[go: up one dir, main page]

TWI897721B - An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities - Google Patents

An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities

Info

Publication number
TWI897721B
TWI897721B TW113144690A TW113144690A TWI897721B TW I897721 B TWI897721 B TW I897721B TW 113144690 A TW113144690 A TW 113144690A TW 113144690 A TW113144690 A TW 113144690A TW I897721 B TWI897721 B TW I897721B
Authority
TW
Taiwan
Prior art keywords
image
key
roi
roi image
cerebellum
Prior art date
Application number
TW113144690A
Other languages
Chinese (zh)
Inventor
謝聰哲
劉志俊
林嘉玲
Original Assignee
彰化基督教醫療財團法人彰化基督教醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彰化基督教醫療財團法人彰化基督教醫院 filed Critical 彰化基督教醫療財團法人彰化基督教醫院
Priority to TW113144690A priority Critical patent/TWI897721B/en
Application granted granted Critical
Publication of TWI897721B publication Critical patent/TWI897721B/en

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其可用於當超音波影像模糊與局部解剖特徵較不明顯的狀況下,利用人工智慧技術處理胎兒超音波影像的輔助辨識系統與方法,可有效提升卷積神經網路對重要胎兒發育關鍵解剖位置的辨識效能,進一步降低臨床醫師判讀的負擔,以提高胎兒發育異常判讀工作的準確度。An auxiliary identification system that uses ultrasound imaging and artificial intelligence to detect fetal brain abnormalities can be used when ultrasound images are blurred and local anatomical features are less obvious. The system and method, which utilize artificial intelligence technology to process fetal ultrasound images, can effectively enhance the convolutional neural network's ability to identify key anatomical locations important to fetal development, further reducing the burden on clinical physicians and improving the accuracy of fetal developmental abnormality interpretation.

Description

應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities

本發明係隸屬一種輔助診斷之測定技術領域,具體而言係一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,藉以能提高對胎兒重要發育關鍵之解剖位置的辨識能力,以降低臨床醫師判讀的負擔,進而提高胎兒發育異常判讀的準確度。This invention belongs to the field of diagnostic aid measurement technology. Specifically, it is an auxiliary identification system that uses ultrasound imaging and artificial intelligence to detect fetal brain abnormalities. This system can improve the ability to identify key anatomical locations of fetal development, thereby reducing the burden on clinical physicians and improving the accuracy of fetal developmental abnormality interpretation.

按,超音波影像是最基本的醫療影像診斷技術之一。由於超音波檢驗的便利性與非侵入性,超音波是目前最普及且最有效益的產前胎兒發育結構異常的影像診斷工具,尤其是對胎兒腦部發育異常而言,產前胎兒腦部異常的發生率是1000之1.4-1.6,佔胎死腹中比例為3-6%,因此產前胎兒超音波檢驗對早期診斷胎兒發育結構異常非常重要。Ultrasound imaging is one of the most basic medical imaging diagnostic techniques. Due to its convenience and non-invasive nature, ultrasound is currently the most popular and effective imaging diagnostic tool for fetal structural abnormalities during prenatal development. This is particularly true for fetal brain abnormalities, which occur in 1.4-1.6 out of 1,000 pregnancies and account for 3-6% of fetal stillbirths. Therefore, prenatal fetal ultrasound examinations are crucial for the early diagnosis of fetal structural abnormalities.

然而,超音波影像拍攝品質往往不易控制,由於超音波影像解析度較為模糊、胎兒位置與身體姿態不易尋找與辨識,再加上超音波影像拍攝時的晃動產生超音波影像殘影現象,以及超音波影像的雜訊等問題,使得超音波影像往往不夠清晰,影響到臨床醫師的判讀。此外,胎兒超音波影像辨識對婦產科醫師來說,除了需要較長久的學習曲線之外,能夠專業的判讀細微的胎兒腦部異常也是需要經過專業的訓練,所以並非所有婦產科醫師都專精於超音波的操作與判讀。However, the quality of ultrasound images is often difficult to control. Ultrasound image resolution is often blurry, making it difficult to locate and identify the fetal position and body posture. Furthermore, issues such as image blurring and noise caused by movement during ultrasound capture often result in unclear ultrasound images, hindering clinical interpretation. Furthermore, fetal ultrasound image interpretation requires a long learning curve for obstetricians and gynecologists, and the ability to expertly interpret subtle fetal brain abnormalities also requires specialized training. Therefore, not all obstetricians and gynecologists specialize in ultrasound operation and interpretation.

近年來利用卷積網路為主要架構的深度學習技術,在許多醫療應用領域獲得相當好的辨識效能,如我國專利公告第I802486號之「以人工智慧判讀兒童腎臟超音波影像之方法」、公告第I810498號之「肝腫瘤智慧分析裝置」及公告第I811129號之「兒童先天性心臟超音波影像目標檢測輔助辨識系統及其方法」等專利前案,均輔助臨床醫師在不同領域中進行判讀,而減輕其負擔。In recent years, deep learning technology, using convolutional networks as its primary architecture, has achieved remarkable recognition performance in many medical applications. Patents such as Patent Publication No. I802486, "Method for Interpreting Pediatric Kidney Ultrasound Images Using Artificial Intelligence," Patent Publication No. I810498, "Intelligent Analysis Device for Liver Tumors," and Patent Publication No. I811129, "System and Method for Aiding Target Detection and Recognition in Pediatric Congenital Heart Ultrasound Images," all assist clinical physicians in making judgments in various fields, reducing their workload.

換言之,如果能借助人工智慧深度學習技術的輔助,在胎兒超音波影像細節上協助臨床醫師捕捉到胎兒發育異常解剖位置,將能大幅降低臨床醫師判讀的負擔,降低胎兒發育異常漏診的風險,儘可能在早期發現胎兒發育異常進而早點轉介孕婦至醫學中心做更精細的檢查,將是本發明所要著重的問題與解決的重點。In other words, if artificial intelligence deep learning technology can assist clinicians in identifying the anatomical locations of fetal developmental abnormalities in the fine details of fetal ultrasound images, it will significantly reduce the burden on clinicians in interpreting the findings and lower the risk of missing fetal developmental abnormalities. Detecting fetal developmental abnormalities as early as possible and allowing pregnant women to be referred to medical centers for more detailed examinations are the key issues and solutions that this invention aims to address.

有鑑於上述需求,本發明人認為有進一步開發之必要,遂以從事相關技術以及產品設計製造之多年經驗,針對以上不良處加以研究創作,並積極尋求解決之道,經不斷努力的研究與試作,應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,以解決現有因胎兒超音波影像解析度品質不佳而造成在判讀上的不便與困擾。In light of these needs, the inventors of this invention believed that further development was necessary. Leveraging their years of experience in related technologies and product design and manufacturing, they conducted research and development to address these shortcomings, actively seeking solutions. Through continuous research and testing, they developed an auxiliary identification system that uses ultrasound imaging and artificial intelligence to detect fetal brain abnormalities. This system addresses the inconvenience and difficulty in interpreting existing fetal ultrasound images, often caused by the poor resolution of these images.

因此,本發明之主要目的,係在提供一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,藉以可在超音波影像模糊與局部解剖特徵較不明顯的狀況下,有效處理胎兒超音波影像,提升卷積神經網路對重要胎兒發育關鍵解剖位置辨識效能。Therefore, the primary objective of this invention is to provide an auxiliary identification system that uses ultrasound imaging to detect fetal brain abnormalities using artificial intelligence. This system can effectively process fetal ultrasound images even when the ultrasound images are blurred and local anatomical features are less obvious, thereby enhancing the effectiveness of the convolutional neural network in identifying key anatomical locations important to fetal development.

其次,本發明之再一主要目的係在提供一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其能用於胎兒超音波影像自動辨識、量測與異常發育偵測,有效降低臨床醫師判讀的負擔,並提高發育異常判讀工作的準確度,供醫療人員即時監測與介入。Another primary objective of this invention is to provide an auxiliary identification system that uses ultrasound imaging and artificial intelligence to detect fetal brain abnormalities. This system can be used for automatic identification, measurement, and detection of abnormal development in fetal ultrasound images, effectively reducing the burden on clinical physicians and improving the accuracy of developmental abnormality interpretation, allowing medical personnel to monitor and intervene in real-time.

為此,本發明主要係透過下列的技術手段,來具體實現上述的各項目的與效能,其包含有一階層式解剖區域偵測模組、一關鍵組織偵測模組、一關鍵解剖標記點偵測模組、一生物量測模組及一異常發育判讀模組;To this end, the present invention primarily achieves the aforementioned objectives and functions through the following technical means: a hierarchical anatomical region detection module, a key tissue detection module, a key anatomical landmark detection module, a biometrics module, and an abnormal development interpretation module;

其中該階層式解剖區域偵測模組對輸入之一胎兒小腦平面超音波影像,以由上而下階層式偵測後擷取局部區域影像,將影像特徵明顯的一個或多個ROI影像,該由上而下逐步縮小局部ROI影像的過程可以用一個胎兒超音波影像剖析樹的資料結構來表示胎兒超音波影像的分析過程,以高度可靠穩固的方式逐層分離出ROI影像,且該等ROI影像包含一個或多個關鍵組織,但ROI影像不必完全與關鍵組織影像切齊,而ROI影像的定義需考慮到滿足卷積網路在進行偵測之ROI影像邊界時,每個ROI區域中能有足夠多而可靠的影像生物解剖特徵提供給卷積網路,使其能準確地自動偵測到此ROI影像;The hierarchical anatomical region detection module receives a fetal cerebellum plane ultrasound image as input, and then captures a local region image after hierarchical detection from top to bottom. The process of gradually reducing the local ROI image from top to bottom can be represented by a fetal ultrasound image anatomy tree data structure to analyze the fetal ultrasound image in a highly reliable and stable manner. Separate ROI images layer by layer, and these ROI images contain one or more key tissues. However, the ROI images do not have to be completely aligned with the key tissue images. The definition of the ROI images must take into account that when the convolutional network is detecting the ROI image boundaries, each ROI region can have sufficient and reliable image bioanatomical features provided to the convolutional network so that it can accurately and automatically detect the ROI image;

而該關鍵組織偵測模組連接於該階層式解剖區域偵測模組,其主要的功能為對階層式解剖區域偵測模組所擷取的ROI影像,在此局部ROI影像中以物件偵測方法找出局部範圍內的所有關鍵組織;The key tissue detection module is connected to the hierarchical anatomical region detection module. Its main function is to use object detection methods to find all key tissues within the local ROI image captured by the hierarchical anatomical region detection module.

又該關鍵解剖標記點偵測模組連接該關鍵組織偵測模組,其配合已找出的關鍵組織位置資訊,以關鍵點偵測方法找出在此局部ROI影像中的所有關鍵解剖標記點;The key anatomical landmark detection module is connected to the key tissue detection module, and uses the key tissue location information that has been found to find all key anatomical landmarks in the local ROI image using a key point detection method;

另該生物量測模組連接該關鍵解剖標記點偵測模組,其以量測關鍵解剖標記點間距或是影像分割技術量測重要生物發育特徵;The biological measurement module is connected to the key anatomical landmark detection module, which measures the distance between key anatomical landmarks or important biological development characteristics using image segmentation technology;

再者,該異常發育判讀模組連接該生物量測模組,其根據該生物量測模組計算出的生物發育特徵數值,而依據醫療標準規範或機器學習方法來判讀是否發生特定發育異常風險狀況。Furthermore, the abnormal development judgment module is connected to the biometrics module and determines whether a specific developmental abnormality risk condition has occurred based on the biological development characteristic values calculated by the biometrics module in accordance with medical standards or machine learning methods.

在本發明其中一實施例中,該胎兒超音波影像剖析樹 T 為一種樹狀結構,而影像剖析樹 T 的根節點代表整張原始胎兒超音波輸入影像;由根節點展開一個或多個分支節點,每個分支節點代表一個局部ROI影像,此局部ROI影像由上層節點對應的局部ROI影像中透過特定物件偵測卷積網路自動偵測與擷取而得,又每個分支節點亦可展開一個或多個分支節點,上層分支節點ROI影像包含下層分支節點ROI影像,因而產生上下游影像剖析關係的樹狀結構,另每個分支節點之最末端具有該影像剖析樹 T 的一個或多個終端分支節點,每個終端分支節點可再分為一個或多個關鍵組織或關鍵解剖標記點,其中每個關鍵組織係透過特定物件偵測或影像分割演算法由此終端分支節點對應的局部ROI影像偵測而得,每個關鍵解剖標記點係透過特定關鍵點偵測演算法由此終端分支節點對應的局部ROI影像偵測而得。In one embodiment of the present invention, the fetal ultrasound image analysis tree T is a tree structure, and the root node of the image analysis tree T represents the entire original fetal ultrasound input image; one or more branch nodes are expanded from the root node, each branch node represents a local ROI image, and this local ROI image is automatically detected and captured from the local ROI image corresponding to the upper-level node through a specific object detection convolutional network. Each branch node can also expand one or more branch nodes, and the upper-level branch node ROI image includes the lower-level branch node ROI image, thereby generating a tree structure of upstream and downstream image analysis relationships. In addition, the end of each branch node has the image analysis tree T One or more terminal branch nodes, each terminal branch node can be further divided into one or more key tissues or key anatomical landmarks, wherein each key tissue is detected from the local ROI image corresponding to the terminal branch node through a specific object detection or image segmentation algorithm, and each key anatomical landmark is detected from the local ROI image corresponding to the terminal branch node through a specific key point detection algorithm.

在本發明其中一實施例中,該階層式解剖區域偵測模組對於一張胎兒小腦平面超音波輸入影像,其對應的胎兒超音波影像剖析樹的第1層節點為一顱骨ROI影像 I1,而該顱骨ROI影像I1展開的第2層節點包含一透明中膈ROI影像I1,1與一頸後厚度ROI影像I1,2,其中該透明中隔ROI影像I1,1包含一個關鍵組織透明中膈T1,另該頸後厚度ROI影像I1,2展開的第3層節點包含一小腦延髓池ROI影像I1,2,1,至於該小腦延髓池ROI影像I1,2,1展開包含一個關鍵組織小腦T2,以及三組關鍵解剖標記點小腦橫徑解剖標記點P1, P2、小腦延髓池徑解剖標記點P3, P4、以及頸後厚度解剖標記點P5, P6。In one embodiment of the present invention, the hierarchical anatomical region detection module receives a fetal cerebellum plane ultrasound input image, and the first-level node of the fetal ultrasound image analysis tree corresponding to the fetal ultrasound image is a cranial ROI image. I1, and the second-layer node of the cranial ROI image I1 includes a transparent septum ROI image I1,1 and a posterior cervical thickness ROI image I1,2, wherein the transparent septum ROI image I1,1 includes a key tissue transparent septum T1, and the third-layer node of the posterior cervical thickness ROI image I1,2 includes a cerebello-medullary cistern ROI image I1,2,1, and the cerebello-medullary cistern ROI image I1,2,1 includes a key tissue cerebellum T2, as well as three sets of key anatomical landmarks: cerebellum transverse diameter anatomical landmarks P1, P2, cerebello-medullary cistern diameter anatomical landmarks P3, P4, and posterior cervical thickness anatomical landmarks P5, P6.

在本發明其中一實施例中,該階層式解剖區域偵測模組於胎兒小腦平面超音波輸入影像中,影像特徵明顯的局部影像為顱骨、小腦與透明中隔,而相對而言影像特徵不明顯不易獨立進行辨識的局部影像為小腦延髓池、頸後厚度以及與生物發育特徵密切相關的六個解剖標記點包含小腦橫徑解剖標記點P1, P2、小腦延髓池徑解剖標記點P3, P4、以及頸後厚度解剖標記點P5, P6,其係利用特徵明顯的局部影像為顱骨,先進行顱骨ROI局部影像辨識,排除顱骨外部影像來降低後續分析的複雜度,將後續分析範圍限制在顱骨ROI影像I1之後,下一步是利用特徵明顯的局部影像小腦,搭配邊界特徵明顯的頸後皮膚與枕骨,合併兩項影像特徵進行頸後厚度ROI影像I1,2與小腦延髓池ROI影像I1,2,1的辨識,藉此以提高特徵不明顯的局部影像辨識的準確度。In one embodiment of the present invention, the hierarchical anatomical region detection module detects the skull, cerebellum, and septum pellucidum in the fetal cerebellum planar ultrasound input image. The local image features that are obvious and difficult to identify independently are the cerebellomedullary cistern, the posterior neck thickness, and six anatomical landmarks closely related to biological developmental characteristics, including the cerebellum transverse diameter anatomical landmarks P1 and P2, the cerebellomedullary cistern diameter anatomical landmarks P3 and P4, and the posterior neck thickness anatomical landmark P5. P6 uses the skull as the most prominent local image feature. First, the skull ROI local image is identified. Images outside the skull are excluded to reduce the complexity of subsequent analysis. After limiting the scope of subsequent analysis to the skull ROI image I1, the next step is to use the cerebellum, a local image with distinct features, combined with the posterior neck skin and occipital bone, with distinct boundary features. These two image features are combined to identify the posterior neck thickness ROI image I1,2 and the cerebellomedullary cistern ROI image I1,2,1, thereby improving the accuracy of identifying the less prominent local images.

在本發明其中一實施例中,該生物量測模組透過前述自動小腦橫徑解剖標記點P1與P2之間的距離來計算小腦橫徑,並進一步根據偵測到的關鍵組織小腦T2的邊界框位置來檢核P1、P2與小腦橫徑的量測數據可靠性,又該生物量測模組亦透過前述自動小腦延髓池徑解剖標記點P3與P4之間的距離來計算小腦延髓池徑,並進一步根據偵測到的小腦延髓池ROI影像I1,2,1與關鍵組織小腦T2的邊界框位置來檢核P3、P4與小腦延髓池徑的量測數據可靠性,且該生物量測模組亦透過前述頸後厚度解剖標記點P5與P6之間的距離來計算頸後厚度,並進一步根據偵測到的小腦延髓池ROI影像I1,2,1與頸後厚度ROI影像I1,2的邊界框位置來檢核P5、P6與頸後厚度的量測數據可靠性。In one embodiment of the present invention, the biometrics module calculates the cerebellum transverse diameter by the distance between the aforementioned automatic cerebellum transverse diameter anatomical landmarks P1 and P2, and further verifies the reliability of the measurement data of P1, P2 and the cerebellum transverse diameter based on the detected position of the boundary frame of the key tissue cerebellum T2. The biometrics module also calculates the cerebellum medullary cistern diameter by the distance between the aforementioned automatic cerebellum medullary cistern diameter anatomical landmarks P3 and P4, and further verifies the reliability of the measurement data of P1, P2 and the cerebellum transverse diameter based on the detected position of the boundary frame of the key tissue cerebellum T2. The reliability of the measurement data for P3, P4, and the cisterna magna diameter was verified by the bounding box positions of the cerebellum ROI image I1,2,1 and the key tissue cerebellum T2. The biometrics module also calculated the posterior neck thickness using the distance between the aforementioned posterior neck thickness anatomical landmarks P5 and P6. The reliability of the measurement data for P5, P6, and the posterior neck thickness was further verified based on the bounding box positions of the detected cerebellum cistern ROI image I1,2,1 and the posterior neck thickness ROI image I1,2.

透過前述技術手段的具體實現,使本發明能可大幅增進其實用性,而能增加其附加價值,並能提高其經濟效益。Through the specific implementation of the aforementioned technical means, the present invention can significantly enhance its practicality, increase its added value, and improve its economic benefits.

為使 貴審查委員能進一步了解本發明的構成、特徵及其他目的,以下乃舉本發明之若干較佳實施例,並配合圖式詳細說明如后,供讓熟悉該項技術領域者能夠具體實施。To help you better understand the structure, features, and other purposes of this invention, several preferred embodiments of this invention are listed below, along with detailed descriptions of the drawings, so that those skilled in the art can implement them.

隨附圖例示本發明之具體實施例及其構件中,所有關於前與後、左與右、頂部與底部、上部與下部、以及水平與垂直的參考,僅用於方便進行描述,並非限制本發明,亦非將其構件限制於任何位置或空間方向。圖式與說明書中所指定的尺寸,當可在不離開本發明之申請專利範圍內,根據本發明之具體實施例的設計與需求而進行變化。The accompanying drawings illustrate specific embodiments of the present invention and their components. References to front and back, left and right, top and bottom, upper and lower, and horizontal and vertical are for descriptive purposes only and are not intended to limit the present invention or its components to any particular position or spatial orientation. Dimensions specified in the drawings and description may vary according to the design and requirements of the specific embodiments of the present invention without departing from the scope of the claims.

本發明係一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,請參閱圖1,其包括有一階層式解剖區域偵測模組(10)、一關鍵組織偵測模組(20)、一關鍵解剖標記點偵測模組(30)、一生物量測模組(40)及一異常發育判讀模組(50),其中,該關鍵組織偵測模組(20)連接該階層式解剖區域偵測模組(10),而該關鍵解剖標記點偵測模組(30)連接該關鍵組織偵測模組(20),又該生物量測模組(40)連接該關鍵解剖標記點偵測模組(30),再者該異常發育判讀模組(50)連接該生物量測模組(40),用以供將一胎兒小腦平面超音波影像(P1)輸入於該階層式解剖區域偵測模組(10)中,且在經過該關鍵組織偵測模組(20)、該關鍵解剖標記點偵測模組(30)、該生物量測模組(40)及該異常發育判讀模組(50)後,可供用於產出一胎兒超音波檢查報告書(100),以協助臨床醫師辨識胎兒腦部生長是否異常。The present invention is an auxiliary identification system for detecting fetal brain abnormalities by using ultrasound imaging and artificial intelligence. Please refer to FIG1 , which includes a hierarchical anatomical region detection module (10), a key tissue detection module (20), a key anatomical landmark detection module (30), a biometrics module (40) and an abnormal development interpretation module (50), wherein the key tissue detection module (20) is connected to the hierarchical anatomical region detection module (10), the key anatomical landmark detection module (30) is connected to the key tissue detection module (20), and the biometrics module (40) is connected to the abnormal development interpretation module (50). 0) is connected to the key anatomical landmark detection module (30), and the abnormal development judgment module (50) is connected to the biometrics module (40) for inputting a fetal cerebellum plane ultrasound image (P1) into the hierarchical anatomical region detection module (10). After passing through the key tissue detection module (20), the key anatomical landmark detection module (30), the biometrics module (40) and the abnormal development judgment module (50), a fetal ultrasound examination report (100) can be generated to assist clinical physicians in identifying whether the fetal brain growth is abnormal.

請參閱圖2,依照本發明之主要實施例,該胎兒小腦平面超音波影像(P1)需要量測的重要生物發育特徵包含但不限於顱骨橫徑〔biparietal diameter〕、小腦橫徑〔cerebellum〕、小腦延髓池〔cisterna magna〕與頸後厚度〔nuchal fold〕等。先前使用深度學習技術來量測前述重要生物發育特徵的方法主要是偵測包含這些生物發育特徵的最小邊界框〔bounding boxes, BB〕,如顱骨邊界框為BB1、小腦邊界框為BB2、小腦延髓池邊界框為BB3與頸後厚度邊界框為BB4。Referring to Figure 2, according to a primary embodiment of the present invention, the fetal cerebellum planar ultrasound image (P1) includes, but is not limited to, biparietal diameter, cerebellum diameter, cisterna magna, and nuchal fold thickness. Previous methods using deep learning to measure these important biparietal developmental features primarily involved detecting the smallest bounding boxes (BBs) encompassing these biparietal developmental features, such as BB1 for the cranial bounding box, BB2 for the cerebellum bounding box, BB3 for the cisterna magna bounding box, and BB4 for the nuchal fold thickness.

另請參閱圖3與圖4所揭示者,在本發明的實施例中,對胎兒小腦平面超音波影像(P1)之輸入影像而言,其中顱骨與小腦的影像特徵較明顯,使用深度學習物件偵測技術進行顱骨邊界框BB1與小腦邊界框BB2的辨識效果較佳;然而小腦延髓池〔cisterna magna〕與頸後厚度〔nuchal fold〕的影像特徵較不明顯,欠缺好的辨識參照,使得小腦延髓池邊界框BB3與頸後厚度邊界框BB4的辨識效果較差。其中如圖3所示,顱骨邊界框BB1與小腦邊界框BB2辨識實驗結果的精確率-回復率曲線〔precision-recall curve〕明顯較四個邊界框辨識平均值為高,曲線較靠近右上方;而小腦延髓池邊界框BB3與頸後厚度邊界框BB4辨識實驗結果的精確率-回復率曲線明顯較四個邊界框辨識平均值為高,曲線較靠近左下方。另如圖4所示,以F1曲線來觀察,亦可明顯發現顱骨邊界框BB1與小腦邊界框BB2辨識實驗結果的F1分數較高,而小腦延髓池邊界框BB3與頸後厚度邊界框BB4辨識實驗結果的F1分數較低。Please also refer to Figures 3 and 4 . In an embodiment of the present invention, for the input image of the fetal cerebellum planar ultrasound image (P1), the image features of the skull and cerebellum are relatively obvious, and the deep learning object detection technology is used to better identify the skull bounding box BB1 and the cerebellum bounding box BB2. However, the image features of the cisterna magna and the nuchal fold are less obvious and lack a good identification reference, resulting in poor recognition of the cisterna magna bounding box BB3 and the nuchal fold bounding box BB4. As shown in Figure 3, the precision-recall curves for the recognition results of the skull bounding box BB1 and the cerebellum bounding box BB2 are significantly higher than the average of the four bounding box recognition results, with the curves located closer to the upper right. Meanwhile, the precision-recall curves for the recognition results of the cerebellomedullary ventral ... ventral ventral vent ventral vent ventral vent ventral vent ventral vent ventral vent ventral vent ventral vent ventral vent ventral vent ventral vent vent vent vent vent vent vent vent vent vent vent vent vent

又請參閱圖5,在本發明的實施例中,該階層式解剖區域偵測模組(10)利用由上而下逐步縮小局部感興趣的區域〔region of interest,下稱ROI〕影像的進行方式,一步一步剔除與最後所需量測生物發育特徵無關的影像來降低後續分析的複雜度,最後僅保留包含生物發育特徵的最小局部ROI影像,藉此來提高生物發育特徵的辨識效能。因此,由上而下逐步縮小局部ROI影像的過程可以用一個胎兒超音波影像剖析樹〔image parse tree for fetal ultrasound biometry〕的資料結構來表示胎兒超音波影像的分析過程。一個胎兒超音波影像剖析樹 T 為一種樹狀結構,其中影像剖析樹 T 的根節點〔root node〕代表整張原始胎兒超音波輸入影像;由根節點展開一個或多個分支節點〔branch node〕,每個分支節點代表一個局部ROI影像,此局部ROI影像由上層節點對應的局部ROI影像中透過特定物件偵測卷積網路自動偵測與擷取而得;每個分支節點亦可展開一個或多個分支節點,上層分支節點ROI影像包含下層分支節點ROI影像,因而產生上下游影像剖析關係的樹狀結構;終端分支節點〔terminal branch nodes〕為影像剖析樹 T 的最末端的分支節點,每個終端分支節點可再分為一個或多個之關鍵組織〔key tissues〕或關鍵解剖標記點〔key anatomical landmarks〕,其中每個關鍵組織係透過特定物件偵測或影像分割演算法由此終端分支節點對應的局部ROI影像偵測而得,每個關鍵解剖標記點係透過特定關鍵點偵測演算法由此終端分支節點對應的局部ROI影像偵測而得。局部ROI影像的選取以必須包含影像特徵明顯的組織為原則,目的為讓物件偵測與關鍵點偵測演算法能有足夠卷積影像特徵來達成良好辨識效能。Please refer to FIG5 . In an embodiment of the present invention, the hierarchical anatomical region detection module (10) utilizes a method of gradually reducing the image of a region of interest (hereinafter referred to as ROI) from top to bottom, step by step eliminating images irrelevant to the final required biological development characteristics to reduce the complexity of subsequent analysis, and finally retains only the smallest local ROI image containing the biological development characteristics, thereby improving the recognition efficiency of the biological development characteristics. Therefore, the process of gradually reducing the local ROI image from top to bottom can be represented by a data structure of an image parse tree for fetal ultrasound biometry to represent the analysis process of the fetal ultrasound image. A fetal ultrasound image analysis tree T is a tree structure, where the root node of the image analysis tree T represents the entire original fetal ultrasound input image; one or more branch nodes are expanded from the root node, each branch node represents a local ROI image, which is automatically detected and extracted from the local ROI image corresponding to the upper-level node through a specific object detection convolutional network; each branch node can also expand one or more branch nodes, and the upper-level branch node ROI image includes the lower-level branch node ROI image, thus generating a tree structure of upstream and downstream image analysis relationships; the terminal branch nodes are the image analysis tree T Each terminal branch node can be further divided into one or more key tissues or key anatomical landmarks. Each key tissue is detected by a specific object detection or image segmentation algorithm in the local ROI image corresponding to the terminal branch node. Each key anatomical landmark is detected by a specific key point detection algorithm in the local ROI image corresponding to the terminal branch node. The local ROI image is selected based on the principle that it must contain tissues with distinct image features. The purpose is to ensure that the object detection and key point detection algorithms have sufficient convolutional image features to achieve good recognition performance.

另請參閱圖6,在本發明的實施例中,對於一張胎兒小腦平面超音波影像(P1),首先使用預先訓練好的顱骨ROI偵測模型,由該胎兒小腦平面超音波影像(P1)中偵測出顱骨ROI影像I1所在的邊界框,排除掉與腦部無關的其他超音波影像。在該顱骨ROI影像I1中,解剖特徵明顯的組織為透明中膈與小腦,而相對偵測困難的組織為小腦延髓池與頸後厚度等。然而小腦延髓池與頸後厚度是診斷胎兒發育結構異常非常重要的生物量測重點,為提高小腦延髓池與頸後厚度的卷積網路偵測準確率,則利用解剖特徵明顯容易偵測的小腦,配合頸後厚度的邊緣影像來進行頸後厚度ROI影像 I1,2 區域的偵測。同理,由於小腦延髓池位置不易獨立進行辨識,則透過兩項新方法來改善小腦延髓池位置的偵測效能:首先,透過由上而下的層層剖析,將辨識小腦延髓池的搜尋範圍由整張超音波影像降至頸後厚度ROI影像 I1,2 區域,使小腦延髓池辨識的複雜度大為降低。接著,透過解剖特徵明顯容易偵測的小腦,配合顱骨後方邊界明顯的特點來進行小腦延髓池ROI影像 I1,2,1的偵測。經由將搜尋目標區域大幅縮小至小腦延髓池ROI影像 I1,2,1,再進一步由小腦延髓池ROI影像 I1,2,1中,使用關鍵點偵測技術進行小腦橫徑解剖標記點P1, P2,以及小腦延髓池徑解剖標記點P3, P4的偵測。同理,頸後厚度解剖標記點P5, P6亦僅需由已降低至頸後厚度ROI影像 I1,2 區域中搜尋即可。解剖組織透明中膈T1與小腦T2,各自亦僅需由已降低搜尋範圍的透明中隔ROI影像I1,1與小腦延髓池ROI影像I1,2,1區域中搜尋即可。Referring also to Figure 6 , in an embodiment of the present invention, a pre-trained cranial ROI detection model is first used to detect a bounding box within a fetal cerebellum planar ultrasound image (P1) within the cranial ROI image I1, excluding other ultrasound images not related to the brain. Within the cranial ROI image I1, the anatomically distinct tissues are the septum pellucidum and cerebellum, while relatively difficult-to-detect tissues include the cerebellomedullary cisterna magna and the posterior cervical thickness. However, the cistern and posterior neck thickness are crucial biometric measurements for diagnosing fetal structural abnormalities. To improve the accuracy of convolutional network detection of these areas, the cerebellum, whose anatomical features are readily detectable, was combined with images of the posterior neck thickness edge to detect the posterior neck thickness ROI region I1,2. Similarly, because the location of the cistern is difficult to identify independently, two new methods were employed to improve its detection: First, through top-down layer-by-layer analysis, the search area for cistern identification was narrowed from the entire ultrasound image to the posterior neck thickness ROI region I1,2, significantly reducing the complexity of cistern identification. Next, the cerebellum, with its distinct anatomical features and easy-to-detect features, is detected within the cerebello-medullary ROI image I1,2,1, using the distinct posterior cranial boundary. By significantly narrowing the search target region to the cerebello-medullary ROI image I1,2,1, keypoint detection techniques are then used within the cerebello-medullary ROI image I1,2,1 to detect the cerebellar transverse diameter anatomical landmarks P1 and P2, as well as the cerebello-medullary diametrical anatomical landmarks P3 and P4. Similarly, the posterior cervical thickness anatomical landmarks P5 and P6 can be found simply within the region already narrowed within the posterior cervical thickness ROI image I1,2. The anatomical tissues of the septum pellucidum T1 and cerebellum T2 can be searched only within the septum pellucidum ROI image I1,1 and the cerebellomedullary cistern ROI image I1,2,1, respectively, which have a reduced search range.

再者,請參閱圖7,在本發明的實施例中,對於一張胎兒小腦平面超音波影像(P1),對應圖6的胎兒超音波影像剖析樹在此張輸入影像中的四個分支節點ROI影像 I1、I1,1、I1,2 與 I1,2,1如圖所示,分支節點ROI影像的選擇以影像特徵明顯使得對應的四個物件偵測模型得以準確辨識ROI影像邊界框的上、下、左、右邊框位置為原則。例如I1可參考胎兒顱骨的上下左右輪廓作為 I1 邊界框偵測依據;ROI影像I1,1可參考胎兒腦部的透明中隔腔與雙側側腦室前角的明顯特徵進行邊界框偵測依據;頸後厚度〔nuchal fold〕之ROI影像 I1,2 的右側邊界可根據顱骨外側皮膚邊界定位,但頸後厚度的左側與上下方並無足夠影像特徵提供給物件偵測模型進行定位,故本發明提出可借助特徵明顯的小腦來提供ROI影像 I1,2 左側與上下方的邊界參考定位特徵,因而頸後厚度〔nuchal fold〕之ROI影像 I1,2 納入小腦區域藉此來提高頸後厚度〔nuchal fold〕之ROI影像 I1,2 的偵測準確度;同理,在此超音波影像範例中,小腦延髓池ROI影像 I1,2,1 的右邊界雖有枕骨可進行邊界參考定位,但同樣缺少左側與上下方定位的影像特徵,故小腦延髓池的ROI影像 I1,2,1 亦納入小腦區域來提供左側與上下方的邊界參考定位特徵。完成由上而下四個分支節點ROI影像 I1、I1,1、I1,2 與 I1,2,1的偵測後,對解剖組織透明中膈 T1與小腦T2 的辨識而言,各自的搜尋範圍限縮到透明中隔ROI影像 I1,1 與小腦延髓池ROI影像 I1,2,1 局部區域,故可大幅降低偵測問題的複雜度,提高此兩個解剖組織辨識的效能。Furthermore, referring to FIG. 7 , in an embodiment of the present invention, for a fetal cerebellum planar ultrasound image (P1), the four branch node ROI images I1, I1,1, I1,2, and I1,2,1 corresponding to the fetal ultrasound image analysis tree in FIG. 6 are shown in the figure. The branch node ROI images are selected based on the principle that the image features are obvious so that the corresponding four object detection models can accurately identify the upper, lower, left, and right frame positions of the ROI image boundary box. For example, I1 can refer to the upper and lower left and right contours of the fetal skull as the basis for I1 bounding box detection; the ROI image I1,1 can refer to the clear septum cavity and the bilateral anterior horns of the ventricles in the fetal brain for the basis for bounding box detection; the right side boundary of the ROI image I1,2 of the nuchal fold can be located based on the skin boundary on the outer side of the skull, but the left side and the upper and lower sides of the nuchal fold do not have sufficient image features to provide for the object detection model for positioning. Therefore, the present invention proposes to use the cerebellum with obvious features to provide the left side and the upper and lower side boundary reference positioning features of the ROI image I1,2. Therefore, the ROI image I1,2 of the nuchal fold is included in the cerebellum region to improve the nuchal fold. Similarly, in this ultrasound image example, although the right boundary of the cerebellomedullary cistern ROI image I1,2,1 has the occipital bone for boundary reference positioning, it also lacks image features for left-lateral and superior-inferior positioning. Therefore, the cerebellum region is also included in the cerebellomedullary cistern ROI image I1,2,1 to provide left-lateral and superior-inferior boundary reference positioning features. After completing the detection of the four branch node ROI images I1, I1,1, I1,2, and I1,2,1 from top to bottom, the search range for the identification of the anatomical tissues of the transparent septum T1 and cerebellum T2 is limited to the local areas of the transparent septum ROI image I1,1 and the cerebellomedullary cistern ROI image I1,2,1, respectively. This can significantly reduce the complexity of the detection problem and improve the efficiency of identifying these two anatomical tissues.

又請參閱圖8,在本發明的實施例中,對於一張胎兒小腦平面超音波影像(P1),對應圖6胎兒超音波影像剖析樹的影像由上而下逐步剖析展開的過程如圖8所示。最左方的圖為輸入胎兒小腦平面超音波影像(P1),使用預訓練的顱骨〔skull〕ROI影像偵測模型的顱骨〔skull〕ROI影像局部影像I1的邊界框如圖虛線所示。搜尋範圍限縮到ROI影像 I1 局部影像後,再使用預訓練的透明中隔〔CSP〕ROI影像偵測模型與頸後厚度〔nuchal fold〕ROI影像兩個偵測模型分別進行透明中隔ROI影像I1,1與頸後厚度ROI影像I1,2局部影像偵測。搜尋範圍限縮到 I1,2 局部影像後,再使用預訓練的小腦延髓池〔cisterna magna〕ROI影像偵測模型進行小腦延髓池ROI影像I1,2,1局部影像偵測。最後由透明中隔ROI影像I1,1使用預訓練的透明中隔偵測模型偵測解剖組織透明中膈 T1;由小腦延髓池ROI影像I1,2,1使用預訓練的小腦偵測模型偵測解剖組織小腦T2;由小腦延髓池ROI影像I1,2,1使用預訓練的小腦延髓池徑與小腦橫徑關鍵點偵測模型偵測小腦橫徑解剖標記點P1, P2,以及小腦延髓池徑解剖標記點P3, P4的偵測;由頸後厚度ROI影像I1,2局部影像使用預訓練的頸後厚度關鍵點偵測模型偵測頸後厚度解剖標記點P5, P6。Referring also to Figure 8 , in an embodiment of the present invention, the top-down analysis and development process for a fetal cerebellum ultrasound image (P1) corresponding to the fetal ultrasound image analysis tree in Figure 6 is shown in Figure 8 . The leftmost figure shows the input fetal cerebellum ultrasound image (P1). The bounding box of the skull ROI image partial image I1, as determined by the pretrained skull ROI image detection model, is indicated by the dashed line. After the search range is narrowed to the ROI image partial image I1, the pretrained CSP ROI image detection model and the nuchal fold ROI image detection model are then used to perform detection on the CSP ROI image partial image I1,1 and the nuchal fold ROI image partial image I1,2, respectively. After the search range is narrowed to the I1,2 local image, the pre-trained cisterna magna ROI image detection model is used to perform local image detection of the cisterna magna ROI image I1,2,1. Finally, the anatomical tissue septum transparent T1 was detected from the septum transparent ROI image I1,1 using the pretrained septum transparent detection model; the anatomical tissue cerebellum T2 was detected from the cistern ROI image I1,2,1 using the pretrained cerebellum magna diameter and cerebellar transverse diameter key point detection models; the cerebellar transverse diameter anatomical landmarks P1 and P2, as well as the cerebellum magna diameter anatomical landmarks P3 and P4 were detected from the cistern ROI image I1,2,1; and the posterior cervical thickness anatomical landmarks P5 and P6 were detected from the local image of the posterior cervical thickness ROI image I1,2 using the pretrained posterior cervical thickness key point detection model.

在本發明的實施例中,胎兒超音波影像剖析樹中的每個分支節點代表一個局部ROI影像,此局部ROI影像由上層節點對應的局部ROI影像中透過對應的預訓練好的物件偵測卷積網路模型自動偵測與擷取而得。物件偵測卷積網路模型可以使用YOLO系列物件偵測模型、R-CNN系列物件偵測模型、SSD系列物件偵測模型、RatinaNet系列物件偵測模型、或EfficientDet物件偵測模型,但不在此限。In this embodiment of the present invention, each branch node in the fetal ultrasound image analysis tree represents a local ROI image. This local ROI image is automatically detected and extracted from the local ROI image corresponding to the upper-level node using the corresponding pre-trained object detection convolutional network model. The object detection convolutional network model can use, but is not limited to, the YOLO series object detection model, the R-CNN series object detection model, the SSD series object detection model, the RatinaNet series object detection model, or the EfficientDet object detection model.

且在本發明的實施例中胎兒超音波影像剖析樹中的每個終端分支節點〔terminal branch nodes〕為影像剖析樹 T 的最末端的分支節點,每個終端分支節點可再分為一個或多個之關鍵組織〔key tissues〕或關鍵解剖標記點〔key anatomical landmarks〕 。該關鍵組織偵測模組(20)根據透過對應的預訓練好的物件偵測卷積網路模型或影像分割演算法自動偵測與擷取每個關鍵組織局部影像。其中物件偵測卷積網路模型可以使用YOLO系列物件偵測模型、R-CNN系列物件偵測模型、SSD系列物件偵測模型、RatinaNet系列物件偵測模型、或EfficientDet物件偵測模型等,但不在此限;而影像分割演算法可以使用U-Net系列物件偵測模型、DeepLab系列物件偵測模型或PSPNet系列物件偵測模型等,但不在此限。又關鍵解剖標記點偵測模組(30)透過對應的預訓練好的關鍵點偵測模型由此終端分支節點對應的局部ROI影像偵測得到每個關鍵解剖標記點。其中關鍵點偵測模型可以使用DeepLabCut、HRNet、AlphaPose、CenterNet、YOLOv8或Key.Net等,但不在此限。In the embodiment of the present invention, each terminal branch node in the fetal ultrasound image analysis tree is the terminal branch node of the image analysis tree T, and each terminal branch node can be further divided into one or more key tissues or key anatomical landmarks. The key tissue detection module (20) automatically detects and captures each key tissue local image based on the corresponding pre-trained object detection convolutional network model or image segmentation algorithm. The object detection convolutional network model may use, but is not limited to, a YOLO series object detection model, an R-CNN series object detection model, an SSD series object detection model, a RatinaNet series object detection model, or an EfficientDet series object detection model; and the image segmentation algorithm may use, but is not limited to, a U-Net series object detection model, a DeepLab series object detection model, or a PSPNet series object detection model. The key anatomical landmark detection module (30) obtains each key anatomical landmark by detecting the local ROI image corresponding to the terminal branch node using the corresponding pre-trained key point detection model. Key point detection models may include, but are not limited to, DeepLabCut, HRNet, AlphaPose, CenterNet, YOLOv8, or Key.Net.

另在本發明的實施例中,該生物量測模組(40)根據該關鍵解剖標記點偵測模組(30)所偵測到的關鍵解剖標記點配對Pi與Pj,計算Pi與Pj兩個配對標記點的歐幾里得距離得到生物量測數值。例如小腦橫徑由計算解剖標記點P1, P2間的歐幾里得距離而得;小腦延髓池徑由計算解剖標記點P3, P4的歐幾里得距離而得;頸後厚度由計算解剖標記點P5, P6的歐幾里得距離而得。In another embodiment of the present invention, the biometrics module (40) calculates the Euclidean distance between the two paired anatomical landmarks Pi and Pj according to the key anatomical landmark detection module (30) to obtain biometric values. For example, the transverse diameter of the cerebellum is obtained by calculating the Euclidean distance between the anatomical landmarks P1 and P2; the diameter of the cerebellomedullary cisterna magna is obtained by calculating the Euclidean distance between the anatomical landmarks P3 and P4; and the posterior neck thickness is obtained by calculating the Euclidean distance between the anatomical landmarks P5 and P6.

且在本發明的實施例中,該異常發育判讀模組(50)根據是否偵測到關鍵組織以及生物量測模組(40)所計算出的各種生物量測數值,依照各種生物量測數值是否超出各項生物量測統計正常值範圍來判斷發育異常的風險,最後根據各項發育異常的風險估計值產生該胎兒超音波檢查報告書(100)。In an embodiment of the present invention, the abnormal development judgment module (50) judges the risk of developmental abnormality based on whether key tissues are detected and the various biometric values calculated by the biometric module (40), and whether the various biometric values exceed the normal range of the biometric statistics. Finally, the fetal ultrasound examination report (100) is generated based on the estimated risk values of the various developmental abnormalities.

經由前述之系統架構及說明可知,由於現有胎兒超音波影像分析技術主要是對整個超音波影像進行分類,或是直接使用物件偵測技術對胎兒超音波影像的重要解剖特徵進行偵測。但超音波影像內的解剖特徵往往由於影像的卷積特徵特異性不夠,導致直接使用物件偵測進行辨識時效能不佳,而透過本發明主要技術之開發,使得本發明具有下列之功效及特徵,諸如:As can be seen from the aforementioned system architecture and description, existing fetal ultrasound image analysis technologies primarily classify the entire ultrasound image or directly use object detection technology to detect important anatomical features in fetal ultrasound images. However, anatomical features within ultrasound images often lack specificity due to the volumetric characteristics of the image, resulting in poor performance when directly using object detection for identification. The development of the main technology of the present invention has the following benefits and features, such as:

1、本發明提出胎兒超音波影像剖析樹,係利用由上而下逐步縮小局部ROI影像的進行方式,一步一步剔除與最後所需量測生物發育特徵無關的影像來降低後續分析的複雜度,最後僅保留包含生物發育特徵的最小局部ROI影像,藉此來提高生物發育特徵的辨識效能。1. This invention proposes a fetal ultrasound image analysis tree that utilizes a top-down, step-by-step approach to reduce the complexity of subsequent analysis by gradually eliminating images irrelevant to the desired biological developmental characteristics. Ultimately, only the smallest local ROI image containing the biological developmental characteristics is retained, thereby improving the efficiency of identifying biological developmental characteristics.

2、本發明之局部ROI影像的選取以必須包含影像特徵明顯的組織為原則,目的為讓物件偵測與關鍵點偵測演算法能有足夠卷積影像特徵來達成良好辨識效能。例如利用解剖特徵明顯容易偵測的小腦,配合頸後厚度的邊緣影像來進行頸後厚度ROI影像區域的偵測。2. The selection of local ROI images in this invention is based on the principle that they must include tissue with distinct imaging features. This ensures that object detection and keypoint detection algorithms have sufficient convolutional image features to achieve good recognition performance. For example, the cerebellum, whose anatomical features are clearly detectable, is combined with the posterior neck thickness edge image to detect the posterior neck thickness ROI image region.

3、本發明之胎兒超音波影像剖析樹中的每個終端分支節點〔terminal branch nodes〕為影像剖析樹 T 的最末端的分支節點,每個終端分支節點可再分為一個或多個關鍵組織〔key tissues〕或關鍵解剖標記點〔key anatomical landmarks〕,可在複雜度降至最小狀況下有效偵測關鍵組織與關鍵解剖標記點,而不是在整張胎兒超音波影像中尋找關鍵組織與關鍵解剖標記點。3. Each terminal branch node in the fetal ultrasound image analysis tree of the present invention is the terminal branch node of the image analysis tree T. Each terminal branch node can be further divided into one or more key tissues or key anatomical landmarks. This allows for the effective detection of key tissues and key anatomical landmarks while minimizing complexity, rather than searching for key tissues and key anatomical landmarks within the entire fetal ultrasound image.

綜上所述,可以理解到本發明為一創意極佳之發明創作,除了有效解決習式者所面臨的問題,更大幅增進功效,且在相同的技術領域中未見相同或近似的產品創作或公開使用,同時具有功效的增進,故本發明已符合發明專利有關「新穎性」與「進步性」的要件,乃依法提出發明專利之申請。In summary, it can be understood that the present invention is a highly creative creation that not only effectively solves problems faced by practitioners but also significantly enhances efficacy. Furthermore, no identical or similar products have been created or publicly used in the same technical field, and this invention also exhibits enhanced efficacy. Therefore, the present invention meets the requirements of "novelty" and "advancedness" for invention patents, and therefore, an invention patent application is filed in accordance with the law.

10:階層式解剖區域偵測模組 20:關鍵組織偵測模組 30:關鍵解剖標記點偵測模組 40:生物量測模組 50:異常發育判讀模組 100:胎兒超音波檢查報告書 P1:胎兒小腦平面超音波影像10: Hierarchical Anatomical Region Detection Module 20: Key Tissue Detection Module 30: Key Anatomical Landmark Detection Module 40: Biometric Measurement Module 50: Developmental Abnormality Interpretation Module 100: Fetal Ultrasound Examination Report P1: Fetal Cerebellum Planar Ultrasound Image

圖1:係本發明的輔助辨識系統架構示意圖。 圖2:係本發明實施例胎兒小腦平面超音波影像需要量測的重要生物發育特徵包含顱骨橫徑〔biparietal diameter〕、小腦橫徑〔cerebellum〕、小腦延髓池〔cisterna magna〕與頸後厚度〔nuchal fold〕及其所各自對應的最小邊界框〔bounding boxes, BB〕之示意圖。 圖3:係本發明實施例展示胎兒小腦平面超音波影像中各類組織的辨識困難度不同的辨識結果的精確率-回復率曲線〔precision-recall curve〕之示意圖,其中腦〔brain〕與小腦〔cerebellum〕的影像特徵較明顯,卷積網路較易辨識,其Precision-Recall曲線較靠近右上角;小腦延髓池〔cisterna magna〕與頸後厚度〔nuchal fold〕 的影像特徵較不明顯,卷積網路較難辨識,其Precision-Recall曲線較遠離右上角。 圖4:係本發明實施例展示胎兒小腦平面超音波影像中各類組織的辨識困難度不同的辨識結果的F1分數之示意圖。 圖5:係本發明提出之胎兒超音波影像剖析樹〔image parse tree for fetal ultrasound biometry〕之典型結構圖。 圖6:係本發明實施例所繪示之胎兒小腦平面超音波輸入影像剖析樹之結構示意圖。 圖7:係本發明實施例所繪示之胎兒小腦平面超音波輸入影像剖析樹所對應的超音波影像、局部超音波影像中感興趣位置〔region of interest, ROI〕、關鍵組織與關鍵解剖標記點之示意圖。 圖8:係本發明實施例所繪示之胎兒小腦平面超音波輸入影像由上而下剖析過程之示意圖。 Figure 1: Schematic diagram of the auxiliary identification system architecture of the present invention. Figure 2: Schematic diagram of the key biological developmental characteristics that need to be measured in fetal cerebellum planar ultrasound imaging according to an embodiment of the present invention, including cranial biparietal diameter, cerebellum biparietal diameter, cisterna magna, and nuchal fold, as well as their corresponding minimum bounding boxes (BBs). Figure 3 is a schematic diagram showing the precision-recall curves of various tissue types in fetal cerebellum planar ultrasound images with varying degrees of difficulty, according to an embodiment of the present invention. The brain and cerebellum have more distinct imaging features, making them easier to identify using the convolutional network, and their precision-recall curves are closer to the upper right corner. The cisterna magna and nuchal fold have less distinct imaging features, making them more difficult to identify using the convolutional network, and their precision-recall curves are farther from the upper right corner. Figure 4: A schematic diagram showing the F1 scores of various tissue types in fetal cerebellar planar ultrasound images with varying degrees of difficulty, according to an embodiment of the present invention. Figure 5: A typical structural diagram of the image parse tree for fetal ultrasound biometry proposed in the present invention. Figure 6: A schematic diagram showing the structural diagram of the fetal cerebellar planar ultrasound input image parse tree, according to an embodiment of the present invention. Figure 7: A schematic diagram showing the ultrasound image, region of interest (ROI), key tissues, and key anatomical landmarks corresponding to the fetal cerebellar planar ultrasound input image parse tree, according to an embodiment of the present invention. Figure 8: A schematic diagram illustrating the top-down analysis process of a planar ultrasound input image of the fetal cerebellum according to an embodiment of the present invention.

10:階層式解剖區域偵測模組 10: Hierarchical anatomical region detection module

20:關鍵組織偵測模組 20: Key Organization Detection Module

30:關鍵解剖標記點偵測模組 30: Key anatomical landmark detection module

40:生物量測模組 40: Biometrics Module

50:異常發育判讀模組 50: Abnormal Development Interpretation Module

100:胎兒超音波檢查報告書 100: Fetal Ultrasound Examination Report

P1:胎兒小腦平面超音波影像 P1: Planar ultrasound image of the fetal cerebellum

Claims (5)

一種應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其包含有一階層式解剖區域偵測模組、一關鍵組織偵測模組、一關鍵解剖標記點偵測模組、一生物量測模組及一異常發育判讀模組;其中該階層式解剖區域偵測模組對輸入之一胎兒小腦平面超音波影像,以由上而下階層式偵測後擷取局部區域影像,將影像特徵明顯的一個或多個ROI影像,該由上而下逐步縮小局部ROI影像的過程可以用一個胎兒超音波影像剖析樹的資料結構來表示胎兒超音波影像的分析過程,以高度可靠穩固的方式逐層分離出ROI影像,且該等ROI影像包含一個或多個關鍵組織,但ROI影像不必完全與關鍵組織影像切齊,而ROI影像的定義需考慮到滿足卷積網路在進行偵測之ROI影像邊界時,每個ROI區域中能有足夠多而可靠的影像生物解剖特徵提供給卷積網路,使其能準確地自動偵測到此ROI影像;而該關鍵組織偵測模組連接於該階層式解剖區域偵測模組,其主要的功能為對階層式解剖區域偵測模組所擷取的ROI影像,在此局部ROI影像中以物件偵測方法找出局部範圍內的所有關鍵組織;又該關鍵解剖標記點偵測模組連接該關鍵組織偵測模組,其配合已找出的關鍵組織位置資訊,以關鍵點偵測方法找出在此局部ROI影像中的所有關鍵解剖標記點;另該生物量測模組連接該關鍵解剖標記點偵測模組,其以量測關鍵解剖標記點間距或是影像分割技術量測重要生物發育特徵;再者,該異常發育判讀模組連接該生物量測模組,其根據該生物量測模組計算出的生物發育特徵數值,而依據醫療標準規範或機器學習方法來判讀是否發生特定發育異常風險狀況。An auxiliary identification system for detecting fetal brain abnormalities using ultrasound imaging and artificial intelligence includes a hierarchical anatomical region detection module, a key tissue detection module, a key anatomical landmark detection module, a biometrics module, and an abnormal development interpretation module. The hierarchical anatomical region detection module detects a fetal cerebellum plane ultrasound image from top to bottom, captures a local region image, and selects one or more ROI images with obvious image features. The process of gradually reducing the local ROI image can be represented by a fetal ultrasound image analysis tree data structure to separate the ROI image layer by layer in a highly reliable and stable manner. The ROI image contains one or more key tissues, but the ROI image does not have to be completely aligned with the key tissue image. The definition of the ROI image needs to take into account the fact that there are enough reliable images in each ROI area when the convolution network is detecting the ROI image boundary. The biological anatomical features are provided to the convolutional network so that it can accurately and automatically detect the ROI image. The key tissue detection module is connected to the hierarchical anatomical region detection module. Its main function is to find all the key tissues in the local range of the ROI image captured by the hierarchical anatomical region detection module by using the object detection method. The key anatomical landmark detection module is connected to the key tissue detection module, which cooperates with the key tissue position information found to find the key tissues. A keypoint detection method locates all key anatomical landmarks within the local ROI image. A biometrics module, connected to the key anatomical landmark detection module, measures important biological developmental characteristics by measuring the distance between key anatomical landmarks or using image segmentation techniques. Furthermore, a developmental abnormality assessment module, connected to the biometrics module, uses the biological developmental characteristic values calculated by the biometrics module to determine whether a specific developmental abnormality risk condition has occurred, based on medical standards or machine learning methods. 如請求項1所述應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其中該胎兒超音波影像剖析樹 T 為一種樹狀結構,而影像剖析樹 T 的根節點代表整張原始胎兒超音波輸入影像;由根節點展開一個或多個分支節點,每個分支節點代表一個局部ROI影像,此局部ROI影像由上層節點對應的局部ROI影像中透過特定物件偵測卷積網路自動偵測與擷取而得,又每個分支節點亦可展開一個或多個分支節點,上層分支節點ROI影像包含下層分支節點ROI影像,因而產生上下游影像剖析關係的樹狀結構,另每個分支節點之最末端具有該影像剖析樹 T 的一個或多個終端分支節點,每個終端分支節點可再分為一個或多個關鍵組織或關鍵解剖標記點,其中每個關鍵組織係透過特定物件偵測或影像分割演算法由此終端分支節點對應的局部ROI影像偵測而得,每個關鍵解剖標記點係透過特定關鍵點偵測演算法由此終端分支節點對應的局部ROI影像偵測而得。As described in claim 1, an auxiliary recognition system for detecting fetal brain abnormalities using artificial intelligence using ultrasound images, wherein the fetal ultrasound image analysis tree T is a tree structure, and the root node of the image analysis tree T represents the entire original fetal ultrasound input image; one or more branch nodes are expanded from the root node, each branch node represents a local ROI image, and this local ROI image is automatically detected and captured from the local ROI image corresponding to the upper-level node through a specific object detection convolutional network. Each branch node can also expand one or more branch nodes, and the upper-level branch node ROI image includes the lower-level branch node ROI image, thereby generating a tree structure of upstream and downstream image analysis relationships, and each branch node has the image analysis tree T at the end. One or more terminal branch nodes, each terminal branch node can be further divided into one or more key tissues or key anatomical landmarks, wherein each key tissue is detected from the local ROI image corresponding to the terminal branch node through a specific object detection or image segmentation algorithm, and each key anatomical landmark is detected from the local ROI image corresponding to the terminal branch node through a specific key point detection algorithm. 如請求項2所述應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其中該階層式解剖區域偵測模組對於一張胎兒小腦平面超音波輸入影像,其對應的胎兒超音波影像剖析樹的第1層節點為一顱骨ROI影像,而該顱骨ROI影像展開的第2層節點包含一透明中膈ROI影像與一頸後厚度ROI影像,其中該透明中隔ROI影像包含一個關鍵組織透明中膈T1,另該頸後厚度ROI影像展開的第3層節點包含一小腦延髓池ROI影像,至於該小腦延髓池ROI影像展開包含一個關鍵組織小腦T2,以及三組關鍵解剖標記點小腦橫徑解剖標記點P1, P2、小腦延髓池徑解剖標記點P3, P4、以及頸後厚度解剖標記點P5, P6。As described in claim 2, an auxiliary identification system for detecting fetal brain abnormalities using ultrasound images with artificial intelligence, wherein the hierarchical anatomical region detection module, for a fetal cerebellum plane ultrasound input image, has a first-level node of a fetal ultrasound image analysis tree corresponding to a skull ROI image, and the second-level node of the skull ROI image expanded includes a transparent septum ROI image and a posterior cervical thickness ROI image, wherein the transparent septum ROI image includes a key tissue transparent septum T1, and the third layer node of the expanded posterior cervical thickness ROI image includes a cerebellomedullary cistern ROI image, and the expanded cerebellomedullary cistern ROI image includes a key tissue cerebellum T2, as well as three sets of key anatomical landmarks: cerebellum transverse diameter anatomical landmarks P1, P2, cerebellomedullary cistern diameter anatomical landmarks P3, P4, and posterior cervical thickness anatomical landmarks P5, P6. 如請求項3所述應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其中該階層式解剖區域偵測模組於胎兒小腦平面超音波輸入影像中,影像特徵明顯的局部影像為顱骨、小腦與透明中隔,而相對而言影像特徵不明顯不易獨立進行辨識的局部影像為小腦延髓池、頸後厚度以及與生物發育特徵密切相關的六個解剖標記點包含小腦橫徑解剖標記點P1, P2、小腦延髓池徑解剖標記點P3, P4、以及頸後厚度解剖標記點P5, P6,其係利用特徵明顯的局部影像為顱骨,先進行顱骨ROI局部影像辨識,排除顱骨外部影像來降低後續分析的複雜度,將後續分析範圍限制在顱骨ROI影像之後,下一步是利用特徵明顯的局部影像小腦,搭配邊界特徵明顯的頸後皮膚與枕骨,合併兩項影像特徵進行頸後厚度ROI影像與小腦延髓池ROI影像的辨識,藉此以提高特徵不明顯的局部影像辨識的準確度。As described in claim 3, an auxiliary identification system for detecting fetal brain abnormalities using ultrasound imaging and artificial intelligence, wherein the hierarchical anatomical region detection module detects, in a planar ultrasound input image of the fetal cerebellum, the skull, cerebellum, and septum pellucidum with obvious image features, while the image features of the cerebellomedullary cistern, the posterior neck thickness, and six anatomical landmarks closely related to biological developmental characteristics, including the cerebellum transverse diameter anatomical landmarks P1 and P2, the cerebellomedullary cistern diameter anatomical landmarks P3 and P4, and the posterior neck thickness anatomical landmark P5. P6 uses the skull as the most prominent local image feature, first performing skull ROI local image identification. Excluding images outside the skull reduces the complexity of subsequent analysis, limiting the scope of subsequent analysis to the skull ROI image. The next step is to use the cerebellum, a local image with distinct features, combined with the posterior neck skin and occipital bone, with distinct boundary features, to combine these two image features to identify the posterior neck thickness ROI image and the cerebellomedullary cisterna magna ROI image, thereby improving the accuracy of local image identification with less prominent features. 如請求項4所述應用超音波影像以人工智慧偵測胎兒腦部異常之輔助辨識系統,其中該生物量測模組透過前述自動小腦橫徑解剖標記點P1與P2之間的距離來計算小腦橫徑,並進一步根據偵測到的關鍵組織小腦T2的邊界框位置來檢核P1、P2與小腦橫徑的量測數據可靠性,又該生物量測模組亦透過前述自動小腦延髓池徑解剖標記點P3與P4之間的距離來計算小腦延髓池徑,並進一步根據偵測到的小腦延髓池ROI影像與關鍵組織小腦T2的邊界框位置來檢核P3、P4與小腦延髓池徑的量測數據可靠性,且該生物量測模組亦透過前述頸後厚度解剖標記點P5與P6之間的距離來計算頸後厚度,並進一步根據偵測到的小腦延髓池ROI影像與頸後厚度ROI影像的邊界框位置來檢核P5、P6與頸後厚度的量測數據可靠性。As described in claim 4, an auxiliary identification system for detecting fetal brain abnormalities using ultrasound images with artificial intelligence, wherein the biometrics module calculates the cerebellum transverse diameter by the distance between the aforementioned automatic cerebellum transverse diameter anatomical landmarks P1 and P2, and further verifies the reliability of the measurement data of P1, P2 and the cerebellum transverse diameter based on the detected boundary frame position of the key tissue cerebellum T2, and the biometrics module also calculates the cerebellum transverse diameter by the distance between the aforementioned automatic cerebellomedullary cisterna magna anatomical landmarks P3 and P4. The diameter of the cerebellomedullary cistern is measured, and the reliability of the measurement data of P3, P4, and the cerebellomedullary cistern diameter is further verified based on the detected cerebellomedullary cistern ROI image and the bounding box position of the key cerebellar tissue T2. The biometrics module also calculates the posterior neck thickness using the distance between the aforementioned posterior neck thickness anatomical landmarks P5 and P6. The reliability of the measurement data of P5, P6, and the posterior neck thickness is further verified based on the bounding box position of the detected cerebellomedullary cistern ROI image and the posterior neck thickness ROI image.
TW113144690A 2024-11-20 2024-11-20 An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities TWI897721B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113144690A TWI897721B (en) 2024-11-20 2024-11-20 An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113144690A TWI897721B (en) 2024-11-20 2024-11-20 An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities

Publications (1)

Publication Number Publication Date
TWI897721B true TWI897721B (en) 2025-09-11

Family

ID=97832368

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113144690A TWI897721B (en) 2024-11-20 2024-11-20 An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities

Country Status (1)

Country Link
TW (1) TWI897721B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765895B (en) * 2016-06-20 2022-06-01 美商蝴蝶網路公司 Systems and methods of automated image acquisition for assisting a user to operate an ultrasound device
CN114693693A (en) * 2022-03-31 2022-07-01 四川大学华西医院 Fetal corpus callosum ultrasonic image segmentation method based on convolutional neural network
CN111310851B (en) * 2020-03-03 2023-04-28 四川大学华西第二医院 An artificial intelligence ultrasonic auxiliary system and its application
CN114049339B (en) * 2021-11-22 2023-05-12 江苏科技大学 Fetal cerebellum ultrasonic image segmentation method based on convolutional neural network
TWM668513U (en) * 2024-11-20 2025-04-01 彰化基督教醫療財團法人彰化基督教醫院 An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765895B (en) * 2016-06-20 2022-06-01 美商蝴蝶網路公司 Systems and methods of automated image acquisition for assisting a user to operate an ultrasound device
CN111310851B (en) * 2020-03-03 2023-04-28 四川大学华西第二医院 An artificial intelligence ultrasonic auxiliary system and its application
CN114049339B (en) * 2021-11-22 2023-05-12 江苏科技大学 Fetal cerebellum ultrasonic image segmentation method based on convolutional neural network
CN114693693A (en) * 2022-03-31 2022-07-01 四川大学华西医院 Fetal corpus callosum ultrasonic image segmentation method based on convolutional neural network
TWM668513U (en) * 2024-11-20 2025-04-01 彰化基督教醫療財團法人彰化基督教醫院 An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities

Similar Documents

Publication Publication Date Title
Horgan et al. Artificial intelligence in obstetric ultrasound: a scoping review
Zhang et al. Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization
CN112365464B (en) GAN-based medical image lesion area weak supervision positioning method
CN102800089B (en) Main carotid artery blood vessel extraction and thickness measuring method based on neck ultrasound images
US8559689B2 (en) Medical image processing apparatus, method, and program
CN118262875A (en) Medical image diagnosis and contrast film reading method
Ma et al. A novel deep learning framework for automatic recognition of thyroid gland and tissues of neck in ultrasound image
Chen et al. Discriminative cervical lesion detection in colposcopic images with global class activation and local bin excitation
CN113112473B (en) An automatic diagnosis system for human dilated cardiomyopathy
CN114767163B (en) Intelligent diagnosis system for congenital heart disease in children based on echocardiography
CN111297399B (en) Fetal heart positioning and fetal heart rate extraction method based on ultrasonic video
CN111462049A (en) A method for automatic labeling of the shape of the lesion area in the breast contrast-enhanced ultrasound video
CN118196074A (en) A medical ultrasound image quality control system based on multimodal fusion
CN109620293B (en) Image recognition method and device and storage medium
CN111311626A (en) Automatic detection method of skull fracture based on CT image and electronic medium
KR102483122B1 (en) System and method for determining condition of fetal nervous system
CN119318466A (en) Early warning method and device for cardiovascular complications of obstructive sleep apnea syndrome
Yu et al. Fetal ultrasound image segmentation system and its use in fetal weight estimation
TWM668513U (en) An auxiliary identification system using ultrasound imaging and artificial intelligence to detect fetal brain abnormalities
Koundal et al. Survey of computer-aided diagnosis of thyroid nodules in medical ultrasound images
CN116912229A (en) A fetal translateral ventricular transverse section ultrasound standard section detection method
TWI897721B (en) An artificial intelligence-assisted identification system using ultrasound imaging to detect fetal brain abnormalities
CN112419246B (en) A deep detection network to quantify the vascular morphological distribution of esophageal mucosal IPCLs
CN112102234B (en) Ear sclerosis focus detection and diagnosis system based on target detection neural network
CN114387287A (en) Brain core infarct zone segmentation method, device and computer equipment