A的一額外活動範圍資料單元D121A。該推薦物件標籤D131包含代表該推薦組成特徵131P的一推薦位置資訊D131P、指示該推薦物件類別HC1的一推薦標籤類別指示符D131H、和表示該所在位置131A的一實際距離資料單元D131A。該房地產資料單元D15包含代表該房地產客戶經常所在位置15P的一房地產位置資訊D15P、和指示該房地產類別HD1的一房地產類別指示符D15H。 The extra object label D121 includes an extra position information D121P representing the extra composition feature 121P, indicating the extra object type An extra object type indicator D121H of HB1, and an extra active range data element D121A representing the extra location 121A. The recommended object label D131 includes a recommended location information D131P representing the recommended composition feature 131P, a recommended label type indicator D131H indicating the recommended object type HC1, and an actual distance data unit D131A representing the location 131A. The real estate data unit D15 includes a real estate location information D15P representing the frequent location 15P of the real estate customer, and a real estate type indicator D15H indicating the real estate type HD1.

如第2圖和第3圖所示,在第2圖中的該複數個互動關係111A、112A、113A與114A分別由複數個屬性詞語D111A1、D112A1、D113A1與D114A1所表示,並分別以形成與該複數個互動關係111A、112A、113A與114A分別對應的複數個數量、和分別對應於該複數個互動關係111A、112A、113A與114A的複數個互動內容。 As shown in Fig. 2 and Fig. 3, the plurality of interactive relationships 111A, 112A, 113A and 114A in Fig. 2 are respectively represented by a plurality of attribute words D111A1, D112A1, D113A1 and D114A1, and are respectively formed with A plurality of numbers corresponding to the plurality of interactive relationships 111A, 112A, 113A and 114A respectively, and a plurality of interactive contents corresponding to the plurality of interactive relationships 111A, 112A, 113A and 114A respectively.

請參考第4圖,該第二搜尋條件S12指示選定在該複數個圖符K111、K112、K113與K114中的一第二圖符KA2(比如圖符K112),該第二圖符KA2位於該第二地圖M2中的一第一標示位置MA1(比如標示位置M112P),並對應於在該複數個物件標籤D111、D112、D113與D114中的一第一物件標籤DA1(比如物件標籤D112),且該第二地圖M2具有對應於該第一標示位置MA1的一第二標示位置MA2。 Please refer to FIG. 4 , the second search condition S12 indicates that a second icon KA2 (such as the icon K112 ) is selected among the plurality of icons K111 , K112 , K113 and K114 , and the second icon KA2 is located in the A first marked position MA1 (eg marked position M112P) in the second map M2 corresponds to a first object label DA1 (eg, object label D112) in the plurality of object labels D111, D112, D113 and D114, And the second map M2 has a second marked position MA2 corresponding to the first marked position MA1.

系統可以基於使用者的選擇,而選擇性顯示使用者91與物件之間的相關資訊。請參考第1圖、第3圖、 第4圖,客戶端裝置22由該使用者91所操作以在一第一時間和在該第一時間之後的一第二時間分別產生互動操作,並在不同時間將該互動操作往該資料處理裝置21傳輸。例如,該資料處理裝置21可計算出落該複數個物件與該客戶經常所在位置之間的一實際距離。藉由接收該使用者91的一使用者輸入,當被顯示在該顯示螢幕221上的該第二圖符KA2被選擇時,將該第一物件標籤DA1中的實際距離被呈現在該第二圖符KA2的附近。 The system can selectively display relevant information between the user 91 and the object based on the user's selection. Please refer to Figure 1, Figure 3, In FIG. 4, the client device 22 is operated by the user 91 to generate interactive operations at a first time and a second time after the first time, respectively, and the interactive operations are transferred to the data processing at different times Device 21 transmits. For example, the data processing device 21 can calculate an actual distance between the plurality of objects and the location where the customer is often located. By receiving a user input from the user 91, when the second icon KA2 displayed on the display screen 221 is selected, the actual distance in the first object label DA1 is presented in the second Near the icon KA2.

提出於此之本揭露多數變形例與其他實施例,將對於熟習本項技藝者理解到具有呈現於上述說明與相關圖式之教導的益處。因此,吾人應理解到本揭露並非受限於所揭露之特定實施例,而變形例與其他實施例意圖是包含在以下的申請專利範圍之範疇之內。 Many modifications and other embodiments of the disclosure presented herein will be appreciated by those skilled in the art having the benefit of the teachings presented in the foregoing descriptions and associated drawings. Therefore, it should be understood that the present disclosure is not limited to the specific embodiments disclosed, and modifications and other embodiments are intended to be included within the scope of the following claims.

20:顯示系統 20: Display system

21:資料處理裝置 21: Data processing device

211:物件資料庫 211: Object Database

212:處理模組 212: Processing modules

2121;搜尋組件 2121;Search component

2122:地圖產生器組件 2122: Map Generator Component

2123:推薦組件 2123: Recommended Components

213:資料收集模組 213: Data Collection Module

22:客戶端裝置 22: Client Device

221:顯示螢幕 221: display screen

26:客戶習慣資料庫 26: Customer Habit Database

28:基於搜尋行為的家族成員歸納裝置 28: Family Member Induction Device Based on Search Behavior

31:傳送模組 31: Teleportation Module

91:使用者 91: User

D111、D112、D113、D114:物件標籤 D111, D112, D113, D114: Object Labels

D121:額外物件標籤 D121: Extra Object Label

D131:推薦物件標籤 D131: Recommended Object Label

D15:房地產資料單元 D15: Real Estate Information Unit

D1A:活動範圍資料單元 D1A: Activity Scope Data Unit

D5:地理資訊 D5: Geographic Information

D53:第二地圖資料區塊 D53: Second map data block

D54:第三地圖資料區塊 D54: The third map data block

D55:第四地圖資料區塊 D55: Fourth map data block

D61:物件屬性圖像資料區塊 D61: Object attribute image data block

D62:物件屬性圖像資料區塊 D62: Object attribute image data block

DA1:第一物件標籤 DA1: first object label

DHA1、DHA2:物件類別指示符 DHA1, DHA2: Object class indicator

DL1:活動範圍值 DL1: Active range value

M2:第二地圖 M2: Second map

M3:第三地圖 M3: The third map

M4:第四地圖 M4: Fourth Map

M5:第五地圖 M5: Fifth Map

S11:第一搜尋條件 S11: First search condition

S12:第二搜尋條件 S12: Second search condition

S13:第三搜尋條件 S13: Third search condition

S14:第四搜尋條件 S14: Fourth search condition

U1:畫面 U1: Screen

Claims (5)

一種基於搜尋行為的家族成員歸納裝置,包含: A family member induction device based on search behavior, including: 一物件資料庫,該物件資料庫包含一地理資訊、和分別表示複數個物件的複數個物件標籤,該複數個物件均具有一組成特徵,該複數個物件分別屬於複數個標籤類別中之一; an object database, the object database includes a geographic information, and a plurality of object labels respectively representing a plurality of objects, the plurality of objects have a composition feature, and the plurality of objects belong to one of the plurality of label categories; 一客戶習慣資料庫,該客戶習慣資料庫用以儲存複數筆客戶習慣資料,每筆客戶習慣資料主要包含一客戶代碼、以及一第一搜尋條件,其中該第一搜尋條件包含該客戶代碼、以及相對該客戶代碼的複數個組成特徵; a customer habit database, the customer habit database is used for storing a plurality of pieces of customer habit data, each piece of customer habit data mainly includes a customer code and a first search condition, wherein the first search condition includes the customer code, and a plurality of constituent characteristics relative to the client code; 一資料收集模組,耦合該客戶習慣資料庫,透過一通訊模組接收來自複數個客戶端裝置的該第一搜尋條件,並將該第一搜尋條件儲存至該客戶習慣資料庫; a data collection module coupled to the customer habit database, receiving the first search condition from a plurality of client devices through a communication module, and storing the first search condition in the customer habit database; 一處理模組,耦合該資料收集模組、該物件資料庫、該客戶習慣資料庫,基於每個客戶代碼所發出的該第一搜尋條件中複數個組成特徵,歸納出相對於該客戶代碼的一習慣標籤,並依據複數個客戶代碼的該習慣標籤彼此之間的一近似程度,而計算出一家族相對的一家族成員清單;以及 a processing module, coupled with the data collection module, the object database, and the customer habit database, and based on a plurality of constituent features in the first search condition sent by each customer code, summarizes the relative data of the customer code a custom label, and calculate a family relative list of family members according to a degree of similarity between the custom labels of the plurality of client codes; and 一傳送模組,耦合該資料收集模組、該物件資料庫、該客戶習慣資料庫,用以將該家族成員清單傳送給該客戶端裝置。 A transmission module, coupled to the data collection module, the object database, and the customer habit database, is used for transmitting the family member list to the client device. 如請求項1所述的基於搜尋行為的家族成員歸納裝置,其中在該物件資料庫中該物件標籤包含複數個組成特 徵,每個組成特徵主要是以單一組成特徵或是多個組成特徵所定義; The device for summarizing family members based on search behavior as claimed in claim 1, wherein the object tag in the object database includes a plurality of constituent features Each constituent feature is mainly defined by a single constituent feature or multiple constituent features; 其中,該處理模組依據該習慣標籤、以及該標籤類別的該組成特徵中以單一組成特徵或是多個組成特徵所定義的內容,並依據複數個客戶代碼的該習慣標籤彼此之間的近似程度,找出條件互相符合之複數客戶代碼,以計算出該客戶代碼相對的該家族成員清單。 Wherein, the processing module is based on the custom tag and the content defined by a single composition feature or a plurality of composition features in the composition feature of the tag category, and according to the approximation of the custom tags of a plurality of client codes with each other degree, find out the plural customer codes whose conditions are mutually matched, so as to calculate the list of the family members relative to the customer code. 如請求項2所述的基於搜尋行為的家族成員歸納裝置,其中該處理模組計算出落在所發出的該第一搜尋條件之內的該複數個物件與一客戶經常所在位置之間的一實際距離; The device for summarizing family members based on search behavior as claimed in claim 2, wherein the processing module calculates a relationship between the plurality of objects falling within the issued first search condition and a frequent location of a customer actual distance; 其中,當被顯示在一顯示螢幕上的一第二圖符被選擇時,該實際距離被呈現在一第二圖符的附近。 Wherein, when a second icon displayed on a display screen is selected, the actual distance is displayed near a second icon. 如請求項3所述的基於搜尋行為的家族成員歸納裝置,其中該處理模組先剔除該客戶代碼所發出的該第一搜尋條件中該複數個物件的所在位置之中超過一預定偏離值,才計算出該客戶代碼相對的該家族成員清單。 The device for summarizing family members based on search behavior according to claim 3, wherein the processing module first removes the positions of the plurality of objects in the first search condition issued by the client code that exceed a predetermined deviation value, The list of family members relative to the customer code is calculated. 如請求項3所述的基於搜尋行為的家族成員歸納裝置,其中該處理模組先確認該客戶代碼所發出的該第一搜尋條件中該複數個物件超過一預定數量,才計算出該客戶代碼 相對的該家族成員清單。 The device for summarizing family members based on search behavior according to claim 3, wherein the processing module first confirms that the plurality of objects in the first search condition issued by the client code exceeds a predetermined number, and then calculates the client code Relative list of members of the family.
TW110207143U 2021-06-21 2021-06-21 Family Member Induction Device Based on Search Behavior TWM630888U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110207143U TWM630888U (en) 2021-06-21 2021-06-21 Family Member Induction Device Based on Search Behavior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110207143U TWM630888U (en) 2021-06-21 2021-06-21 Family Member Induction Device Based on Search Behavior

Publications (1)

Publication Number Publication Date
TWM630888U true TWM630888U (en) 2022-08-21

Family

ID=83783787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110207143U TWM630888U (en) 2021-06-21 2021-06-21 Family Member Induction Device Based on Search Behavior

Country Status (1)

Country Link
TW (1) TWM630888U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811708B (en) * 2021-06-21 2023-08-11 信義房屋股份有限公司 Family Member Induction Device Based on Search Behavior

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811708B (en) * 2021-06-21 2023-08-11 信義房屋股份有限公司 Family Member Induction Device Based on Search Behavior

Similar Documents

Publication Publication Date Title
TWM614593U (en) Identification device based on big data for house purchase demand
TWM630895U (en) Suggestion device of providing to-do lists
TWI783157B (en) Recommendation method based on activity behavior
TWM630888U (en) Family Member Induction Device Based on Search Behavior
TWI811708B (en) Family Member Induction Device Based on Search Behavior
TWI832030B (en) House purchase demand identification device based on big data
TWM588830U (en) Recommendation device based on activity behavior
TWI826823B (en) Analytical device to estimate customer needs based on region
TWI816179B (en) Inductive analysis device of key factors
TW202312079A (en) Decision analysis device under different service stages including an object database, a customer database, a data collection module, a processing module, and a transmission module
TWI821739B (en) Inductive analysis device for multiple information sources
TWM640736U (en) Decision analysis device under different service stages
TWM652918U (en) Recommended devices that can switch between multiple recommendation modes
TW202433375A (en) Recommending device capable of switching among multiple recommendation modes including an object database, a customer behavior database, a data collection module, a processing module, and a transmission module
TWM648412U (en) Sincere buyer analysis device based on search habits
TW202546762A (en) Analysis device for determining customer attributes based on search behavior
TW202420196A (en) Sincere buyer analysis device based on search habits characterized in that the processing module receives the customer code and a time interval and is based on several composed features in the first search condition sent by the customer code to calculate the buyer sincerity corresponding to the customer code and transmit to the client device via the transmission module
TWM569034U (en) Recommending device based on ethnic group classification
TWM630896U (en) Analytical device for estimating customer demands according to region
TWI852329B (en) Object recommendation device based on knowledge level
TW202546761A (en) An analytical device that predicts information about properties a seller wants to sell.
TW202312077A (en) Advice device providing items to do comprising an object database, a client behavior database, a data gathering module, a processing module, and a transmission module
TWI783156B (en) Auxiliary device and method for receiving customers
TWM630898U (en) Inductive analysis device for message sources
TWM640745U (en) Recommended Installations Based on Financial Ability

Legal Events

Date Code Title Description
GD4K Issue of patent certificate for granted utility model filed before june 30, 2004