[go: up one dir, main page]

TWM668513U - An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities - Google Patents

An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities Download PDF

Info

Publication number
TWM668513U
TWM668513U TW113212671U TW113212671U TWM668513U TW M668513 U TWM668513 U TW M668513U TW 113212671 U TW113212671 U TW 113212671U TW 113212671 U TW113212671 U TW 113212671U TW M668513 U TWM668513 U TW M668513U
Authority
TW
Taiwan
Prior art keywords
image
roi
key
local
anatomical
Prior art date
Application number
TW113212671U
Other languages
Chinese (zh)
Inventor
謝聰哲
劉志俊
林嘉玲
Original Assignee
彰化基督教醫療財團法人彰化基督教醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彰化基督教醫療財團法人彰化基督教醫院 filed Critical 彰化基督教醫療財團法人彰化基督教醫院
Priority to TW113212671U priority Critical patent/TWM668513U/en
Publication of TWM668513U publication Critical patent/TWM668513U/en

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其可用於當超音波影像模糊與局部解剖特徵較不明顯的狀況下,利用人工智慧技術處理胎兒超音波影像的輔助辨識系統與方法,可有效提升卷積神經網路對重要胎兒發育關鍵解剖位置的辨識效能,進一步降低臨床醫師判讀的負擔,以提高胎兒發育異常判讀工作的準確度。An auxiliary identification system for detecting fetal brain abnormalities using artificial intelligence using ultrasound images can be used when the ultrasound images are blurred and the local anatomical features are less obvious. The auxiliary identification system and method using artificial intelligence technology to process fetal ultrasound images can effectively improve the recognition efficiency of the convolution neural network for important fetal development key anatomical positions, further reduce the burden of clinical physicians' interpretation, and improve the accuracy of fetal development abnormality interpretation.

Description

應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities

本創作係隸屬一種輔助診斷之測定技術領域,具體而言係一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,藉以能提高對胎兒重要發育關鍵之解剖位置的辨識能力,以降低臨床醫師判讀的負擔,進而提高胎兒發育異常判讀的準確度。This invention belongs to the field of auxiliary diagnostic measurement technology. Specifically, it is an auxiliary identification system that uses ultrasound images to detect fetal brain abnormalities with artificial intelligence. It can improve the ability to identify the anatomical locations of important developmental key points of the fetus, thereby reducing the burden of clinical physicians' interpretation and improving the accuracy of fetal developmental abnormality interpretation.

按,超音波影像是最基本的醫療影像診斷技術之一。由於超音波檢驗的便利性與非侵入性,超音波是目前最普及且最有效益的產前胎兒發育結構異常的影像診斷工具,尤其是對胎兒腦部發育異常而言,產前胎兒腦部異常的發生率是1000之1.4-1.6,佔胎死腹中比例為3-6%,因此產前胎兒超音波檢驗對早期診斷胎兒發育結構異常非常重要。According to the press release, ultrasound imaging is one of the most basic medical imaging diagnostic techniques. Due to the convenience and non-invasiveness of ultrasound examination, ultrasound is currently the most popular and effective imaging diagnostic tool for fetal structural abnormalities before birth, especially for fetal brain abnormalities. The incidence of fetal brain abnormalities before birth is 1.4-1.6 out of 1,000, accounting for 3-6% of fetal stillbirth. Therefore, prenatal fetal ultrasound examination is very important for the early diagnosis of fetal structural abnormalities.

然而,超音波影像拍攝品質往往不易控制,由於超音波影像解析度較為模糊、胎兒位置與身體姿態不易尋找與辨識,再加上超音波影像拍攝時的晃動產生超音波影像殘影現象,以及超音波影像的雜訊等問題,使得超音波影像往往不夠清晰,影響到臨床醫師的判讀。此外,胎兒超音波影像辨識對婦產科醫師來說,除了需要較長久的學習曲線之外,能夠專業的判讀細微的胎兒腦部異常也是需要經過專業的訓練,所以並非所有婦產科醫師都專精於超音波的操作與判讀。However, the quality of ultrasound images is often difficult to control. The resolution of ultrasound images is relatively fuzzy, the fetal position and body posture are difficult to find and identify, and the shaking during ultrasound image shooting produces ultrasound image afterimages and ultrasound image noise. As a result, ultrasound images are often not clear enough, affecting the interpretation of clinical physicians. In addition, for obstetricians and gynecologists, fetal ultrasound image identification requires a long learning curve. Professional interpretation of subtle fetal brain abnormalities also requires professional training. Therefore, not all obstetricians and gynecologists specialize in ultrasound operation and interpretation.

近年來利用卷積網路為主要架構的深度學習技術,在許多醫療應用領域獲得相當好的辨識效能,如我國專利公告第I802486號之「以人工智慧判讀兒童腎臟超音波影像之方法」、公告第I810498號之「肝腫瘤智慧分析裝置」及公告第I811129號之「兒童先天性心臟超音波影像目標檢測輔助辨識系統及其方法」等專利前案,均輔助臨床醫師在不同領域中進行判讀,而減輕其負擔。In recent years, deep learning technology using convolutional networks as its main architecture has achieved good recognition performance in many medical application fields. For example, Taiwan’s patent publication No. I802486, “Method for interpreting pediatric renal ultrasound images using artificial intelligence”, publication No. I810498, “Intelligent analysis device for liver tumors”, and publication No. I811129, “System and method for auxiliary identification of target detection in pediatric congenital heart ultrasound images”, all assist clinical physicians in making interpretations in different fields and reduce their burden.

換言之,如果能借助人工智慧深度學習技術的輔助,在胎兒超音波影像細節上協助臨床醫師捕捉到胎兒發育異常解剖位置,將能大幅降低臨床醫師判讀的負擔,降低胎兒發育異常漏診的風險,儘可能在早期發現胎兒發育異常進而早點轉介孕婦至醫學中心做更精細的檢查,將是本創作所要著重的問題與解決的重點。In other words, if we can use artificial intelligence deep learning technology to assist clinical physicians in capturing the anatomical location of fetal developmental abnormalities in the details of fetal ultrasound images, it will be able to greatly reduce the burden of clinical physicians' interpretation and reduce the risk of missed fetal developmental abnormalities. Detecting fetal developmental abnormalities as early as possible and referring pregnant women to medical centers for more detailed examinations as soon as possible will be the problem that this creation will focus on and the key point to be solved.

有鑑於上述需求,本創作人認為有進一步開發之必要,遂以從事相關技術以及產品設計製造之多年經驗,針對以上不良處加以研究創作,並積極尋求解決之道,經不斷努力的研究與試作,應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,以解決現有因胎兒超音波影像解析度品質不佳而造成在判讀上的不便與困擾。In view of the above needs, the creators of this invention believe that further development is necessary. Therefore, with many years of experience in related technologies and product design and manufacturing, they have conducted research and creation on the above shortcomings and actively sought solutions. After continuous efforts in research and trial production, they have developed an auxiliary identification system that uses ultrasound images to detect fetal brain abnormalities with artificial intelligence, in order to solve the inconvenience and trouble in interpretation caused by the poor resolution quality of fetal ultrasound images.

因此,本創作之主要目的,係在提供一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,藉以可在超音波影像模糊與局部解剖特徵較不明顯的狀況下,有效處理胎兒超音波影像,提升卷積神經網路對重要胎兒發育關鍵解剖位置辨識效能。Therefore, the main purpose of this invention is to provide an auxiliary identification system that uses ultrasound images to detect fetal brain abnormalities with artificial intelligence, so as to effectively process fetal ultrasound images when the ultrasound images are blurred and the local anatomical features are less obvious, and enhance the performance of the convolutional neural network in identifying key anatomical locations of important fetal development.

其次,本創作之再一主要目的係在提供一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其能用於胎兒超音波影像自動辨識、量測與異常發育偵測,有效降低臨床醫師判讀的負擔,並提高發育異常判讀工作的準確度,供醫療人員即時監測與介入。Secondly, another main purpose of this creation is to provide an auxiliary identification system that uses ultrasound images to detect fetal brain abnormalities with artificial intelligence. It can be used for automatic identification, measurement and abnormal development detection of fetal ultrasound images, effectively reducing the burden of clinical physicians' interpretation and improving the accuracy of developmental abnormality interpretation, so that medical personnel can monitor and intervene in real time.

為此,本創作主要係透過下列的技術手段,來具體實現上述的各項目的與效能,其包含有一階層式解剖區域偵測模組、一關鍵組織偵測模組、一關鍵解剖標記點偵測模組、一生物量測模組及一異常發育判讀模組;To this end, this invention mainly uses the following technical means to specifically achieve the above-mentioned purposes and functions, including a hierarchical anatomical region detection module, a key tissue detection module, a key anatomical landmark detection module, a biometric measurement module and an abnormal development interpretation module;

其中該階層式解剖區域偵測模組對輸入之一胎兒小腦平面超音波影像,以由上而下階層式偵測後擷取局部區域影像,將影像特徵明顯的一個或多個ROI影像,該由上而下逐步縮小局部ROI影像的過程可以用一個胎兒超音波影像剖析樹的資料結構來表示胎兒超音波影像的分析過程,以高度可靠穩固的方式逐層分離出ROI影像,且該等ROI影像包含一個或多個關鍵組織,但ROI影像不必完全與關鍵組織影像切齊,而ROI影像的定義需考慮到滿足卷積網路在進行偵測之ROI影像邊界時,每個ROI區域中能有足夠多而可靠的影像生物解剖特徵提供給卷積網路,使其能準確地自動偵測到此ROI影像;The hierarchical anatomical region detection module receives a fetal cerebellum plane ultrasound image as input, and captures a local region image after hierarchical detection from top to bottom. One or more ROI images with obvious image features are gradually reduced from top to bottom. The fetal ultrasound image analysis process can be represented by a fetal ultrasound image analysis tree data structure in a highly reliable and stable manner. Separate ROI images layer by layer, and these ROI images contain one or more key tissues, but the ROI images do not have to be completely aligned with the key tissue images. The definition of the ROI images needs to take into account that when the convolutional network detects the ROI image boundary, each ROI region can have enough and reliable image biological anatomical features to provide to the convolutional network so that it can accurately and automatically detect this ROI image;

而該關鍵組織偵測模組連接於該階層式解剖區域偵測模組,其主要的功能為對階層式解剖區域偵測模組所擷取的ROI影像,在此局部ROI影像中以物件偵測方法找出局部範圍內的所有關鍵組織;The key tissue detection module is connected to the hierarchical anatomical region detection module, and its main function is to find all key tissues in the local range by using an object detection method in the local ROI image captured by the hierarchical anatomical region detection module;

又該關鍵解剖標記點偵測模組連接該關鍵組織偵測模組,其配合已找出的關鍵組織位置資訊,以關鍵點偵測方法找出在此局部ROI影像中的所有關鍵解剖標記點;The key anatomical marker point detection module is connected to the key tissue detection module, and uses the key tissue position information that has been found to find all the key anatomical marker points in the local ROI image using a key point detection method;

另該生物量測模組連接該關鍵解剖標記點偵測模組,其以量測關鍵解剖標記點間距或是影像分割技術量測重要生物發育特徵;In addition, the biological measurement module is connected to the key anatomical landmark detection module, which measures the distance between key anatomical landmarks or uses image segmentation technology to measure important biological development characteristics;

再者,該異常發育判讀模組連接該生物量測模組,其根據該生物量測模組計算出的生物發育特徵數值,而依據醫療標準規範或機器學習方法來判讀是否發生特定發育異常風險狀況。Furthermore, the abnormal development judgment module is connected to the biometrics module, and judges whether a specific abnormal development risk condition occurs according to the biological development characteristic values calculated by the biometrics module and in accordance with medical standards or machine learning methods.

在本創作其中一實施例中,該胎兒超音波影像剖析樹 T 為一種樹狀結構,而影像剖析樹 T 的根節點代表整張原始胎兒超音波輸入影像;由根節點展開一個或多個分支節點,每個分支節點代表一個局部ROI影像,此局部ROI影像由上層節點對應的局部ROI影像中透過特定物件偵測卷積網路自動偵測與擷取而得,又每個分支節點亦可展開一個或多個分支節點,上層分支節點ROI影像包含下層分支節點ROI影像,因而產生上下游影像剖析關係的樹狀結構,另每個分支節點之最末端具有該影像剖析樹 T 的一個或多個終端分支節點,每個終端分支節點可再分為一個或多個關鍵組織或關鍵解剖標記點,其中每個關鍵組織係透過特定物件偵測或影像分割演算法由此終端分支節點對應的局部ROI影像偵測而得,每個關鍵解剖標記點係透過特定關鍵點偵測演算法由此終端分支節點對應的局部ROI影像偵測而得。In one embodiment of the present invention, the fetal ultrasound image analysis tree T is a tree structure, and the root node of the image analysis tree T represents the entire original fetal ultrasound input image; one or more branch nodes are expanded from the root node, each branch node represents a local ROI image, and this local ROI image is automatically detected and captured by a specific object detection convolutional network from the local ROI image corresponding to the upper node, and each branch node can also expand one or more branch nodes, and the upper branch node ROI image includes the lower branch node ROI image, thereby generating a tree structure of the upstream and downstream image analysis relationship, and the end of each branch node has the image analysis tree T One or more terminal branch nodes, each of which can be further divided into one or more key tissues or key anatomical landmarks, wherein each key tissue is detected from a local ROI image corresponding to the terminal branch node through a specific object detection or image segmentation algorithm, and each key anatomical landmark is detected from a local ROI image corresponding to the terminal branch node through a specific key point detection algorithm.

在本創作其中一實施例中,該階層式解剖區域偵測模組對於一張胎兒小腦平面超音波輸入影像,其對應的胎兒超音波影像剖析樹的第1層節點為一顱骨ROI影像 I1,而該顱骨ROI影像I1展開的第2層節點包含一透明中膈ROI影像I1,1與一頸後厚度ROI影像I1,2,其中該透明中隔ROI影像I1,1包含一個關鍵組織透明中膈T1,另該頸後厚度ROI影像I1,2展開的第3層節點包含一小腦延髓池ROI影像I1,2,1,至於該小腦延髓池ROI影像I1,2,1展開包含一個關鍵組織小腦T2,以及三組關鍵解剖標記點小腦橫徑解剖標記點P1, P2、小腦延髓池徑解剖標記點P3, P4、以及頸後厚度解剖標記點P5, P6。In one embodiment of the present invention, the hierarchical anatomical region detection module is for a fetal cerebellum plane ultrasound input image, and the first-level node of the fetal ultrasound image analysis tree corresponding to the fetal ultrasound image is a cranial ROI image. I1, and the second layer node of the skull ROI image I1 includes a transparent septum ROI image I1,1 and a posterior cervical thickness ROI image I1,2, wherein the transparent septum ROI image I1,1 includes a key tissue transparent septum T1, and the third layer node of the posterior cervical thickness ROI image I1,2 includes a cerebello-medullary cistern ROI image I1,2,1, and the cerebello-medullary cistern ROI image I1,2,1 includes a key tissue cerebellum T2, and three groups of key anatomical landmarks, including cerebellum transverse diameter anatomical landmarks P1, P2, cerebello-medullary cistern diameter anatomical landmarks P3, P4, and posterior cervical thickness anatomical landmarks P5, P6.

在本創作其中一實施例中,該階層式解剖區域偵測模組於胎兒小腦平面超音波輸入影像中,影像特徵明顯的局部影像為顱骨、小腦與透明中隔,而相對而言影像特徵不明顯不易獨立進行辨識的局部影像為小腦延髓池、頸後厚度以及與生物發育特徵密切相關的六個解剖標記點包含小腦橫徑解剖標記點P1, P2、小腦延髓池徑解剖標記點P3, P4、以及頸後厚度解剖標記點P5, P6,其係利用特徵明顯的局部影像為顱骨,先進行顱骨ROI局部影像辨識,排除顱骨外部影像來降低後續分析的複雜度,將後續分析範圍限制在顱骨ROI影像I1之後,下一步是利用特徵明顯的局部影像小腦,搭配邊界特徵明顯的頸後皮膚與枕骨,合併兩項影像特徵進行頸後厚度ROI影像I1,2與小腦延髓池ROI影像I1,2,1的辨識,藉此以提高特徵不明顯的局部影像辨識的準確度。In one embodiment of the present invention, in the fetal cerebellum plane ultrasound input image, the hierarchical anatomical region detection module has obvious image features of the skull, cerebellum and septum pellucidum, while the image features of the local images that are relatively unclear and difficult to identify independently are the cerebellomedullary cistern, posterior neck thickness and six anatomical landmarks closely related to biological developmental characteristics, including cerebellum transverse diameter anatomical landmarks P1, P2, cerebellomedullary cistern diameter anatomical landmarks P3, P4, and posterior neck thickness anatomical landmarks P5, P6, which uses the skull as the local image with obvious features, first performs skull ROI local image recognition, excludes the external skull image to reduce the complexity of subsequent analysis, and limits the scope of subsequent analysis to the skull ROI image I1. The next step is to use the cerebellum as the local image with obvious features, combined with the posterior neck skin and occipital bone with obvious boundary features, and combine the two image features to identify the posterior neck thickness ROI image I1,2 and the cerebellomedullary cistern ROI image I1,2,1, so as to improve the accuracy of local image recognition with unclear features.

在本創作其中一實施例中,該生物量測模組透過前述自動小腦橫徑解剖標記點P1與P2之間的距離來計算小腦橫徑,並進一步根據偵測到的關鍵組織小腦T2的邊界框位置來檢核P1、P2與小腦橫徑的量測數據可靠性,又該生物量測模組亦透過前述自動小腦延髓池徑解剖標記點P3與P4之間的距離來計算小腦延髓池徑,並進一步根據偵測到的小腦延髓池ROI影像I1,2,1與關鍵組織小腦T2的邊界框位置來檢核P3、P4與小腦延髓池徑的量測數據可靠性,且該生物量測模組亦透過前述頸後厚度解剖標記點P5與P6之間的距離來計算頸後厚度,並進一步根據偵測到的小腦延髓池ROI影像I1,2,1與頸後厚度ROI影像I1,2的邊界框位置來檢核P5、P6與頸後厚度的量測數據可靠性。In one embodiment of the present invention, the biometrics module calculates the cerebellar transverse diameter by the distance between the aforementioned automatic cerebellar transverse diameter anatomical landmarks P1 and P2, and further verifies the reliability of the measurement data of P1, P2 and the cerebellar transverse diameter according to the detected position of the boundary frame of the key tissue cerebellum T2. The biometrics module also calculates the cerebellar medullary cistern diameter by the distance between the aforementioned automatic cerebellar medullary cistern diameter anatomical landmarks P3 and P4, and further verifies the reliability of the measurement data of P1, P2 and the cerebellar transverse diameter according to the detected position of the boundary frame of the key tissue cerebellum T2. The reliability of the measurement data of P3, P4 and the cerebellomedullary cistern diameter is checked by the bounding box position of the cerebellum ROI image I1,2,1 and the key tissue cerebellum T2, and the biometric measurement module also calculates the posterior cervical thickness through the distance between the aforementioned posterior cervical thickness anatomical landmarks P5 and P6, and further checks the reliability of the measurement data of P5, P6 and the posterior cervical thickness according to the detected bounding box position of the cerebellomedullary cistern ROI image I1,2,1 and the posterior cervical thickness ROI image I1,2.

透過前述技術手段的具體實現,使本創作能可大幅增進其實用性,而能增加其附加價值,並能提高其經濟效益。Through the concrete realization of the aforementioned technical means, this creation can greatly enhance its practicability, increase its added value, and improve its economic benefits.

為使 貴審查委員能進一步了解本創作的構成、特徵及其他目的,以下乃舉本創作之若干較佳實施例,並配合圖式詳細說明如后,供讓熟悉該項技術領域者能夠具體實施。In order to enable you, the Review Committee, to further understand the composition, features and other purposes of this creation, the following are some preferred embodiments of this creation, and are described in detail with the help of diagrams, so that those familiar with the technical field can implement them in detail.

隨附圖例示本創作之具體實施例及其構件中,所有關於前與後、左與右、頂部與底部、上部與下部、以及水平與垂直的參考,僅用於方便進行描述,並非限制本創作,亦非將其構件限制於任何位置或空間方向。圖式與說明書中所指定的尺寸,當可在不離開本創作之申請專利範圍內,根據本創作之具體實施例的設計與需求而進行變化。The attached drawings illustrate specific embodiments of the invention and its components. All references to front and back, left and right, top and bottom, upper and lower, and horizontal and vertical are only for the convenience of description and do not limit the invention or its components to any position or spatial direction. The dimensions specified in the drawings and descriptions may be changed according to the design and requirements of the specific embodiments of the invention without departing from the scope of the patent application of the invention.

本創作係一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,請參閱圖1,其包括有一階層式解剖區域偵測模組(10)、一關鍵組織偵測模組(20)、一關鍵解剖標記點偵測模組(30)、一生物量測模組(40)及一異常發育判讀模組(50),其中,該關鍵組織偵測模組(20)連接該階層式解剖區域偵測模組(10),而該關鍵解剖標記點偵測模組(30)連接該關鍵組織偵測模組(20),又該生物量測模組(40)連接該關鍵解剖標記點偵測模組(30),再者該異常發育判讀模組(50)連接該生物量測模組(40),用以供將一胎兒小腦平面超音波影像(P1)輸入於該階層式解剖區域偵測模組(10)中,且在經過該關鍵組織偵測模組(20)、該關鍵解剖標記點偵測模組(30)、該生物量測模組(40)及該異常發育判讀模組(50)後,可供用於產出一胎兒超音波檢查報告書(100),以協助臨床醫師辨識胎兒腦部生長是否異常。The invention is an auxiliary identification system for detecting fetal brain abnormalities by using ultrasound images and artificial intelligence. Please refer to FIG1 . The system comprises a hierarchical anatomical region detection module (10), a key tissue detection module (20), a key anatomical landmark detection module (30), a biometric measurement module (40) and an abnormal development interpretation module (50). The key tissue detection module (20) is connected to the hierarchical anatomical region detection module (10), the key anatomical landmark detection module (30) is connected to the key tissue detection module (20), and the biometric measurement module (40) is connected to the abnormal development interpretation module (50). 0) is connected to the key anatomical landmark detection module (30), and the abnormal development judgment module (50) is connected to the biometric measurement module (40) to input a fetal cerebellum plane ultrasound image (P1) into the hierarchical anatomical region detection module (10). After passing through the key tissue detection module (20), the key anatomical landmark detection module (30), the biometric measurement module (40) and the abnormal development judgment module (50), a fetal ultrasound examination report (100) can be generated to assist clinical physicians in identifying whether the fetal brain growth is abnormal.

請參閱圖2,依照本創作之主要實施例,該胎兒小腦平面超音波影像(P1)需要量測的重要生物發育特徵包含但不限於顱骨橫徑〔biparietal diameter〕、小腦橫徑〔cerebellum〕、小腦延髓池〔cisterna magna〕與頸後厚度〔nuchal fold〕等。先前使用深度學習技術來量測前述重要生物發育特徵的方法主要是偵測包含這些生物發育特徵的最小邊界框〔bounding boxes, BB〕,如顱骨邊界框為BB1、小腦邊界框為BB2、小腦延髓池邊界框為BB3與頸後厚度邊界框為BB4。Please refer to FIG. 2. According to the main embodiment of the present invention, the important biological development features that need to be measured in the fetal cerebellum plane ultrasound image (P1) include but are not limited to the biparietal diameter of the skull, the biparietal diameter of the cerebellum, the cisterna magna, and the nuchal fold. The previous method of using deep learning technology to measure the aforementioned important biological development features is mainly to detect the minimum bounding boxes (BB) containing these biological development features, such as the skull bounding box is BB1, the cerebellum bounding box is BB2, the cisterna magna bounding box is BB3, and the nuchal fold bounding box is BB4.

另請參閱圖3與圖4所揭示者,在本創作的實施例中,對胎兒小腦平面超音波影像(P1)之輸入影像而言,其中顱骨與小腦的影像特徵較明顯,使用深度學習物件偵測技術進行顱骨邊界框BB1與小腦邊界框BB2的辨識效果較佳;然而小腦延髓池〔cisterna magna〕與頸後厚度〔nuchal fold〕的影像特徵較不明顯,欠缺好的辨識參照,使得小腦延髓池邊界框BB3與頸後厚度邊界框BB4的辨識效果較差。其中如圖3所示,顱骨邊界框BB1與小腦邊界框BB2辨識實驗結果的精確率-回復率曲線〔precision-recall curve〕明顯較四個邊界框辨識平均值為高,曲線較靠近右上方;而小腦延髓池邊界框BB3與頸後厚度邊界框BB4辨識實驗結果的精確率-回復率曲線明顯較四個邊界框辨識平均值為高,曲線較靠近左下方。另如圖4所示,以F1曲線來觀察,亦可明顯發現顱骨邊界框BB1與小腦邊界框BB2辨識實驗結果的F1分數較高,而小腦延髓池邊界框BB3與頸後厚度邊界框BB4辨識實驗結果的F1分數較低。Please also refer to what is disclosed in Figures 3 and 4. In the embodiment of the present invention, for the input image of the fetal cerebellum plane ultrasound image (P1), the image features of the skull and cerebellum are more obvious, and the recognition effect of the skull boundary box BB1 and the cerebellum boundary box BB2 using deep learning object detection technology is better; however, the image features of the cisterna magna and the posterior cervical thickness (nuchal fold) are less obvious, lacking a good recognition reference, resulting in poor recognition effect of the cisterna magna boundary box BB3 and the posterior cervical thickness boundary box BB4. As shown in Figure 3, the precision-recall curve of the recognition results of the skull boundary frame BB1 and the cerebellum boundary frame BB2 is significantly higher than the average of the four boundary frame recognitions, and the curve is closer to the upper right; while the precision-recall curve of the recognition results of the cerebellomedullary cistern boundary frame BB3 and the posterior neck thickness boundary frame BB4 is significantly higher than the average of the four boundary frame recognitions, and the curve is closer to the lower left. As shown in Figure 4, from the F1 curve, it can be clearly found that the F1 score of the recognition results of the skull boundary frame BB1 and the cerebellum boundary frame BB2 is higher, while the F1 score of the recognition results of the cerebellomedullary cistern boundary frame BB3 and the posterior neck thickness boundary frame BB4 is lower.

又請參閱圖5,在本創作的實施例中,該階層式解剖區域偵測模組(10)利用由上而下逐步縮小局部感興趣的區域〔region of interest,下稱ROI〕影像的進行方式,一步一步剔除與最後所需量測生物發育特徵無關的影像來降低後續分析的複雜度,最後僅保留包含生物發育特徵的最小局部ROI影像,藉此來提高生物發育特徵的辨識效能。因此,由上而下逐步縮小局部ROI影像的過程可以用一個胎兒超音波影像剖析樹〔image parse tree for fetal ultrasound biometry〕的資料結構來表示胎兒超音波影像的分析過程。一個胎兒超音波影像剖析樹 T 為一種樹狀結構,其中影像剖析樹 T 的根節點〔root node〕代表整張原始胎兒超音波輸入影像;由根節點展開一個或多個分支節點〔branch node〕,每個分支節點代表一個局部ROI影像,此局部ROI影像由上層節點對應的局部ROI影像中透過特定物件偵測卷積網路自動偵測與擷取而得;每個分支節點亦可展開一個或多個分支節點,上層分支節點ROI影像包含下層分支節點ROI影像,因而產生上下游影像剖析關係的樹狀結構;終端分支節點〔terminal branch nodes〕為影像剖析樹 T 的最末端的分支節點,每個終端分支節點可再分為一個或多個之關鍵組織〔key tissues〕或關鍵解剖標記點〔key anatomical landmarks〕,其中每個關鍵組織係透過特定物件偵測或影像分割演算法由此終端分支節點對應的局部ROI影像偵測而得,每個關鍵解剖標記點係透過特定關鍵點偵測演算法由此終端分支節點對應的局部ROI影像偵測而得。局部ROI影像的選取以必須包含影像特徵明顯的組織為原則,目的為讓物件偵測與關鍵點偵測演算法能有足夠卷積影像特徵來達成良好辨識效能。Please refer to FIG. 5 . In the embodiment of the present invention, the hierarchical anatomical region detection module (10) uses a method of gradually reducing the local region of interest (hereinafter referred to as ROI) image from top to bottom, and gradually eliminates images irrelevant to the biological development characteristics required to be measured to reduce the complexity of subsequent analysis. Finally, only the smallest local ROI image containing biological development characteristics is retained to improve the recognition efficiency of biological development characteristics. Therefore, the process of gradually reducing the local ROI image from top to bottom can be represented by a data structure of an image parse tree for fetal ultrasound biometry to represent the analysis process of fetal ultrasound images. A fetal ultrasound image analysis tree T is a tree structure, in which the root node of the image analysis tree T represents the entire original fetal ultrasound input image; one or more branch nodes are expanded from the root node, each branch node represents a local ROI image, and this local ROI image is automatically detected and captured from the local ROI image corresponding to the upper node through a specific object detection convolutional network; each branch node can also expand one or more branch nodes, and the upper branch node ROI image includes the lower branch node ROI image, thereby generating a tree structure of upstream and downstream image analysis relationships; the terminal branch nodes are the image analysis tree T The terminal branch node is the most terminal branch node. Each terminal branch node can be further divided into one or more key tissues or key anatomical landmarks. Each key tissue is detected by a specific object detection or image segmentation algorithm from the local ROI image corresponding to the terminal branch node. Each key anatomical landmark is detected by a specific key point detection algorithm from the local ROI image corresponding to the terminal branch node. The selection of local ROI images is based on the principle that they must contain tissues with obvious image features, so that the object detection and key point detection algorithms can have sufficient volume image features to achieve good recognition performance.

另請參閱圖6,在本創作的實施例中,對於一張胎兒小腦平面超音波影像(P1),首先使用預先訓練好的顱骨ROI偵測模型,由該胎兒小腦平面超音波影像(P1)中偵測出顱骨ROI影像I1所在的邊界框,排除掉與腦部無關的其他超音波影像。在該顱骨ROI影像I1中,解剖特徵明顯的組織為透明中膈與小腦,而相對偵測困難的組織為小腦延髓池與頸後厚度等。然而小腦延髓池與頸後厚度是診斷胎兒發育結構異常非常重要的生物量測重點,為提高小腦延髓池與頸後厚度的卷積網路偵測準確率,則利用解剖特徵明顯容易偵測的小腦,配合頸後厚度的邊緣影像來進行頸後厚度ROI影像 I1,2 區域的偵測。同理,由於小腦延髓池位置不易獨立進行辨識,則透過兩項新方法來改善小腦延髓池位置的偵測效能:首先,透過由上而下的層層剖析,將辨識小腦延髓池的搜尋範圍由整張超音波影像降至頸後厚度ROI影像 I1,2 區域,使小腦延髓池辨識的複雜度大為降低。接著,透過解剖特徵明顯容易偵測的小腦,配合顱骨後方邊界明顯的特點來進行小腦延髓池ROI影像 I1,2,1的偵測。經由將搜尋目標區域大幅縮小至小腦延髓池ROI影像 I1,2,1,再進一步由小腦延髓池ROI影像 I1,2,1中,使用關鍵點偵測技術進行小腦橫徑解剖標記點P1, P2,以及小腦延髓池徑解剖標記點P3, P4的偵測。同理,頸後厚度解剖標記點P5, P6亦僅需由已降低至頸後厚度ROI影像 I1,2 區域中搜尋即可。解剖組織透明中膈T1與小腦T2,各自亦僅需由已降低搜尋範圍的透明中隔ROI影像I1,1與小腦延髓池ROI影像I1,2,1區域中搜尋即可。Please also refer to FIG. 6. In the embodiment of the present invention, for a fetal cerebellum plane ultrasound image (P1), the pre-trained cranial ROI detection model is first used to detect the bounding box of the cranial ROI image I1 from the fetal cerebellum plane ultrasound image (P1), and exclude other ultrasound images not related to the brain. In the cranial ROI image I1, the tissues with obvious anatomical features are the transparent septum and cerebellum, while the tissues that are relatively difficult to detect are the cerebellomedullary cistern and the posterior neck thickness. However, the cerebello-medullary cistern and posterior neck thickness are very important biometric points for diagnosing fetal structural abnormalities. In order to improve the detection accuracy of the convolutional network of the cerebello-medullary cistern and posterior neck thickness, the cerebellum, whose anatomical features are obviously easy to detect, is used in conjunction with the edge image of the posterior neck thickness to detect the posterior neck thickness ROI image I1,2 area. Similarly, since the location of the cerebello-medullary cistern is not easy to identify independently, two new methods are used to improve the detection performance of the cerebello-medullary cistern: First, through top-down layer-by-layer analysis, the search range for identifying the cerebello-medullary cistern is reduced from the entire ultrasound image to the posterior neck thickness ROI image I1,2 area, which greatly reduces the complexity of identifying the cerebello-medullary cistern. Next, the cerebellum with obvious anatomical features and the obvious posterior border of the skull are used to detect the cerebellomedullary cistern ROI image I1,2,1. After the search target area is greatly reduced to the cerebellomedullary cistern ROI image I1,2,1, the key point detection technology is further used to detect the cerebellum transverse diameter anatomical landmarks P1, P2 and the cerebellomedullary cistern diameter anatomical landmarks P3, P4 in the cerebellomedullary cistern ROI image I1,2,1. Similarly, the posterior cervical thickness anatomical landmarks P5 and P6 only need to be searched in the area that has been reduced to the posterior cervical thickness ROI image I1,2. The anatomical tissues of the septum pellucidum T1 and cerebellum T2 only need to be searched in the septum pellucidum ROI image I1,1 and the cerebellomedullary cistern ROI image I1,2,1, respectively, whose search ranges have been reduced.

再者,請參閱圖7,在本創作的實施例中,對於一張胎兒小腦平面超音波影像(P1),對應圖6的胎兒超音波影像剖析樹在此張輸入影像中的四個分支節點ROI影像 I1、I1,1、I1,2 與 I1,2,1如圖所示,分支節點ROI影像的選擇以影像特徵明顯使得對應的四個物件偵測模型得以準確辨識ROI影像邊界框的上、下、左、右邊框位置為原則。例如I1可參考胎兒顱骨的上下左右輪廓作為 I1 邊界框偵測依據;ROI影像I1,1可參考胎兒腦部的透明中隔腔與雙側側腦室前角的明顯特徵進行邊界框偵測依據;頸後厚度〔nuchal fold〕之ROI影像 I1,2 的右側邊界可根據顱骨外側皮膚邊界定位,但頸後厚度的左側與上下方並無足夠影像特徵提供給物件偵測模型進行定位,故本創作提出可借助特徵明顯的小腦來提供ROI影像 I1,2 左側與上下方的邊界參考定位特徵,因而頸後厚度〔nuchal fold〕之ROI影像 I1,2 納入小腦區域藉此來提高頸後厚度〔nuchal fold〕之ROI影像 I1,2 的偵測準確度;同理,在此超音波影像範例中,小腦延髓池ROI影像 I1,2,1 的右邊界雖有枕骨可進行邊界參考定位,但同樣缺少左側與上下方定位的影像特徵,故小腦延髓池的ROI影像 I1,2,1 亦納入小腦區域來提供左側與上下方的邊界參考定位特徵。完成由上而下四個分支節點ROI影像 I1、I1,1、I1,2 與 I1,2,1的偵測後,對解剖組織透明中膈 T1與小腦T2 的辨識而言,各自的搜尋範圍限縮到透明中隔ROI影像 I1,1 與小腦延髓池ROI影像 I1,2,1 局部區域,故可大幅降低偵測問題的複雜度,提高此兩個解剖組織辨識的效能。Furthermore, please refer to Figure 7. In an embodiment of the present invention, for a fetal cerebellum plane ultrasound image (P1), the four branch node ROI images I1, I1,1, I1,2 and I1,2,1 corresponding to the fetal ultrasound image analysis tree in Figure 6 in this input image are shown in the figure. The branch node ROI images are selected based on the principle that the image features are obvious so that the corresponding four object detection models can accurately identify the upper, lower, left and right frame positions of the ROI image boundary box. For example, I1 can refer to the upper and lower left and right contours of the fetal skull as the basis for I1 boundary detection; ROI image I1,1 can refer to the clear septum cavity and the obvious features of the anterior horns of the bilateral ventricles in the fetal brain for boundary detection; the right side boundary of ROI image I1,2 of posterior cervical thickness (nuchal fold) can be located according to the outer skin boundary of the skull, but the left side and upper and lower sides of the posterior cervical thickness do not have enough image features to provide the object detection model for positioning. Therefore, this work proposes to use the cerebellum with obvious features to provide the left side and upper and lower boundary reference positioning features of ROI image I1,2, so that the ROI image I1,2 of posterior cervical thickness (nuchal fold) is included in the cerebellum area to improve the posterior cervical thickness (nuchal fold). Similarly, in this ultrasound image example, although the right boundary of the cerebellomedullary cistern ROI image I1,2,1 has the occipital bone for boundary reference positioning, it also lacks the image features for left side and top and bottom positioning. Therefore, the cerebellar cistern ROI image I1,2,1 is also included in the cerebellum region to provide left side and top and bottom boundary reference positioning features. After completing the detection of the four branch node ROI images I1, I1,1, I1,2 and I1,2,1 from top to bottom, for the identification of the anatomical tissues of the transparent septum T1 and the cerebellum T2, the respective search ranges are limited to the local areas of the transparent septum ROI image I1,1 and the cerebellomedullary cistern ROI image I1,2,1, which can greatly reduce the complexity of the detection problem and improve the efficiency of the identification of these two anatomical tissues.

又請參閱圖8,在本創作的實施例中,對於一張胎兒小腦平面超音波影像(P1),對應圖6胎兒超音波影像剖析樹的影像由上而下逐步剖析展開的過程如圖8所示。最左方的圖為輸入胎兒小腦平面超音波影像(P1),使用預訓練的顱骨〔skull〕ROI影像偵測模型的顱骨〔skull〕ROI影像局部影像I1的邊界框如圖虛線所示。搜尋範圍限縮到ROI影像 I1 局部影像後,再使用預訓練的透明中隔〔CSP〕ROI影像偵測模型與頸後厚度〔nuchal fold〕ROI影像兩個偵測模型分別進行透明中隔ROI影像I1,1與頸後厚度ROI影像I1,2局部影像偵測。搜尋範圍限縮到 I1,2 局部影像後,再使用預訓練的小腦延髓池〔cisterna magna〕ROI影像偵測模型進行小腦延髓池ROI影像I1,2,1局部影像偵測。最後由透明中隔ROI影像I1,1使用預訓練的透明中隔偵測模型偵測解剖組織透明中膈 T1;由小腦延髓池ROI影像I1,2,1使用預訓練的小腦偵測模型偵測解剖組織小腦T2;由小腦延髓池ROI影像I1,2,1使用預訓練的小腦延髓池徑與小腦橫徑關鍵點偵測模型偵測小腦橫徑解剖標記點P1, P2,以及小腦延髓池徑解剖標記點P3, P4的偵測;由頸後厚度ROI影像I1,2局部影像使用預訓練的頸後厚度關鍵點偵測模型偵測頸後厚度解剖標記點P5, P6。Please refer to FIG8 . In the embodiment of the present invention, for a fetal cerebellum ultrasound image (P1), the process of gradually analyzing and unfolding the image from top to bottom corresponding to the fetal ultrasound image analysis tree in FIG6 is shown in FIG8 . The leftmost figure is the input fetal cerebellum ultrasound image (P1), and the boundary frame of the skull ROI image local image I1 of the pre-trained skull ROI image detection model is shown by the dotted line in the figure. After the search range is limited to the ROI image I1 local image, the pre-trained septum pellucidum ROI image detection model and the posterior cervical thickness ROI image detection model are used to perform the septum pellucidum ROI image I1,1 and the posterior cervical thickness ROI image I1,2 local image detection respectively. After the search range is limited to the I1,2 local image, the pre-trained cisterna magna ROI image detection model is used to perform local image detection of the cisterna magna ROI image I1,2,1. Finally, the anatomical tissue septum pellucida T1 is detected from the septum pellucida ROI image I1,1 using the pretrained septum pellucida detection model; the anatomical tissue cerebellum T2 is detected from the cistern ROI image I1,2,1 using the pretrained cistern diameter and cerebellar transverse diameter key point detection models; the cerebellar transverse diameter anatomical landmarks P1 and P2, as well as the cistern diameter anatomical landmarks P3 and P4 are detected from the cistern ROI image I1,2,1; the posterior cervical thickness anatomical landmarks P5 and P6 are detected from the posterior cervical thickness ROI image I1,2 using the pretrained posterior cervical thickness key point detection model.

在本創作的實施例中,胎兒超音波影像剖析樹中的每個分支節點代表一個局部ROI影像,此局部ROI影像由上層節點對應的局部ROI影像中透過對應的預訓練好的物件偵測卷積網路模型自動偵測與擷取而得。物件偵測卷積網路模型可以使用YOLO系列物件偵測模型、R-CNN系列物件偵測模型、SSD系列物件偵測模型、RatinaNet系列物件偵測模型、或EfficientDet物件偵測模型,但不在此限。In the embodiment of the present invention, each branch node in the fetal ultrasound image analysis tree represents a local ROI image, which is automatically detected and captured from the local ROI image corresponding to the upper node through the corresponding pre-trained object detection convolutional network model. The object detection convolutional network model can use the YOLO series object detection model, the R-CNN series object detection model, the SSD series object detection model, the RatinaNet series object detection model, or the EfficientDet object detection model, but is not limited thereto.

且在本創作的實施例中胎兒超音波影像剖析樹中的每個終端分支節點〔terminal branch nodes〕為影像剖析樹 T 的最末端的分支節點,每個終端分支節點可再分為一個或多個之關鍵組織〔key tissues〕或關鍵解剖標記點〔key anatomical landmarks〕 。該關鍵組織偵測模組(20)根據透過對應的預訓練好的物件偵測卷積網路模型或影像分割演算法自動偵測與擷取每個關鍵組織局部影像。其中物件偵測卷積網路模型可以使用YOLO系列物件偵測模型、R-CNN系列物件偵測模型、SSD系列物件偵測模型、RatinaNet系列物件偵測模型、或EfficientDet物件偵測模型等,但不在此限;而影像分割演算法可以使用U-Net系列物件偵測模型、DeepLab系列物件偵測模型或PSPNet系列物件偵測模型等,但不在此限。又關鍵解剖標記點偵測模組(30)透過對應的預訓練好的關鍵點偵測模型由此終端分支節點對應的局部ROI影像偵測得到每個關鍵解剖標記點。其中關鍵點偵測模型可以使用DeepLabCut、HRNet、AlphaPose、CenterNet、YOLOv8或Key.Net等,但不在此限。In the embodiment of the present invention, each terminal branch node in the fetal ultrasound image analysis tree is the terminal branch node of the image analysis tree T, and each terminal branch node can be further divided into one or more key tissues or key anatomical landmarks. The key tissue detection module (20) automatically detects and captures each key tissue local image based on the corresponding pre-trained object detection convolutional network model or image segmentation algorithm. The object detection convolutional network model may use a YOLO series object detection model, an R-CNN series object detection model, an SSD series object detection model, a RatinaNet series object detection model, or an EfficientDet series object detection model, but not limited thereto; and the image segmentation algorithm may use a U-Net series object detection model, a DeepLab series object detection model, or a PSPNet series object detection model, but not limited thereto. The key anatomical landmark detection module (30) detects each key anatomical landmark from the local ROI image corresponding to the terminal branch node through the corresponding pre-trained key landmark detection model. The key point detection model may use DeepLabCut, HRNet, AlphaPose, CenterNet, YOLOv8 or Key.Net, but is not limited thereto.

另在本創作的實施例中,該生物量測模組(40)根據該關鍵解剖標記點偵測模組(30)所偵測到的關鍵解剖標記點配對Pi與Pj,計算Pi與Pj兩個配對標記點的歐幾里得距離得到生物量測數值。例如小腦橫徑由計算解剖標記點P1, P2間的歐幾里得距離而得;小腦延髓池徑由計算解剖標記點P3, P4的歐幾里得距離而得;頸後厚度由計算解剖標記點P5, P6的歐幾里得距離而得。In another embodiment of the present invention, the biometric measurement module (40) calculates the Euclidean distance between the two paired markers Pi and Pj according to the key anatomical markers detected by the key anatomical marker detection module (30) to obtain the biometric value. For example, the transverse diameter of the cerebellum is obtained by calculating the Euclidean distance between the anatomical markers P1 and P2; the diameter of the cerebellomedullary cisterna is obtained by calculating the Euclidean distance between the anatomical markers P3 and P4; and the posterior neck thickness is obtained by calculating the Euclidean distance between the anatomical markers P5 and P6.

且在本創作的實施例中,該異常發育判讀模組(50)根據是否偵測到關鍵組織以及生物量測模組(40)所計算出的各種生物量測數值,依照各種生物量測數值是否超出各項生物量測統計正常值範圍來判斷發育異常的風險,最後根據各項發育異常的風險估計值產生該胎兒超音波檢查報告書(100)。In the embodiment of the present invention, the abnormal development judgment module (50) judges the risk of developmental abnormality according to whether the key tissues are detected and the various biometric values calculated by the biometric module (40), and whether the various biometric values exceed the normal value range of the various biometric statistics, and finally generates the fetal ultrasound examination report (100) according to the estimated risk values of various developmental abnormalities.

經由前述之系統架構及說明可知,由於現有胎兒超音波影像分析技術主要是對整個超音波影像進行分類,或是直接使用物件偵測技術對胎兒超音波影像的重要解剖特徵進行偵測。但超音波影像內的解剖特徵往往由於影像的卷積特徵特異性不夠,導致直接使用物件偵測進行辨識時效能不佳,而透過本創作主要技術之開發,使得本創作具有下列之功效及特徵,諸如:From the above system architecture and description, it can be seen that the existing fetal ultrasound image analysis technology mainly classifies the entire ultrasound image, or directly uses object detection technology to detect important anatomical features of fetal ultrasound images. However, the anatomical features in ultrasound images are often not specific enough due to the volume features of the image, resulting in poor performance when directly using object detection for identification. Through the development of the main technology of this creation, this creation has the following functions and features, such as:

1、本創作提出胎兒超音波影像剖析樹,係利用由上而下逐步縮小局部ROI影像的進行方式,一步一步剔除與最後所需量測生物發育特徵無關的影像來降低後續分析的複雜度,最後僅保留包含生物發育特徵的最小局部ROI影像,藉此來提高生物發育特徵的辨識效能。1. This work proposes a fetal ultrasound image analysis tree, which uses a top-down approach to gradually reduce the local ROI image, and step by step eliminates images that are irrelevant to the final required biological development characteristics to reduce the complexity of subsequent analysis. Finally, only the smallest local ROI image containing biological development characteristics is retained, thereby improving the recognition efficiency of biological development characteristics.

2、本創作之局部ROI影像的選取以必須包含影像特徵明顯的組織為原則,目的為讓物件偵測與關鍵點偵測演算法能有足夠卷積影像特徵來達成良好辨識效能。例如利用解剖特徵明顯容易偵測的小腦,配合頸後厚度的邊緣影像來進行頸後厚度ROI影像區域的偵測。2. The selection of local ROI images in this work is based on the principle that they must include tissues with obvious image features, so that the object detection and key point detection algorithms can have sufficient convolution image features to achieve good recognition performance. For example, the cerebellum, which has obvious anatomical features and is easy to detect, is used in conjunction with the edge image of the posterior neck thickness to detect the posterior neck thickness ROI image area.

3、本創作之胎兒超音波影像剖析樹中的每個終端分支節點〔terminal branch nodes〕為影像剖析樹 T 的最末端的分支節點,每個終端分支節點可再分為一個或多個關鍵組織〔key tissues〕或關鍵解剖標記點〔key anatomical landmarks〕,可在複雜度降至最小狀況下有效偵測關鍵組織與關鍵解剖標記點,而不是在整張胎兒超音波影像中尋找關鍵組織與關鍵解剖標記點。3. Each terminal branch node in the fetal ultrasound image analysis tree of this invention is the terminal branch node of the image analysis tree T. Each terminal branch node can be further divided into one or more key tissues or key anatomical landmarks, which can effectively detect key tissues and key anatomical landmarks with minimal complexity, rather than searching for key tissues and key anatomical landmarks in the entire fetal ultrasound image.

綜上所述,可以理解到本創作為一創意極佳之新型創作,除了有效解決習式者所面臨的問題,更大幅增進功效,且在相同的技術領域中未見相同或近似的產品創作或公開使用,同時具有功效的增進,故本創作已符合新型專利有關「新穎性」與「進步性」的要件,乃依法提出新型專利之申請。In summary, it can be understood that this creation is a new creation with excellent creativity. In addition to effectively solving the problems faced by practitioners, it also greatly improves the efficacy. In the same technical field, there is no same or similar product creation or public use. At the same time, it has improved efficacy. Therefore, this creation has met the requirements of "novelty" and "progressiveness" for new patents, and an application for a new patent is filed in accordance with the law.

10:階層式解剖區域偵測模組 20:關鍵組織偵測模組 30:關鍵解剖標記點偵測模組 40:生物量測模組 50:異常發育判讀模組 100:胎兒超音波檢查報告書 P1:胎兒小腦平面超音波影像10: Hierarchical anatomical region detection module 20: Key tissue detection module 30: Key anatomical landmark detection module 40: Biometric measurement module 50: Abnormal development interpretation module 100: Fetal ultrasound examination report P1: Fetal cerebellum plane ultrasound image

圖1:係本創作的輔助辨識系統架構示意圖。 圖2:係本創作實施例胎兒小腦平面超音波影像需要量測的重要生物發育特徵包含顱骨橫徑〔biparietal diameter〕、小腦橫徑〔cerebellum〕、小腦延髓池〔cisterna magna〕與頸後厚度〔nuchal fold〕及其所各自對應的最小邊界框〔bounding boxes, BB〕之示意圖。 圖3:係本創作實施例展示胎兒小腦平面超音波影像中各類組織的辨識困難度不同的辨識結果的精確率-回復率曲線〔precision-recall curve〕之示意圖,其中腦〔brain〕與小腦〔cerebellum〕的影像特徵較明顯,卷積網路較易辨識,其Precision-Recall曲線較靠近右上角;小腦延髓池〔cisterna magna〕與頸後厚度〔nuchal fold〕 的影像特徵較不明顯,卷積網路較難辨識,其Precision-Recall曲線較遠離右上角。 圖4:係本創作實施例展示胎兒小腦平面超音波影像中各類組織的辨識困難度不同的辨識結果的F1分數之示意圖。 圖5:係本創作提出之胎兒超音波影像剖析樹〔image parse tree for fetal ultrasound biometry〕之典型結構圖。 圖6:係本創作實施例所繪示之胎兒小腦平面超音波輸入影像剖析樹之結構示意圖。 圖7:係本創作實施例所繪示之胎兒小腦平面超音波輸入影像剖析樹所對應的超音波影像、局部超音波影像中感興趣位置〔region of interest, ROI〕、關鍵組織與關鍵解剖標記點之示意圖。 圖8:係本創作實施例所繪示之胎兒小腦平面超音波輸入影像由上而下剖析過程之示意圖。 Figure 1: is a schematic diagram of the auxiliary identification system architecture of the present invention. Figure 2: is a schematic diagram of the important biological developmental characteristics that need to be measured in the planar ultrasound image of the fetal cerebellum in the present invention, including the biparietal diameter, cerebellum diameter, cisterna magna and nuchal fold, and their corresponding minimum bounding boxes (BB). Figure 3: is a schematic diagram of the precision-recall curve of the recognition results of various tissues in the fetal cerebellum planar ultrasound image with different recognition difficulties in the embodiment of the present invention. The image features of the brain and cerebellum are more obvious, and the convolution network is easier to recognize, and its Precision-Recall curve is closer to the upper right corner; the image features of the cisterna magna and the nuchal fold are less obvious, and the convolution network is more difficult to recognize, and its Precision-Recall curve is farther from the upper right corner. Figure 4: is a schematic diagram showing the F1 scores of the recognition results of different recognition difficulties of various tissues in the fetal cerebellum plane ultrasound image in the present invention. Figure 5: is a typical structural diagram of the fetal ultrasound image parse tree [image parse tree for fetal ultrasound biometry] proposed in the present invention. Figure 6: is a structural schematic diagram of the fetal cerebellum plane ultrasound input image parse tree drawn in the present invention. Figure 7: is a schematic diagram of the ultrasound image corresponding to the fetal cerebellum plane ultrasound input image parse tree drawn in the present invention, the region of interest (ROI) in the local ultrasound image, the key tissues and the key anatomical landmarks. Figure 8: is a schematic diagram of the top-down analysis process of the fetal cerebellum plane ultrasound input image drawn in the present invention embodiment.

10:階層式解剖區域偵測模組 10: Hierarchical anatomical region detection module

20:關鍵組織偵測模組 20: Key organization detection module

30:關鍵解剖標記點偵測模組 30: Key anatomical landmark detection module

40:生物量測模組 40: Biometric measurement module

50:異常發育判讀模組 50: Abnormal development interpretation module

100:胎兒超音波檢查報告書 100: Fetal ultrasound examination report

P1:胎兒小腦平面超音波影像 P1: Planar ultrasound image of fetal cerebellum

Claims (5)

一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其包含有一階層式解剖區域偵測模組、一關鍵組織偵測模組、一關鍵解剖標記點偵測模組、一生物量測模組及一異常發育判讀模組; 其中該階層式解剖區域偵測模組對輸入之一胎兒小腦平面超音波影像,以由上而下階層式偵測後擷取局部區域影像,將影像特徵明顯的一個或多個ROI影像,該由上而下逐步縮小局部ROI影像的過程可以用一個胎兒超音波影像剖析樹的資料結構來表示胎兒超音波影像的分析過程,以高度可靠穩固的方式逐層分離出ROI影像,且該等ROI影像包含一個或多個關鍵組織,但ROI影像不必完全與關鍵組織影像切齊,而ROI影像的定義需考慮到滿足卷積網路在進行偵測之ROI影像邊界時,每個ROI區域中能有足夠多而可靠的影像生物解剖特徵提供給卷積網路,使其能準確地自動偵測到此ROI影像; 而該關鍵組織偵測模組連接於該階層式解剖區域偵測模組,其主要的功能為對階層式解剖區域偵測模組所擷取的ROI影像,在此局部ROI影像中以物件偵測方法找出局部範圍內的所有關鍵組織; 又該關鍵解剖標記點偵測模組連接該關鍵組織偵測模組,其配合已找出的關鍵組織位置資訊,以關鍵點偵測方法找出在此局部ROI影像中的所有關鍵解剖標記點; 另該生物量測模組連接該關鍵解剖標記點偵測模組,其以量測關鍵解剖標記點間距或是影像分割技術量測重要生物發育特徵; 再者,該異常發育判讀模組連接該生物量測模組,其根據該生物量測模組計算出的生物發育特徵數值,而依據醫療標準規範或機器學習方法來判讀是否發生特定發育異常風險狀況。 An auxiliary identification system for detecting fetal brain abnormalities by artificial intelligence using ultrasound images, comprising a hierarchical anatomical region detection module, a key tissue detection module, a key anatomical landmark detection module, a biometric measurement module and an abnormal development interpretation module; The hierarchical anatomical region detection module detects a fetal cerebellum plane ultrasound image inputted therein, and captures a local region image after hierarchical detection from top to bottom, and selects one or more ROI images with obvious image features. The process of gradually reducing the local ROI image from top to bottom can be represented by a data structure of a fetal ultrasound image analysis tree to analyze the fetal ultrasound image in a highly reliable and stable manner. Layer-separated ROI images, and these ROI images contain one or more key tissues, but the ROI images do not have to be completely aligned with the key tissue images, and the definition of the ROI images must take into account that when the convolutional network is detecting the ROI image boundary, each ROI region can have enough and reliable image biological anatomical features to provide to the convolutional network so that it can accurately and automatically detect this ROI image; The key tissue detection module is connected to the hierarchical anatomical region detection module, and its main function is to find all key tissues in the local range of the ROI image captured by the hierarchical anatomical region detection module by using the object detection method; The key anatomical landmark detection module is connected to the key tissue detection module, and it uses the key point detection method to find all key anatomical landmarks in the local ROI image in conjunction with the key tissue position information that has been found; The biological measurement module is connected to the key anatomical landmark detection module, and it measures the important biological development characteristics by measuring the distance between key anatomical landmarks or image segmentation technology; Furthermore, the abnormal development judgment module is connected to the biometrics module, and judges whether a specific abnormal development risk condition occurs according to the biological development characteristic values calculated by the biometrics module and in accordance with medical standards or machine learning methods. 如請求項1所述應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其中該胎兒超音波影像剖析樹 T 為一種樹狀結構,而影像剖析樹 T 的根節點代表整張原始胎兒超音波輸入影像;由根節點展開一個或多個分支節點,每個分支節點代表一個局部ROI影像,此局部ROI影像由上層節點對應的局部ROI影像中透過特定物件偵測卷積網路自動偵測與擷取而得,又每個分支節點亦可展開一個或多個分支節點,上層分支節點ROI影像包含下層分支節點ROI影像,因而產生上下游影像剖析關係的樹狀結構,另每個分支節點之最末端具有該影像剖析樹 T 的一個或多個終端分支節點,每個終端分支節點可再分為一個或多個關鍵組織或關鍵解剖標記點,其中每個關鍵組織係透過特定物件偵測或影像分割演算法由此終端分支節點對應的局部ROI影像偵測而得,每個關鍵解剖標記點係透過特定關鍵點偵測演算法由此終端分支節點對應的局部ROI影像偵測而得。As described in claim 1, an auxiliary identification system for detecting fetal brain abnormalities using artificial intelligence using ultrasound images, wherein the fetal ultrasound image analysis tree T is a tree structure, and the root node of the image analysis tree T represents the entire original fetal ultrasound input image; one or more branch nodes are expanded from the root node, each branch node represents a local ROI image, and this local ROI image is automatically detected and captured from the local ROI image corresponding to the upper node through a specific object detection convolutional network, and each branch node can also expand one or more branch nodes, and the upper branch node ROI image includes the lower branch node ROI image, thereby generating a tree structure of upstream and downstream image analysis relationships, and each branch node has the image analysis tree T at the very end. One or more terminal branch nodes, each of which can be further divided into one or more key tissues or key anatomical landmarks, wherein each key tissue is detected from a local ROI image corresponding to the terminal branch node through a specific object detection or image segmentation algorithm, and each key anatomical landmark is detected from a local ROI image corresponding to the terminal branch node through a specific key point detection algorithm. 如請求項2所述應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其中該階層式解剖區域偵測模組對於一張胎兒小腦平面超音波輸入影像,其對應的胎兒超音波影像剖析樹的第1層節點為一顱骨ROI影像 I1,而該顱骨ROI影像I1展開的第2層節點包含一透明中膈ROI影像I1,1與一頸後厚度ROI影像I1,2,其中該透明中隔ROI影像I1,1包含一個關鍵組織透明中膈T1,另該頸後厚度ROI影像I1,2展開的第3層節點包含一小腦延髓池ROI影像I1,2,1,至於該小腦延髓池ROI影像I1,2,1展開包含一個關鍵組織小腦T2,以及三組關鍵解剖標記點小腦橫徑解剖標記點P1, P2、小腦延髓池徑解剖標記點P3, P4、以及頸後厚度解剖標記點P5, P6。As described in claim 2, an auxiliary identification system for detecting fetal brain abnormalities using ultrasound images with artificial intelligence, wherein the hierarchical anatomical region detection module has a first-level node of a fetal ultrasound image analysis tree corresponding to a fetal cerebellum plane ultrasound input image as a skull ROI image. I1, and the second layer node of the skull ROI image I1 includes a transparent septum ROI image I1,1 and a posterior cervical thickness ROI image I1,2, wherein the transparent septum ROI image I1,1 includes a key tissue transparent septum T1, and the third layer node of the posterior cervical thickness ROI image I1,2 includes a cerebello-medullary cistern ROI image I1,2,1, and the cerebello-medullary cistern ROI image I1,2,1 includes a key tissue cerebellum T2, and three groups of key anatomical landmarks, including cerebellum transverse diameter anatomical landmarks P1, P2, cerebello-medullary cistern diameter anatomical landmarks P3, P4, and posterior cervical thickness anatomical landmarks P5, P6. 如請求項3所述應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其中該階層式解剖區域偵測模組於胎兒小腦平面超音波輸入影像中,影像特徵明顯的局部影像為顱骨、小腦與透明中隔,而相對而言影像特徵不明顯不易獨立進行辨識的局部影像為小腦延髓池、頸後厚度以及與生物發育特徵密切相關的六個解剖標記點包含小腦橫徑解剖標記點P1, P2、小腦延髓池徑解剖標記點P3, P4、以及頸後厚度解剖標記點P5, P6,其係利用特徵明顯的局部影像為顱骨,先進行顱骨ROI局部影像辨識,排除顱骨外部影像來降低後續分析的複雜度,將後續分析範圍限制在顱骨ROI影像I1之後,下一步是利用特徵明顯的局部影像小腦,搭配邊界特徵明顯的頸後皮膚與枕骨,合併兩項影像特徵進行頸後厚度ROI影像I1,2與小腦延髓池ROI影像I1,2,1的辨識,藉此以提高特徵不明顯的局部影像辨識的準確度。As described in claim 3, an auxiliary identification system for detecting fetal brain abnormalities using ultrasound images with artificial intelligence, wherein the hierarchical anatomical region detection module detects, in the fetal cerebellum plane ultrasound input image, the local images with obvious image features are the skull, cerebellum and septum pellucidum, and the local images with relatively unclear image features that are difficult to identify independently are the cerebellomedullary cistern, posterior neck thickness, and six anatomical landmarks closely related to biological developmental characteristics, including cerebellum transverse diameter anatomical landmarks P1, P2, cerebellomedullary cistern diameter anatomical landmarks P3, P4, and posterior neck thickness anatomical landmarks P5, P6, which uses the skull as the local image with obvious features, first performs skull ROI local image recognition, excludes the external skull image to reduce the complexity of subsequent analysis, and limits the scope of subsequent analysis to the skull ROI image I1. The next step is to use the cerebellum as the local image with obvious features, combined with the posterior neck skin and occipital bone with obvious boundary features, and combine the two image features to identify the posterior neck thickness ROI image I1,2 and the cerebellomedullary cistern ROI image I1,2,1, so as to improve the accuracy of local image recognition with unclear features. 如請求項4所述應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其中該生物量測模組透過前述自動小腦橫徑解剖標記點P1與P2之間的距離來計算小腦橫徑,並進一步根據偵測到的關鍵組織小腦T2的邊界框位置來檢核P1、P2與小腦橫徑的量測數據可靠性,又該生物量測模組亦透過前述自動小腦延髓池徑解剖標記點P3與P4之間的距離來計算小腦延髓池徑,並進一步根據偵測到的小腦延髓池ROI影像I1,2,1與關鍵組織小腦T2的邊界框位置來檢核P3、P4與小腦延髓池徑的量測數據可靠性,且該生物量測模組亦透過前述頸後厚度解剖標記點P5與P6之間的距離來計算頸後厚度,並進一步根據偵測到的小腦延髓池ROI影像11,2,1與頸後厚度ROI影像I1,2的邊界框位置來檢核P5、P6與頸後厚度的量測數據可靠性。As described in claim 4, an auxiliary identification system for detecting fetal brain abnormalities using ultrasound images with artificial intelligence, wherein the biometric measurement module calculates the cerebellar transverse diameter through the distance between the aforementioned automatic cerebellar transverse diameter anatomical landmarks P1 and P2, and further verifies the reliability of the measurement data of P1, P2 and the cerebellar transverse diameter based on the detected boundary frame position of the key tissue cerebellum T2, and the biometric measurement module also calculates the cerebellar medullary cistern diameter through the distance between the aforementioned automatic cerebellar medullary cistern diameter anatomical landmarks P3 and P4, and further verifies the reliability of the measurement data of P1, P2 and the cerebellar transverse diameter. The reliability of the measurement data of P3, P4 and the diameter of the cerebellomedullary cistern is checked based on the detected bounding box positions of the cerebellum magna ROI image I1,2,1 and the key tissue cerebellum T2, and the biometrics module also calculates the posterior neck thickness through the distance between the aforementioned posterior neck thickness anatomical landmarks P5 and P6, and further checks the reliability of the measurement data of P5, P6 and the posterior neck thickness based on the detected bounding box positions of the cerebellum magna ROI image 11,2,1 and the posterior neck thickness ROI image I1,2.
TW113212671U 2024-11-20 2024-11-20 An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities TWM668513U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113212671U TWM668513U (en) 2024-11-20 2024-11-20 An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113212671U TWM668513U (en) 2024-11-20 2024-11-20 An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities

Publications (1)

Publication Number Publication Date
TWM668513U true TWM668513U (en) 2025-04-01

Family

ID=96168736

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113212671U TWM668513U (en) 2024-11-20 2024-11-20 An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities

Country Status (1)

Country Link
TW (1) TWM668513U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI897721B (en) * 2024-11-20 2025-09-11 彰化基督教醫療財團法人彰化基督教醫院 An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI897721B (en) * 2024-11-20 2025-09-11 彰化基督教醫療財團法人彰化基督教醫院 An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities

Similar Documents

Publication Publication Date Title
Zhang et al. Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization
Horgan et al. Artificial intelligence in obstetric ultrasound: a scoping review
Krishna et al. Automated classification of common maternal fetal ultrasound planes using multi-layer perceptron with deep feature integration
CN116681958B (en) Fetal lung ultrasonic image maturity prediction method based on machine learning
Chen et al. Discriminative cervical lesion detection in colposcopic images with global class activation and local bin excitation
WO2018120942A1 (en) System and method for automatically detecting lesions in medical image by means of multi-model fusion
CN102800089A (en) Main carotid artery blood vessel extraction and thickness measuring method based on neck ultrasound images
CN110613483A (en) Method and system for detecting fetal craniocerebral abnormality based on machine learning
CN118196074A (en) A medical ultrasound image quality control system based on multimodal fusion
CN111297399B (en) Fetal heart positioning and fetal heart rate extraction method based on ultrasonic video
CN114898882B (en) Method and system for ultrasound-based assessment of right heart function
TWM668513U (en) An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities
CN119318466A (en) Early warning method and device for cardiovascular complications of obstructive sleep apnea syndrome
CN116681764A (en) A method and system for selecting standard slices of ultrasonic lesions based on deep learning
Anzalone et al. A system for the automatic measurement of the nuchal translucency thickness from ultrasound video stream of the foetus
CN118587182A (en) A renal lesion ultrasound analysis and diagnosis and treatment auxiliary system based on renal ultrasound images
Yu et al. Fetal ultrasound image segmentation system and its use in fetal weight estimation
CN116912229A (en) A fetal translateral ventricular transverse section ultrasound standard section detection method
CN117351489A (en) Head and neck tumor target area delineating system for whole-body PET/CT scanning
CN116433649A (en) Microbubble counting method and intelligent diagnostic device for patent foramen ovale
CN112419246B (en) A deep detection network to quantify the vascular morphological distribution of esophageal mucosal IPCLs
TWI897721B (en) An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities
CN112102234B (en) Ear sclerosis focus detection and diagnosis system based on target detection neural network
CN114496228A (en) Computing resource-limited sugar network disease auxiliary diagnosis method and device
CN114463277B (en) Automatic acquisition method for qualified four-cavity heart tangential image in fetal heart ultrasonic video