[go: up one dir, main page]

TWI814471B - Processing parameters optimizing system of precision component product and method thereof - Google Patents

Processing parameters optimizing system of precision component product and method thereof Download PDF

Info

Publication number
TWI814471B
TWI814471B TW111125333A TW111125333A TWI814471B TW I814471 B TWI814471 B TW I814471B TW 111125333 A TW111125333 A TW 111125333A TW 111125333 A TW111125333 A TW 111125333A TW I814471 B TWI814471 B TW I814471B
Authority
TW
Taiwan
Prior art keywords
factor
spindle
capability index
index
process capability
Prior art date
Application number
TW111125333A
Other languages
Chinese (zh)
Other versions
TW202403481A (en
Inventor
王靖欣
黃奕憲
林鈞鏗
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW111125333A priority Critical patent/TWI814471B/en
Application granted granted Critical
Publication of TWI814471B publication Critical patent/TWI814471B/en
Publication of TW202403481A publication Critical patent/TW202403481A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

A processing parameters optimizing system of precision component product for optimizing processing parameters of the precision spindle of tool machine includes a quality property input module for the user to input quality assessment items and quality property data of a component product; a processing ability index module converting the quality property data into a processing ability index value and obtaining an unqualified value according to the ability index analysis table; an essential factor analysis module analyzing the unqualified value through the essential factor analysis method to obtain the failing factor of the process; a significant factor analysis module analyzing the failing factor of the process through the Taguchi method to obtain the significant effect factor; and an optimal parameter analysis module analyzing the significant effect factor through the response surface method to obtain the optimal processing parameters combination value.

Description

精密零件產品的製程參數優化系統及其方法Process parameter optimization system and method for precision parts products

本發明係有關一種優化系統,特別是指一種精密零件產品的製程參數優化系統及其方法。The invention relates to an optimization system, in particular to a process parameter optimization system and method for precision parts products.

從全球工具機的應用發展趨勢,目前已由過去的重工業,轉型到光電、資訊通訊科技及生技等產業,而我國機械工業以工具機產業為基礎核心,面對未來機械精密製造技術的發展趨勢,相關設備與重要零組件需求將更加殷切。The application development trend of global machine tools has currently transformed from heavy industry in the past to industries such as optoelectronics, information communication technology, and biotechnology. my country's machinery industry, with the machine tool industry as its basic core, is facing the development of future mechanical precision manufacturing technology. Trends, the demand for related equipment and important components will be even more intense.

而工具機主是用於加工工件的動力裝置,是機械零件製造過程當中重要的設備。其中,工具機中的精密主軸更是工具機的核心,工具機需要品質穩定、運轉適當的精密主軸才能正常的運轉。The machine tool owner is a power device used to process workpieces and is an important equipment in the manufacturing process of mechanical parts. Among them, the precision spindle in the machine tool is the core of the machine tool. The machine tool needs a precision spindle with stable quality and proper operation to operate normally.

然而,現今的精密主軸零件在加工過程中,容易因形狀不對稱、加工裝配誤差、材質不均勻、內外徑同心度不佳、不正確的移動車床方式等因素,導致旋轉中心偏離,使得工具機產生離心的振動,進而造成工具機具有加工精密度低及品質不佳的問題。However, during the processing of today's precision spindle parts, it is easy to cause the rotation center to deviate due to factors such as asymmetric shape, processing and assembly errors, uneven materials, poor inner and outer diameter concentricity, incorrect moving lathe methods, etc., causing the machine tool to deviate. Centrifugal vibration is generated, which in turn causes the machine tool to have problems with low processing precision and poor quality.

為解決上述課題,本發明揭露一種精密零件產品的製程參數優化系統,其使用特性要因圖分析出影響工具機精密主軸之加工製程能力之關鍵因素,並利用田口方法與反應曲面法,協助找出工具機精密主軸之加工製程的最佳製程參數組合,以此達到能夠改善製程且更有效率的製造出符合工作母機高精度、高轉速、高穩度之關鍵精密主軸,並同時提升產業競爭力之目的。In order to solve the above problems, the present invention discloses a process parameter optimization system for precision parts products. Its use characteristic diagram analyzes the key factors that affect the processing capability of the precision spindle of the machine tool, and uses the Taguchi method and the reaction surface method to help find out The optimal combination of process parameters for the machining process of precision spindles of machine tools, in order to improve the process and more efficiently manufacture key precision spindles that meet the high precision, high speed and high stability of the workpiece, and at the same time enhance industrial competitiveness purpose.

為達上述目的,本發明一項實施例提供一種精密零件產品的製程參數優化系統,其係應用於優化工具機之精密主軸之製程參數。精密零件產品的製程參數優化系統包含相互耦接之一品質特性輸入模組、一製程能力指標模組、一要因分析模組、一顯著因子分析模組及一最佳參數分析模組。品質特性輸入模組供使用者輸入一零件產品之複數品質評估項目,並供使用者依據品質評估項目對應設定複數品質特性資料;製程能力指標模組具有一製程能力指標轉換單元及一製程能力指標分析單元,製程能力指標轉換單元利用一指標轉換方程式將品質特性資料對應轉換為複數製程能力指標數值,製程能力指標分析單元根據一能力指標分析表將製程能力指標數值區分為一達標數值及一未達標數值;要因分析模組利用一要因分析方法對未達標數值進行要因分析,以取得複數製程不佳因子;顯著因子分析模組係對應製程不佳因子設定複數因子水準,顯著因子分析模組係根據因子水準並利用一田口方法對製程不佳因子進行分析,以此將製程不佳因子區分為一影響顯著因子及一影響不顯著因子;最佳參數分析模組係利用一反應曲面法對影響顯著因子進行分析,以取得一最佳製程參數組合數值。To achieve the above object, one embodiment of the present invention provides a process parameter optimization system for precision parts products, which is used to optimize the process parameters of a precision spindle of a machine tool. The process parameter optimization system for precision parts products includes a quality characteristic input module, a process capability index module, a factor analysis module, a significant factor analysis module and an optimal parameter analysis module that are coupled to each other. The quality characteristic input module allows users to input multiple quality evaluation items of a part product, and allows users to set multiple quality characteristic data correspondingly according to the quality evaluation items; the process capability index module has a process capability index conversion unit and a process capability The index analysis unit and the process capability index conversion unit use an index conversion equation to correspondingly convert the quality characteristic data into a plurality of process capability index values. The process capability index analysis unit distinguishes the process capability index value into a standard value and a standard value according to a capability index analysis table. The non-standard value; the factor analysis module uses a factor analysis method to perform factor analysis on the non-standard value to obtain complex process poor factors; the significant factor analysis module sets complex factor levels corresponding to the process poor factors, and the significant factor analysis module The process poor factors are analyzed based on factor levels and using the Taguchi method, so that the process poor factors are divided into a significant factor and a non-significant factor; the optimal parameter analysis module uses a reaction surface method to analyze the poor process factors. Significant influencing factors are analyzed to obtain an optimal process parameter combination value.

本發明之一項實施例提供一種精密零件產品的製程參數優化方法,其包含一品質特性輸入步驟、一製程能力指標分析步驟、一要因分析步驟、一顯著因子分析步驟及一最佳參數分析步驟。於品質特性輸入步驟中,係透過一品質特性輸入模組,提供使用者輸入一零件產品之複數品質評估項目,並提供使用者依據品質評估項目對應設定複數品質特性資料;於製程能力指標分析步驟中,係透過一製程能力指標模組之一指標轉換方程式將品質特性資料對應轉換為複數製程能力指標數值,並利用製程能力指標模組之一能力指標分析表將製程能力指標數值區分為一達標數值及一未達標數值;於要因分析步驟中,係透過一要因分析模組利用一要因分析方法對未達標數值進行要因分析,以取得複數製程不佳因子;於顯著因子分析步驟中,係透過一顯著因子分析模組對應製程不佳因子設定複數因子水準,顯著因子分析模組係根據因子水準並利用一田口方法對製程不佳因子進行分析,以此將製程不佳因子區分為一影響顯著因子及一影響不顯著因子;於最佳參數分析步驟中,係透過一最佳參數分析模組利用一反應曲面法對影響顯著因子進行分析,以取得一最佳製程參數組合數值。One embodiment of the present invention provides a process parameter optimization method for precision parts products, which includes a quality characteristic input step, a process capability index analysis step, a factor analysis step, a significant factor analysis step and an optimal parameter analysis step. . In the quality characteristic input step, a quality characteristic input module is used to provide the user with the ability to input multiple quality evaluation items of a part product, and to provide the user with the ability to set multiple quality characteristic data corresponding to the quality evaluation items; in the process capability index analysis In the step, an index conversion equation of a process capability index module is used to convert the quality characteristic data into a plurality of process capability index values, and a capability index analysis table of the process capability index module is used to divide the process capability index values into one. The standard value and a non-standard value; in the factor analysis step, a factor analysis module is used to perform a factor analysis on the non-standard value using a factor analysis method to obtain the complex process failure factors; in the significant factor analysis step, the A significant factor analysis module is used to set complex factor levels corresponding to the process poor factors. The significant factor analysis module analyzes the process poor factors based on the factor levels and uses the Itaguchi method to classify the process poor factors into one influence. A significant factor and a factor with insignificant influence; in the optimal parameter analysis step, the significant factor is analyzed using a response surface method through an optimal parameter analysis module to obtain an optimal process parameter combination value.

藉此,本發明使用特性要因圖分析出影響工具機精密主軸之加工製程能力之關鍵因素,並利用田口方法與反應曲面法,協助找出工具機精密主軸之加工製程的最佳製程參數組合,以此達到能夠改善製程且更有效率的製造出符合工作母機高精度、高轉速、高穩度之關鍵精密主軸,並同時提升產業競爭力之目的。Through this, the present invention analyzes the key factors that affect the machining process capability of the precision spindle of the machine tool, and uses the Taguchi method and the reaction surface method to help find the optimal combination of process parameters for the machining process of the precision spindle of the machine tool. In this way, we can improve the process and more efficiently manufacture the key precision spindle that meets the high precision, high speed and high stability of the workpiece, and at the same time enhance the industrial competitiveness.

為便於說明本發明於上述創作內容一欄中所表示的中心思想,茲以具體實施例表達。實施例中各種不同物件係按適於列舉說明之比例,而非按實際元件的比例予以繪製,合先敘明。In order to facilitate the explanation of the central idea of the present invention expressed in the above creative content column, specific embodiments are hereby expressed. Various objects in the embodiments are drawn according to proportions suitable for enumeration and description, rather than according to the proportions of actual components, and will be described first.

請參閱圖1至圖6所示,係揭示本發明實施例之一種精密零件產品的製程參數優化系統及其方法,其係應用於優化工具機之精密主軸之製程參數。精密零件產品的製程參數優化系統100包含相互耦接之一品質特性輸入模組10、一製程能力指標模組20、一要因分析模組30、一顯著因子分析模組40及一最佳參數分析模組50。Please refer to FIGS. 1 to 6 , which illustrate a process parameter optimization system and method for precision parts products according to an embodiment of the present invention, which is applied to optimize the process parameters of a precision spindle of a machine tool. The process parameter optimization system 100 for precision parts products includes a mutually coupled quality characteristic input module 10, a process capability index module 20, a factor analysis module 30, a significant factor analysis module 40 and an optimal parameter analysis Mod 50.

品質特性輸入模組10,其供使用者輸入一零件產品之複數品質評估項目11,並供使用者依據品質評估項目11對應設定複數品質特性資料12。於本發明實施例中,所述零件產品係為工具機之精密主軸,品質評估項目11包含主軸長度、主軸外徑、主軸內徑、主軸硬度、主軸同心度及主軸大端厚度,且品質特性資料12包含望目型品質特性資料、望大型品質特性資料及望小型品質特性資料。The quality characteristic input module 10 allows the user to input multiple quality evaluation items 11 of a part product, and allows the user to correspondingly set multiple quality characteristic data 12 based on the quality evaluation items 11 . In the embodiment of the present invention, the component product is a precision spindle of a machine tool. The quality evaluation item 11 includes spindle length, spindle outer diameter, spindle inner diameter, spindle hardness, spindle concentricity and spindle big end thickness, and quality characteristics. The data 12 includes large-sized quality characteristic data, large-sized quality characteristic data, and small-sized quality characteristic data.

製程能力指標模組20,其具有一製程能力指標轉換單元21及一製程能力指標分析單元22。製程能力指標轉換單元21係利用一指標轉換方程式將品質特性資料12對應轉換為複數製程能力指標數值;製程能力指標分析單元22係根據一能力指標分析表將所述製程能力指標數值區分為一達標數值及一未達標數值。The process capability index module 20 has a process capability index conversion unit 21 and a process capability index analysis unit 22 . The process capability index conversion unit 21 uses an index conversion equation to correspondingly convert the quality characteristic data 12 into complex process capability index values; the process capability index analysis unit 22 distinguishes the process capability index values into a standard according to a capability index analysis table. value and a value that did not meet the standard.

所述指標轉換方程式係包含一望目型指標轉換方程式、一望大型指標轉換方程式及一望小型指標轉換方程式,所述製程能力指標數值包含一望目型製程能力指標數值、一望大型製程能力指標數值及一望小型製程能力指標數值。The index conversion equation includes a one-mesh type index conversion equation, a one-mesh large-scale index conversion equation, and a one-mesh small-scale index conversion equation. The process capability index values include a one-mesh type process capability index value, a one-mesh large process capability index value, and one Wang small-sized one. Process capability index value.

望目型指標轉換方程式為 ;望大型指標轉換方程式為 ;望小型指標轉換方程式為 ,其中,C pk為所述望目型製程能力指標數值;C pl為所述望大型製程能力指標數值;C pu為所述望小型製程能力指標數值;μ為製程平均數;σ為製程標準差;USL為規格上限;LSL為規格下限。 The conversion equation of the looking-type indicator is: ;The large-scale indicator conversion equation is ;The small indicator conversion equation is , where C pk is the value of the large-scale process capability index; C pl is the value of the large-scale process capability index; C pu is the value of the small-scale process capability index; μ is the process average; σ is the process standard. Difference; USL is the upper specification limit; LSL is the lower specification limit.

於本發明實施例中,所述能力指標分析表係透過以下步驟而得:In the embodiment of the present invention, the capability index analysis table is obtained through the following steps:

(1)由於所述製程能力指標數值皆是基於良率所定義出來的指標數值,因此本發明以Yield%(良率)=(3C pki)為基礎,將t個所述製程能力指標數值整合形成精密主軸產品品質指標,其公式為 ,其中, 為所述製程能力指標數值, 為所述精密主軸產品品質指標; (1) Since the process capability index values are all defined based on yield, the present invention integrates the t process capability index values based on Yield% (yield) = (3C pki ) The quality index of precision spindle products is formed, and its formula is: ,in, is the value of the process capability index, is the quality index of the precision spindle product;

(2)而由於精密主軸個別的所述製程能力指標數值,於各個加工製程的關係是獨立的,因此本發明能夠提出一個可以反應整個所述精密主軸產品品質指標與產品良率的關係式如下: ,其中, 為良率; (2) Since the process capability index value of each precision spindle is independent of each processing process, the present invention can propose a relationship that can reflect the entire precision spindle product quality index and product yield as follows: : ,in, , is the yield rate;

(3)而為了確保精密主軸的產品品質良率符合要求,因此 需符合下列關係式: (3) In order to ensure that the product quality and yield of precision spindles meet the requirements, therefore The following relationships must be met: ;

(4)本發明能夠根據(3)所得之關係式,得到一最小製程能力指標數值C 0,其公式如下: (4) The present invention can obtain a minimum process capability index value C 0 based on the relationship obtained in (3). The formula is as follows: ;

(5)本發明能夠根據(4)所得到之公式整理出所述能力指標分析表(如下表1所示)。 表1 t 精密主軸整個產品的製程能指標值 0.50 0.75 1.00 1.20 1.25 1.50 1.75 2.00 1 0.5000 0.7500 1.0000 1.2000 1.2500 1.5000 1.7500 2.0000 2 0.6057 0.8345 1.0683 1.2588 1.3068 1.5484 1.7921 2.0372 3 0.6631 0.8810 1.1066 1.2921 1.3390 1.5761 1.8163 2.0586 4 0.7019 0.9129 1.1331 1.3152 1.3614 1.5954 1.8333 2.0737 5 0.7311 0.9370 1.1533 1.3329 1.3786 1.6103 1.8463 2.0854 6 0.7544 0.9564 1.1695 1.3473 1.3925 1.6224 1.8570 2.0948 7 0.7737 0.9725 1.1831 1.3593 1.4041 1.6325 1.8659 2.1028 8 0.7901 0.9862 1.1948 1.3696 1.4142 1.6412 1.8736 2.1097 9 0.8044 0.9983 1.2050 1.3786 1.4229 1.6489 1.8804 2.1157 10 0.8170 1.0089 1.2141 1.3867 1.4308 1.6557 1.8864 2.1211 11 0.8283 1.0185 1.2222 1.3939 1.4378 1.6619 1.8918 2.1260 12 0.8386 1.0271 1.2296 1.4005 1.4442 1.6675 1.8968 2.1304 13 0.8479 1.0350 1.2364 1.4065 1.4501 1.6726 1.9013 2.1345 14 0.8564 1.0423 1.2426 1.4121 1.4555 1.6773 1.9056 2.1383 15 0.8643 1.0490 1.2484 1.4172 1.4605 1.6817 1.9095 2.1418 16 0.8717 1.0553 1.2538 1.4220 1.4652 1.6858 1.9131 2.1451 (5) The present invention can sort out the capability index analysis table (as shown in Table 1 below) based on the formula obtained in (4). Table 1 t The process performance index value of the entire precision spindle product 0.50 0.75 1.00 1.20 1.25 1.50 1.75 2.00 1 0.5000 0.7500 1.0000 1.2000 1.2500 1.5000 1.7500 2.0000 2 0.6057 0.8345 1.0683 1.2588 1.3068 1.5484 1.7921 2.0372 3 0.6631 0.8810 1.1066 1.2921 1.3390 1.5761 1.8163 2.0586 4 0.7019 0.9129 1.1331 1.3152 1.3614 1.5954 1.8333 2.0737 5 0.7311 0.9370 1.1533 1.3329 1.3786 1.6103 1.8463 2.0854 6 0.7544 0.9564 1.1695 1.3473 1.3925 1.6224 1.8570 2.0948 7 0.7737 0.9725 1.1831 1.3593 1.4041 1.6325 1.8659 2.1028 8 0.7901 0.9862 1.1948 1.3696 1.4142 1.6412 1.8736 2.1097 9 0.8044 0.9983 1.2050 1.3786 1.4229 1.6489 1.8804 2.1157 10 0.8170 1.0089 1.2141 1.3867 1.4308 1.6557 1.8864 2.1211 11 0.8283 1.0185 1.2222 1.3939 1.4378 1.6619 1.8918 2.1260 12 0.8386 1.0271 1.2296 1.4005 1.4442 1.6675 1.8968 2.1304 13 0.8479 1.0350 1.2364 1.4065 1.4501 1.6726 1.9013 2.1345 14 0.8564 1.0423 1.2426 1.4121 1.4555 1.6773 1.9056 2.1383 15 0.8643 1.0490 1.2484 1.4172 1.4605 1.6817 1.9095 2.1418 16 0.8717 1.0553 1.2538 1.4220 1.4652 1.6858 1.9131 2.1451

要因分析模組30,其係利用一要因分析方法對所述未達標數值進行要因分析,以取得複數製程不佳因子。於本發明實施例中,要因分析方法係為魚骨分析法(Fishbone Diagram);所述製程不佳因子係包含工件軟爪同心度因子、中心架同心度因子、刀具硬度因子及加工進給因子。The factor analysis module 30 uses a factor analysis method to perform factor analysis on the unqualified values to obtain complex process failure factors. In the embodiment of the present invention, the factor analysis method is Fishbone Diagram; the poor process factors include the workpiece soft claw concentricity factor, the center frame concentricity factor, the tool hardness factor and the machining feed factor. .

顯著因子分析模組40,其係對應所述製程不佳因子設定複數因子水準,顯著因子分析模組40係根據所述因子水準並利用一田口方法對所述製程不佳因子進行分析,以此將所述製程不佳因子區分為一影響顯著因子及一影響不顯著因子。The significant factor analysis module 40 sets a complex factor level corresponding to the process defect factor. The significant factor analysis module 40 analyzes the process defect factor based on the factor level and uses the Itachiguchi method. The process poor factors are divided into a significant factor and a non-significant factor.

於本發明實施例中,顯著因子分析模組40係利用所述田口方法之訊噪比分析將所述製程不佳因子區分為所述影響顯著因子及所述影響不顯著因子,並且顯著因子分析模組40係利用所述田口方法之變異數分析確認所述影響顯著因子是否正確。In the embodiment of the present invention, the significant factor analysis module 40 uses the signal-to-noise ratio analysis of the Taguchi method to distinguish the poor process factors into the significant factors and the insignificant factors, and the significant factor analysis The module 40 uses the variation analysis of the Taguchi method to confirm whether the significant influencing factors are correct.

最佳參數分析模組50,其係利用一反應曲面法對所述影響顯著因子進行分析,以取得一最佳製程參數組合數值。於本發明實施例中,最佳參數分析模組50係利用所述反應區面法之Box-Behnken設計對所述影響顯著因子進行分析。The optimal parameter analysis module 50 uses a response surface method to analyze the significant influencing factors to obtain an optimal process parameter combination value. In the embodiment of the present invention, the optimal parameter analysis module 50 uses the Box-Behnken design of the reaction zone method to analyze the significant influencing factors.

以下係進一步說明精密零件產品的製程參數優化系統100之精密零件產品的製程參數優化方法200,如圖2所示,精密零件產品的製程參數優化方法200包含一品質特性輸入步驟S1、一製程能力指標分析步驟S2、一要因分析步驟S3、一顯著因子分析步驟S4及一最佳參數分析步驟S5。The following is a further explanation of the process parameter optimization method 200 of the precision part product process parameter optimization system 100. As shown in Figure 2, the precision part product process parameter optimization method 200 includes a quality characteristic input step S1 and a process capability. Index analysis step S2, a factor analysis step S3, a significant factor analysis step S4 and an optimal parameter analysis step S5.

於品質特性輸入步驟S1中,係透過品質特性輸入模組10,提供使用者輸入所述零件產品之品質評估項目11,並提供使用者依據品質評估項目11對應設定品質特性資料12。In the quality characteristic input step S1, the quality characteristic input module 10 is used to allow the user to input the quality evaluation items 11 of the component product, and to provide the user to set the quality characteristic data 12 correspondingly based on the quality evaluation items 11.

於本發明實施例中,所述零件產品係為工具機之精密主軸,品質評估項目11包含主軸長度、主軸外徑、主軸內徑、主軸硬度、主軸同心度及主軸大端厚度,且品質特性資料12包含所述望目型品質特性資料、所述望大型品質特性資料及所述望小型品質特性資料。In the embodiment of the present invention, the component product is a precision spindle of a machine tool. The quality evaluation item 11 includes spindle length, spindle outer diameter, spindle inner diameter, spindle hardness, spindle concentricity and spindle big end thickness, and quality characteristics. The data 12 includes the large-sized quality characteristic data, the large-sized quality characteristic data, and the small-sized quality characteristic data.

舉例來說,於本發明實施例中,如下表2所示,品質評估項目11係細部區分為裁切製程中的主軸長度、車床加工製程中的主軸外徑和主軸內徑、熱處理製程中的主軸硬度、研磨製程中的主軸外徑和主軸內徑以及切削製程中的主軸同心度和主軸大端厚度,共8個品質評估項目11。而使用者係依據各個品質評估項目11的規格對應設定品質特性資料12,例如,將主軸長度設定為望大型品質特性資料,將主軸硬度設定為望目型品質特性資料等。 表2 製程 品質評估項目 品質特性資料 規格 裁切 主軸長度 望大型品質特性 mm 車床 主軸外徑 望大型品質特性 mm 主軸內徑 望目型品質特性 mm 熱處理 主軸硬度 望目型品質特性 HRC 研磨 主軸外徑 望目型品質特性 mm 主軸內徑 望大型品質特性 mm 切削 主軸同心度 望小型品質特性 0.01-0.005mm 主軸大端厚度 望目型品質特性 mm For example, in the embodiment of the present invention, as shown in Table 2 below, the quality evaluation item 11 is detailed into the spindle length in the cutting process, the spindle outer diameter and spindle inner diameter in the lathe processing process, and the spindle inner diameter in the heat treatment process. There are a total of 8 quality evaluation items including spindle hardness, spindle outer diameter and spindle inner diameter in the grinding process, spindle concentricity and spindle big end thickness in the cutting process11. The user sets the quality characteristic data 12 according to the specifications of each quality evaluation item 11. For example, the spindle length is set as the large-size quality characteristic data, and the spindle hardness is set as the large-size quality characteristic data, etc. Table 2 process quality assessment project Quality Characteristics Data Specifications Cut Spindle length Look for large quality features mm Lathe Spindle outer diameter Look for large quality features mm Spindle inner diameter Eye-catching quality characteristics mm heat treatment Spindle hardness Eye-catching quality characteristics HRC Grind Spindle outer diameter Eye-catching quality characteristics mm Spindle inner diameter Look for large quality features mm cutting Spindle concentricity Look for compact quality features 0.01-0.005mm Spindle big end thickness Eye-catching quality characteristics mm

於製程能力指標分析步驟S2中,係透過製程能力指標模組20之所述指標轉換方程式將品質特性資料12對應轉換為所述製程能力指標數值,並利用製程能力指標模組20之所述能力指標分析表將所述製程能力指標數值區分為所述達標數值及所述未達標數值。In the process capability index analysis step S2, the quality characteristic data 12 is correspondingly converted into the process capability index value through the index conversion equation of the process capability index module 20, and the capability of the process capability index module 20 is utilized. The index analysis table divides the process capability index values into the standard value and the non-standard value.

於本發明實施例中,製程能力指標模組20係透過所述指標轉換方程式之所述望目型指標轉換方程式,將所述望目型品質特性資料轉換為所述製程能力指標數值之所述望目型製程能力指標數值;製程能力指標模組20係透過所述指標轉換方程式之所述望大型指標轉換方程式,將所述望大型品質特性資料轉換為所述製程能力指標數值之所述望大型製程能力指標數值;製程能力指標模組20係透過所述指標轉換方程式之所述望小型指標轉換方程式,將所述望小型品質特性資料轉換為所述製程能力指標數值之所述望小型製程能力指標數值。In the embodiment of the present invention, the process capability indicator module 20 converts the target-type quality characteristic data into the process capability index value through the target-type index conversion equation of the indicator conversion equation. The process capability index value of the target type is obtained; the process capability index module 20 converts the size quality characteristic data into the process capability index value through the size index conversion equation of the index conversion equation. The large-scale process capability index value; the process capability index module 20 converts the small-scale quality characteristic data into the small-scale process of the process capability index value through the small-scale indicator conversion equation of the indicator conversion equation. Capability index value.

其中,所述望目型指標轉換方程式為 ;所述望大型指標轉換方程式為 ;所述望小型指標轉換方程式為 。其中,C pk為所述望目型製程能力指標數值;C pl為所述望大型製程能力指標數值;C pu為所述望小型製程能力指標數值;μ為製程平均數;σ為製程標準差;USL為規格上限;LSL為規格下限。 Among them, the conversion equation of the sight-type indicator is: ;The conversion equation of the large-scale indicator is ;The conversion equation of the small-scale indicator is . Wherein, C pk is the value of the large-scale process capability index; C pl is the value of the large-scale process capability index; C pu is the value of the small-scale process capability index; μ is the process average; σ is the process standard deviation. ;USL is the upper specification limit; LSL is the lower specification limit.

舉例來說,於本發明實施例中,製程能力指標模組20係在每一所述望目型品質特性資料中、每一所述望大型品質特性資料中及每一所述望小型品質特性資料中,分別抽取30個樣本數據,並將前述樣本數據經過所述指標轉換方程式對應轉換為所述製程能力指標數值,並將得到的所述製程能力指標數值整理如下表3。 表3 製程 品質評估項目 品質特性資料 C pu C pl C pk 裁切 主軸長度 望大型品質特性 1.37 車床 主軸外徑 望大型品質特性 1.37 主軸內徑 望目型品質特性 1.24 熱處理 主軸硬度 望目型品質特性 1.38 研磨 主軸外徑 望目型品質特性 1.37 主軸內徑 望大型品質特性 1.38 切削 主軸同心度 望小型品質特性 1.40 主軸大端厚度 望目型品質特性 1.37 For example, in the embodiment of the present invention, the process capability indicator module 20 is configured in each of the large-scale quality characteristic data, each of the large-scale quality characteristic data and each of the small-scale quality characteristics. From the data, 30 sample data were extracted respectively, and the aforementioned sample data were converted into the process capability index values through the indicator conversion equation, and the obtained process capability index values were organized in Table 3 below. table 3 process quality assessment project Quality Characteristics Data cpu C p C p Cut Spindle length Look for large quality features 1.37 Lathe Spindle outer diameter Look for large quality features 1.37 Spindle inner diameter Eye-catching quality characteristics 1.24 heat treatment Spindle hardness Eye-catching quality characteristics 1.38 Grind Spindle outer diameter Eye-catching quality characteristics 1.37 Spindle inner diameter Look for large quality features 1.38 cutting Spindle concentricity Look for compact quality features 1.40 Spindle big end thickness Eye-catching quality characteristics 1.37

舉例來說,於本發明實施例中,精密主軸共有8個所述製程能力指標數值,而本發明之精密主軸之所述精密主軸產品品質指標需達到1.2(即C T=1.2),因此使用者能夠根據所述能力指標分析表(如表1所示)以及表3之內容,得到每一所述製程能力指標數值需達到1.3696(即C 0=1.3696),並以此得到所述達標數值及所述未達標數值。其中,所述達標數值包含裁切製程中的主軸長度、車床加工製程中的主軸外徑、熱處理製程中的主軸硬度、研磨製程中的主軸外徑和主軸內徑以及切削製程中的主軸同心度和主軸大端厚度;所述未達標數值為車床加工製程中的主軸內徑。 For example, in the embodiment of the present invention, the precision spindle has a total of 8 process capability index values, and the precision spindle product quality index of the precision spindle of the present invention needs to reach 1.2 (i.e. C T =1.2), so using According to the capability index analysis table (shown in Table 1) and the content of Table 3, the researcher can obtain that the value of each process capability index needs to reach 1.3696 (i.e., C 0 =1.3696), and thereby obtain the standard value and the stated unmet values. Among them, the standard values include the spindle length in the cutting process, the spindle outer diameter in the lathe processing process, the spindle hardness in the heat treatment process, the spindle outer diameter and spindle inner diameter in the grinding process, and the spindle concentricity in the cutting process. and the thickness of the big end of the spindle; the unqualified value is the inner diameter of the spindle in the lathe machining process.

於要因分析步驟S3中,係透過要因分析模組30利用所述要因分析方法對所述未達標數值進行要因分析,以取得所述製程不佳因子。於本發明實施例中,要因分析方法係為魚骨分析法(Fishbone Diagram);所述製程不佳因子係包含工件軟爪同心度因子、中心架同心度因子、刀具硬度因子及加工進給因子。In the factor analysis step S3, the factor analysis module 30 is used to perform factor analysis on the unqualified value using the factor analysis method to obtain the process defect factor. In the embodiment of the present invention, the factor analysis method is Fishbone Diagram; the poor process factors include the workpiece soft claw concentricity factor, the center frame concentricity factor, the tool hardness factor and the machining feed factor. .

舉例來說,於本發明實施例中,要因分析模組30係透過魚骨分析法(Fishbone Diagram)對所述未達標數值(車床加工製程中的主軸內徑)進行分析,並以此得到所述製程不佳因子,其中,所述製程不佳因子包含工件軟爪同心度因子、中心架同心度因子、刀具硬度因子及加工進給因子。For example, in the embodiment of the present invention, the factor analysis module 30 analyzes the unqualified value (the inner diameter of the spindle in the lathe processing process) through the Fishbone Diagram method, and thereby obtains the result. The process defect factors include the workpiece soft claw concentricity factor, the center frame concentricity factor, the tool hardness factor and the machining feed factor.

於顯著因子分析步驟S4中,係透過顯著因子分析模組40對應所述製程不佳因子設定複數因子水準,顯著因子分析模組40係根據所述因子水準並利用所述田口方法對所述製程不佳因子進行分析,以此將所述製程不佳因子區分為所述影響顯著因子及所述影響不顯著因子。於本發明實施例中,顯著因子分析模組40係利用所述田口方法之訊噪比分析將所述製程不佳因子區分為所述影響顯著因子及所述影響不顯著因子,並且顯著因子分析模組40係利用所述田口方法之變異數分析確認所述影響顯著因子是否正確。In the significant factor analysis step S4, complex factor levels are set corresponding to the process poor factors through the significant factor analysis module 40. The significant factor analysis module 40 analyzes the process based on the factor levels and using the Taguchi method. Analyze the defective factors, thereby distinguishing the process defective factors into the factors with significant influence and the factors with insignificant influence. In the embodiment of the present invention, the significant factor analysis module 40 uses the signal-to-noise ratio analysis of the Taguchi method to distinguish the poor process factors into the significant factors and the insignificant factors, and the significant factor analysis The module 40 uses the variation analysis of the Taguchi method to confirm whether the significant influencing factors are correct.

舉例來說,於本發明實施例中,顯著因子分析模組40係設定每一所述製程不佳因子有3個所述因子水準,並整理如下表4所示。 表4 項目 水準一 水準二 水準三 A、工件軟爪同心(mm) A1 0.01 A2 0.02 A3 0.03 B、中心架同心度(mm) B1 0.015 B2 0.025 B3 0.035 C、刀具硬度/抗震(HRC) C1 78 C2 70 C3 65 D、加工進給(mm) D1 0.2 D2 0.25 D3 0.3 For example, in the embodiment of the present invention, the significant factor analysis module 40 sets three factor levels for each process defect factor, and the factors are organized as shown in Table 4 below. Table 4 Project Level one Level 2 Level 3 A. Workpiece soft claw concentricity (mm) A1 0.01 A2 0.02 A3 0.03 B. Center frame concentricity (mm) B1 0.015 B2 0.025 B3 0.035 C. Tool hardness/shock resistance (HRC) C1 78 C2 70 C3 65 D. Processing feed (mm) D1 0.2 D2 0.25 D3 0.3

接續上述,顯著因子分析模組40係根據表4之所述因子水準,並利用所述田口方法中的L 9(3 4)直交表將所得之數據整理如下表5所示。 表5 實驗編號 因子A 因子B 因子C 因子D S/N比平均值 1 1 1 1 1 2.72296 2 1 2 2 2 2.66602 3 1 3 3 3 2.68613 4 2 1 2 3 2.55121 5 2 2 3 1 2.28100 6 2 3 1 2 2.08116 7 3 1 3 2 2.21758 8 3 2 1 3 2.18065 9 3 3 2 1 1.80423 Continuing from the above, the significant factor analysis module 40 is based on the factor levels in Table 4 and uses the L 9 (3 4 ) orthogonal table in the Taguchi method to organize the obtained data as shown in Table 5 below. table 5 Experiment number Factor A Factor B Factor C Factor D S/N ratio average 1 1 1 1 1 2.72296 2 1 2 2 2 2.66602 3 1 3 3 3 2.68613 4 2 1 2 3 2.55121 5 2 2 3 1 2.28100 6 2 3 1 2 2.08116 7 3 1 3 2 2.21758 8 3 2 1 3 2.18065 9 3 3 2 1 1.80423

接續上述,由於所述未達標數值(車床加工製程中的主軸內徑)屬於望目品質特性,因此顯著因子分析模組40能夠根據表5之內容,並利用一訊噪比公式計算出所述製程不佳因子之信號雜音比,並呈現如圖3所示。其中,所述訊噪比公式為 Continuing from the above, since the unqualified value (the inner diameter of the spindle in the lathe machining process) is a quality characteristic, the significant factor analysis module 40 can calculate the value based on the content of Table 5 and using a signal-to-noise ratio formula. The signal-to-noise ratio of poor process factors is shown in Figure 3. Among them, the signal-to-noise ratio formula is .

接續上述,顯著因子分析模組40能夠根據圖3之內容,將數據整理如下表6所示。 表6 水準 A B C D 1 2.692 2.497 2.328 2.269 2 2.304 2.376 2.340 2.322 3 2.067 2.191 2.395 2.473 差異 0.624 0.307 0.067 0.203 Continuing from the above, the significant factor analysis module 40 can organize the data according to the content of Figure 3 as shown in Table 6 below. Table 6 level A B C D 1 2.692 2.497 2.328 2.269 2 2.304 2.376 2.340 2.322 3 2.067 2.191 2.395 2.473 difference 0.624 0.307 0.067 0.203

接續上述,根據表6之內容,顯著因子分析模組40能夠得知刀具硬度因子(因子C)之數值較不明顯,因此顯著因子分析模組40能夠得到所述影響顯著因子包含件軟爪同心度因子、中心架同心度因子及加工進給因子,而所述影響不顯著因子為刀具硬度因子。並且顯著因子分析模組40能夠利用所述田口方法之變異數分析,整理出如下表7之數據,並以此得知所述影響顯著因子確實包含件軟爪同心度因子、中心架同心度因子及加工進給因子。 表7 變異來源 自由度 平方和 均方 F值 淨平方和 貢獻率 A* 2 0.004479 0.002240 56.58 0.0044 71.36% B* 2 0.00095 0.000475 12 0.000871 14.13% C - - - - - - D* 2 0.000579 0.00029 7.32 0.0005 8.11% 合併誤差 2 0.000079 0.00004   0.00004 7.69% 總和 8 0.006087       100.0% Continuing from the above, according to the contents of Table 6, the significant factor analysis module 40 can know that the value of the tool hardness factor (factor C) is less obvious. Therefore, the significant factor analysis module 40 can obtain that the significant influencing factor includes the soft claw concentricity. degree factor, center frame concentricity factor and machining feed factor, and the factor with insignificant influence is the tool hardness factor. And the significant factor analysis module 40 can use the variation analysis of the Taguchi method to sort out the data in Table 7 below, and thereby know that the significant influencing factors indeed include the soft claw concentricity factor and the center frame concentricity factor. and processing feed factor. Table 7 Source of variation degrees of freedom sum of square mean square F value net sum of squares Contribution rate A* 2 0.004479 0.002240 56.58 0.0044 71.36% B* 2 0.00095 0.000475 12 0.000871 14.13% C - - - - - - D* 2 0.000579 0.00029 7.32 0.0005 8.11% combined error 2 0.000079 0.00004 0.00004 7.69% sum 8 0.006087 100.0%

於最佳參數分析步驟S5中,透過最佳參數分析模組50利用所述反應曲面法對所述影響顯著因子進行分析,以取得所述最佳製程參數組合數值。於本發明實施例中,最佳參數分析模組50係利用所述反應區面法之Box-Behnken設計對所述影響顯著因子進行分析。In the optimal parameter analysis step S5, the significant influencing factors are analyzed using the response surface method through the optimal parameter analysis module 50 to obtain the optimal process parameter combination value. In the embodiment of the present invention, the optimal parameter analysis module 50 uses the Box-Behnken design of the reaction zone method to analyze the significant influencing factors.

舉例來說,於本發明實施例中,最佳參數分析模組50係根據表4之所述因子水準,將關於所述影響顯著因子之數據整理如下表8所示。 表8 實驗編號 因子A 因子B 因子D S/N比平均值 1 1 1 1 24.8776 2 1 2 2 25.9691 3 1 3 3 18.3455 4 2 1 3 27.5904 5 2 2 1 22.7070 6 2 3 2 18.1888 7 3 1 2 21.2339 8 3 2 3 19.8855 9 3 3 1 20.9543 For example, in the embodiment of the present invention, the optimal parameter analysis module 50 organizes the data on the significant factors according to the factor levels in Table 4 as shown in Table 8 below. Table 8 Experiment number Factor A Factor B Factor D S/N ratio average 1 1 1 1 24.8776 2 1 2 2 25.9691 3 1 3 3 18.3455 4 2 1 3 27.5904 5 2 2 1 22.7070 6 2 3 2 18.1888 7 3 1 2 21.2339 8 3 2 3 19.8855 9 3 3 1 20.9543

接續上述,最佳參數分析模組50將表8之數據內容,利用所述反應區面法之Box-Behnken設計進行分析,並將分析結果整理如下表9所示。其中,A為工件軟爪同心度因子、B為中心架同心度因子、C為加工進給因子,A*B、A*C、B*C為分析因子是否存在交互作用,A*A、B*B、C*C為判別因子對於品質是否存在反曲率。 表9 來源 自由度 SS MS F P 回歸 9 161.316 17.924 10.56 0.009 線性 A 1 14.761 14.761 27.63 0.003 B 1 46.913 46.9132 1.08 0.347 C 1 1.832 1.8317 10.8 0.013 平方 A*A 1 6.48 9.1648 8.4 0.068 B*B 1 0.29 0.000283 0.017 0.998 C*C 1 48.22 48.22 28.4 0.003 交互作用 A*B 1 2.411 2.4108 1.42 0.287 A*C 1 6.93 6.93 4.08 0.099 B*C 1 33.479 33.479 19.72 0.007 誤差 5 8.49       合計 14 169.806       判定係數R 86% Continuing from the above, the optimal parameter analysis module 50 analyzes the data content in Table 8 using the Box-Behnken design of the reaction zone method, and organizes the analysis results as shown in Table 9 below. Among them, A is the workpiece soft claw concentricity factor, B is the center frame concentricity factor, C is the processing feed factor, A*B, A*C, B*C are the analysis factors to see whether there is interaction, A*A, B *B and C*C are the discriminant factors for whether there is inverse curvature for quality. Table 9 Source degrees of freedom SS MS F P Return 9 161.316 17.924 10.56 0.009 Linear A 1 14.761 14.761 27.63 0.003 B 1 46.913 46.9132 1.08 0.347 C 1 1.832 1.8317 10.8 0.013 square A*A 1 6.48 9.1648 8.4 0.068 B*B 1 0.29 0.000283 0.017 0.998 C*C 1 48.22 48.22 28.4 0.003 interaction A*B 1 2.411 2.4108 1.42 0.287 A*C 1 6.93 6.93 4.08 0.099 B*C 1 33.479 33.479 19.72 0.007 Error 5 8.49 total 14 169.806 Coefficient of determination R 86%

接續上述,如圖4至圖6所示,最佳參數分析模組50係能夠根據表9之內容,繪製出主軸深孔加工製程各因子交互作用之等高線圖,並在等高線圖上找出所述最佳製程參數組合數值。其中,如圖4至圖6所示,能夠得到所述最佳製程參數組合數值為工件軟爪同心度因子等於0.0925mm、中心架同心度因子等於0.015mm以及加工進給因子等於0.3mm。Continuing from the above, as shown in Figures 4 to 6, the optimal parameter analysis module 50 can draw a contour diagram of the interaction of various factors in the spindle deep hole machining process based on the contents of Table 9, and find out all the factors on the contour diagram. The optimal combination of process parameters. Among them, as shown in Figures 4 to 6, the optimal process parameter combination values that can be obtained are the workpiece soft claw concentricity factor equal to 0.0925mm, the center frame concentricity factor equal to 0.015mm, and the processing feed factor equal to 0.3mm.

接續上述,根據下表10之內容所示,透過所述最佳製程參數組合數值組合後的車床加工製程中的主軸內徑的製程能力獲得顯著的提升。 表10 品質評估項目 規格 品質特性資料 C pu C pl C pk 改善前 車床 主軸內徑 37.5 mm 望目 1.24 改善後 車床 主軸內徑 37.5 mm 望目 1.41 Continuing from the above, according to the contents of Table 10 below, the processing capability of the spindle inner diameter in the lathe processing process is significantly improved through the combination of the optimal process parameter combination values. Table 10 quality assessment project Specifications Quality Characteristics Data cpu C p C p Before improvement Lathe Spindle inner diameter 37.5 mm Look at your eyes 1.24 After improvement Lathe Spindle inner diameter 37.5 mm Look at your eyes 1.41

藉此,本發明使用特性要因圖分析出影響工具機精密主軸之加工製程能力之關鍵因素,並利用田口方法與反應曲面法,協助找出工具機精密主軸之加工製程的最佳製程參數組合,以此達到能夠改善製程且更有效率的製造出符合工作母機高精度、高轉速、高穩度之關鍵精密主軸,並同時提升產業競爭力之目的。Through this, the present invention analyzes the key factors that affect the machining process capability of the precision spindle of the machine tool, and uses the Taguchi method and the reaction surface method to help find the optimal combination of process parameters for the machining process of the precision spindle of the machine tool. In this way, we can improve the process and more efficiently manufacture the key precision spindle that meets the high precision, high speed and high stability of the workpiece, and at the same time enhance the industrial competitiveness.

雖然本發明是以一個最佳實施例作說明,精於此技藝者能在不脫離本創作精神與範疇下作各種不同形式的改變。以上所舉實施例僅用以說明本創作而已,非用以限制本創作之範圍。舉凡不違本創作精神所從事的種種修改或改變,俱屬本創作申請專利範圍。Although the present invention has been described with a preferred embodiment, those skilled in the art can make various modifications without departing from the spirit and scope of the present invention. The above embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention. All modifications or changes that do not violate the spirit of this creation are within the scope of the patent application for this creation.

100:精密零件產品的製程參數優化系統100: Process parameter optimization system for precision parts products

200:精密零件產品的製程參數優化方法200: Process parameter optimization method for precision parts products

10:品質特性輸入模組10:Quality characteristic input module

11:品質評估項目11:Quality Assessment Project

12:品質特性資料12:Quality characteristics information

20:製程能力指標模組20: Process capability indicator module

21:製程能力指標轉換單元21: Process capability index conversion unit

22:製程能力指標分析單元22: Process capability index analysis unit

30:要因分析模組30: Factor analysis module

40:顯著因子分析模組40: Significant factor analysis module

50:最佳參數分析模組50: Best parameter analysis module

S1:品質特性輸入步驟S1: Quality characteristics input step

S2:製程能力指標分析步驟S2: Process capability index analysis steps

S3:要因分析步驟S3: Factor analysis steps

S4:顯著因子分析步驟S4: Significant factor analysis steps

S5:最佳參數分析步驟S5: Optimal parameter analysis steps

[圖1]係本發明之系統方塊示意圖。 [圖2]係本發明之方法流程示意圖。 [圖3]係本發明之各個製程不佳因子之S/N比因子效果示意圖。 [圖4]係本發明之中心架同心度因子-工件軟爪同心度因子與加工進給因子等高線圖。 [圖5]係本發明之加工進給因子-工件軟爪同心度因子與中心架同心度因子等高線圖。 [圖6]係本發明之加工進給因子-中心架同心度因子與工件軟爪同心度因子等高線圖。 [Fig. 1] is a schematic block diagram of the system of the present invention. [Fig. 2] is a schematic flow diagram of the method of the present invention. [Figure 3] is a schematic diagram of the S/N ratio factor effect of each process defect factor of the present invention. [Fig. 4] is a contour diagram of the center frame concentricity factor-workpiece soft claw concentricity factor and processing feed factor of the present invention. [Fig. 5] is a contour diagram of the processing feed factor of the present invention - the workpiece soft claw concentricity factor and the center frame concentricity factor. [Figure 6] is a contour diagram of the processing feed factor of the present invention - the center frame concentricity factor and the workpiece soft claw concentricity factor.

100:精密零件產品的製程參數優化系統 100: Process parameter optimization system for precision parts products

10:品質特性輸入模組 10:Quality characteristic input module

11:品質評估項目 11:Quality Assessment Project

12:品質特性資料 12:Quality characteristics information

20:製程能力指標模組 20: Process capability indicator module

21:製程能力指標轉換單元 21: Process capability index conversion unit

22:製程能力指標分析單元 22: Process capability index analysis unit

30:要因分析模組 30: Factor analysis module

40:顯著因子分析模組 40: Significant factor analysis module

50:最佳參數分析模組 50: Best parameter analysis module

Claims (8)

一種精密零件產品的製程參數優化系統,其係應用於優化工具機之精密主軸之製程參數,該製程參數優化系統包含:一品質特性輸入模組,其供使用者輸入一零件產品之複數品質評估項目,並供使用者依據該些品質評估項目對應設定複數品質特性資料,其中,該零件產品為工具機之精密主軸,該些品質評估項目包含主軸長度、主軸外徑、主軸內徑、主軸硬度、主軸同心度及主軸大端厚度,且該些品質特性資料包含一望目型品質特性、一望大型品質特性及一望小型品質特性;一製程能力指標模組,其耦接於該品質特性輸入模組,該製程能力指標模組具有一製程能力指標轉換單元及一製程能力指標分析單元,該製程能力指標轉換單元利用一指標轉換方程式將該些品質特性資料對應轉換為複數製程能力指標數值,該製程能力指標分析單元根據一能力指標分析表將該些製程能力指標數值區分為一達標數值及一未達標數值;一要因分析模組,其耦接於該製程能力指標模組,該要因分析模組利用一要因分析方法對該未達標數值進行要因分析,以取得複數製程不佳因子;一顯著因子分析模組,其耦接於該要因分析模組,該顯著因子分析模組係對應該些製程不佳因子設定複數因子水準,該顯著因子分析模組係根據該些因子水準並利用一田口方法對該些製程不佳因子進行分析,以此將該些製程不佳因子區分為一影響顯著因子及一影響不顯著因子;以及一最佳參數分析模組,其耦接於該顯著因子分析模組,該最佳參數分析模組係利用一反應曲面法對該影響顯著因子進行分析,以取得一最佳製程參數組合數值。 A process parameter optimization system for precision parts products, which is used to optimize the process parameters of precision spindles of machine tools. The process parameter optimization system includes: a quality characteristic input module for users to input multiple qualities of a part product Evaluation items, and allow users to set multiple quality characteristic data based on these quality evaluation items. Among them, the part product is a precision spindle of a machine tool. These quality evaluation items include spindle length, spindle outer diameter, spindle inner diameter, spindle Hardness, spindle concentricity and spindle big-end thickness, and the quality characteristic data include one mesh-type quality characteristic, one large-scale quality characteristic and one small-scale quality characteristic; a process capability indicator module coupled to the quality characteristic input module The process capability index module has a process capability index conversion unit and a process capability index analysis unit. The process capability index conversion unit uses an index conversion equation to correspondingly convert the quality characteristic data into complex process capability index values. The process capability index analysis unit distinguishes the process capability index values into a standard value and a non-standard value according to a capability index analysis table; a factor analysis module coupled to the process capability index module, the factor analysis module The group uses a factor analysis method to perform factor analysis on the unqualified value to obtain multiple process failure factors; a significant factor analysis module is coupled to the factor analysis module, and the significant factor analysis module corresponds to the factors The process poor factors set complex factor levels. The significant factor analysis module analyzes these process poor factors based on these factor levels and uses the Taguchi method to classify these process poor factors into one with significant influence. factors and a factor with insignificant influence; and an optimal parameter analysis module coupled to the significant factor analysis module. The optimal parameter analysis module uses a response surface method to analyze the significant factor, so as to Obtain an optimal process parameter combination value. 如請求項1所述之精密零件產品的製程參數優化系統,其中,該指標轉換方程式包含一望目型指標轉換方程式、一望大型指標轉換方程式及一望小型指標轉換方程式,該些製程能力指標數值包含一望目型製程能力指標數值、一望大型製程能力指標數值及一望小型製程能力指標數值。 The process parameter optimization system for precision parts products as described in request item 1, wherein the index conversion equation includes a one-size-fits-all index conversion equation, a one-size large index conversion equation and a one-size small index conversion equation, and the process capability index values include one one-size-fits-all index conversion equation. Mesh type process capability index value, Yiwang large process capability index value and Yiwang small process capability index value. 如請求項2所述之精密零件產品的製程參數優化系統,其中,該望目型指標轉換方程式為
Figure 111125333-A0305-02-0019-1
,該望大型指標轉換方 程式為
Figure 111125333-A0305-02-0019-2
,該望小型指標轉換方程式為
Figure 111125333-A0305-02-0019-3
,其中,Cpk為該望目型製程能力指標數值;Cpl為該望大型製程能力指標數值;Cpu為該望小型製程能力指標數值;μ為製程平均數;σ為製程標準差;USL為規格上限;LSL為規格下限。
The process parameter optimization system for precision parts products as described in claim 2, wherein the visual index conversion equation is:
Figure 111125333-A0305-02-0019-1
, the large-scale index conversion equation is
Figure 111125333-A0305-02-0019-2
, the small-scale indicator conversion equation is
Figure 111125333-A0305-02-0019-3
, where C pk is the value of the large-scale process capability index; C pl is the value of the large-scale process capability index; C pu is the value of the small-scale process capability index; μ is the process average; σ is the process standard deviation; USL is the upper specification limit; LSL is the lower specification limit.
如請求項1所述之精密零件產品的製程參數優化系統,其中,該顯著因子分析模組係利用該田口方法之訊噪比分析將該些製程不佳因子區分為該影響顯著因子及該影響不顯著因子,並且該顯著因子分析模組係利用該田口方法之變異數分析確認該影響顯著因子是否正確。 The process parameter optimization system for precision parts products as described in claim 1, wherein the significant factor analysis module uses the signal-to-noise ratio analysis of the Taguchi method to distinguish the poor process factors into the significant factor and the impact factor. There is no significant factor, and the significant factor analysis module uses the variation analysis of the Taguchi method to confirm whether the significant factor is correct. 一種精密零件產品的製程參數優化方法,其係應用於優化工具機之精密主軸之製程參數,該製程參數優化方法包含:一品質特性輸入步驟:透過一品質特性輸入模組,提供使用者輸入一零件產品之複數品質評估項目,並提供使用者依據該些品質評估項目對應設定複數品質特性資料,其中,該零件產品為工具機之精密主軸,該些品質評估項目包含主軸長度、主軸外徑、主軸內徑、主軸硬度、主軸同心度及主軸大端厚度,且該些品質特性資料包含一望目型品質特性資料、一望大型品質特性資料及一望小型品質特性資料; 一製程能力指標分析步驟:透過一製程能力指標模組之一指標轉換方程式將該些品質特性資料對應轉換為複數製程能力指標數值,並利用該製程能力指標模組之一能力指標分析表將該些製程能力指標數值區分為一達標數值及一未達標數值;一要因分析步驟:透過一要因分析模組利用一要因分析方法對該未達標數值進行要因分析,以取得複數製程不佳因子;一顯著因子分析步驟:透過一顯著因子分析模組對應該些製程不佳因子設定複數因子水準,該顯著因子分析模組係根據該些因子水準並利用一田口方法對該些製程不佳因子進行分析,以此將該些製程不佳因子區分為一影響顯著因子及一影響不顯著因子;以及一最佳參數分析步驟:透過一最佳參數分析模組利用一反應曲面法對該影響顯著因子進行分析,以取得一最佳製程參數組合數值。 A process parameter optimization method for precision parts products, which is used to optimize the process parameters of a precision spindle of a machine tool. The process parameter optimization method includes: a quality characteristic input step: through a quality characteristic input module, the user is provided to input a Multiple quality assessment items for component products, and provide users with the ability to set multiple quality characteristic data based on these quality assessment items. The component product is a precision spindle for a machine tool. These quality assessment items include spindle length, spindle outer diameter , spindle inner diameter, spindle hardness, spindle concentricity and spindle big end thickness, and these quality characteristics data include one type of quality characteristics data, one type of large quality characteristics data and one type of small quality characteristics data; A process capability index analysis step: convert the quality characteristic data into complex process capability index values through an index conversion equation of a process capability index module, and use a capability index analysis table of the process capability index module to convert the quality characteristic data into complex process capability index values. Some process capability index values are divided into a standard value and a non-standard value; 1. Factor analysis step: use a factor analysis module to use a factor analysis method to perform factor analysis on the non-standard value to obtain multiple process poor factors; 1. Significant factor analysis step: Set complex factor levels corresponding to these process defect factors through a significant factor analysis module. The significant factor analysis module analyzes these process defect factors based on these factor levels and uses the Itachiguchi method. , in order to distinguish these process poor factors into a significant factor and a non-significant factor; and an optimal parameter analysis step: use a best parameter analysis module to use a response surface method to analyze the significant factor. Analysis to obtain an optimal combination of process parameters. 如請求項5所述之精密零件產品的製程參數優化系統,其中,該指標轉換方程式包含一望目型指標轉換方程式、一望大型指標轉換方程式及一望小型指標轉換方程式,該些製程能力指標數值包含一望目型製程能力指標數值、一望大型製程能力指標數值及一望小型製程能力指標數值。 The process parameter optimization system for precision parts products as described in claim 5, wherein the index conversion equation includes a 1-mesh type index conversion equation, a 1-mesh large-scale index conversion equation and a 1-millimeter small-scale index conversion equation, and the process capability index values include a 1-mesh index conversion equation. Mesh type process capability index value, Yiwang large process capability index value and Yiwang small process capability index value. 如請求項6所述之精密零件產品的製程參數優化系統,其中,該望目型指標轉換方程式為
Figure 111125333-A0305-02-0020-4
,該望大型指標轉換方 程式為
Figure 111125333-A0305-02-0020-5
,該望小型指標轉換方程式為
Figure 111125333-A0305-02-0020-6
,其中,μ為製程平均數;σ為製程標準差;USL為規格上限;LSL為規格下限。
The process parameter optimization system for precision parts products as described in claim 6, wherein the visual index conversion equation is:
Figure 111125333-A0305-02-0020-4
, the large-scale index conversion equation is
Figure 111125333-A0305-02-0020-5
, the small-scale indicator conversion equation is
Figure 111125333-A0305-02-0020-6
, where μ is the process average; σ is the process standard deviation; USL is the upper specification limit; LSL is the lower specification limit.
如請求項5所述之精密零件產品的製程參數優化系統,其中,該顯著因子分析模組係利用該田口方法之訊噪比分析將該些製程不佳因子區分 為該影響顯著因子及該影響不顯著因子,並且該顯著因子分析模組係利用該田口方法之變異數分析確認該影響顯著因子是否正確。 The process parameter optimization system for precision parts products as described in claim 5, wherein the significant factor analysis module uses the signal-to-noise ratio analysis of the Taguchi method to distinguish the process poor factors. These are the significant factor and the insignificant factor, and the significant factor analysis module uses the variation analysis of the Taguchi method to confirm whether the significant factor is correct.
TW111125333A 2022-07-06 2022-07-06 Processing parameters optimizing system of precision component product and method thereof TWI814471B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111125333A TWI814471B (en) 2022-07-06 2022-07-06 Processing parameters optimizing system of precision component product and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111125333A TWI814471B (en) 2022-07-06 2022-07-06 Processing parameters optimizing system of precision component product and method thereof

Publications (2)

Publication Number Publication Date
TWI814471B true TWI814471B (en) 2023-09-01
TW202403481A TW202403481A (en) 2024-01-16

Family

ID=88965868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111125333A TWI814471B (en) 2022-07-06 2022-07-06 Processing parameters optimizing system of precision component product and method thereof

Country Status (1)

Country Link
TW (1) TWI814471B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201211807A (en) * 2010-09-09 2012-03-16 Hon Hai Prec Ind Co Ltd Method of controlling factors that influence an electronic rule of printed circuit boards
TW201314474A (en) * 2011-09-28 2013-04-01 Univ Nat Formosa Optimized analysis method of photoelectric element process parameters
TW201541270A (en) * 2014-04-23 2015-11-01 Cheng Uei Prec Ind Co Ltd Connector dimensions design optimization system and method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201211807A (en) * 2010-09-09 2012-03-16 Hon Hai Prec Ind Co Ltd Method of controlling factors that influence an electronic rule of printed circuit boards
TW201314474A (en) * 2011-09-28 2013-04-01 Univ Nat Formosa Optimized analysis method of photoelectric element process parameters
TW201541270A (en) * 2014-04-23 2015-11-01 Cheng Uei Prec Ind Co Ltd Connector dimensions design optimization system and method thereof

Also Published As

Publication number Publication date
TW202403481A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
Nurhaniza et al. Analyzing the Effect of Machining Parameters Setting to the Surface Roughness during End Milling of CFRP‐Aluminium Composite Laminates
Hazir et al. Optimization of CNC cutting parameters using design of experiment (DOE) and desirability function
Uddin et al. Evaluating hole quality in drilling of Al 6061 alloys
Babu et al. Effect of machining parameters on milled natural fiber-reinforced plastic composites
Walia et al. Parametric optimization of centrifugal force-assisted abrasive flow machining (CFAAFM) by the Taguchi method
Shajari et al. The influence of tool path strategies on cutting force and surface texture during ball end milling of low curvature convex surfaces
CN107065778B (en) A method for the selection of the most energy-efficient machine tool for the entire use phase of the machine tool
CN114626190B (en) A method for constructing a process design resource model based on knowledge graph
Köklü Optimisation of machining parameters in interrupted cylindrical grinding using the Grey-based Taguchi method
Wei et al. Research progress of noise in high-speed cutting machining
Gök et al. Determination of experimental, analytical, and numerical values of tool deflection at ball end milling of inclined surfaces
Wu et al. Investigation on milling quality of stone–plastic composite using response surface methodology
TWI814471B (en) Processing parameters optimizing system of precision component product and method thereof
Guo et al. Cutting forces and cutting quality in the up-milling of solid wood using ceramic cutting tools
D’yakonov et al. Selecting the cutting conditions for plane grinding by the wheel periphery
CN1785559A (en) Processing method of germanium single crystal aspheric optical element
Kim et al. Determination of the optimal milling feed direction for unidirectional CFRPs using a predictive cutting-force model
Ginta et al. Development of surface roughness models in end milling titanium alloy Ti-6Al-4V using uncoated tungsten carbide inserts
Schönecker et al. Fundamental Investigation of the Application Behavior and Stabilization Potential of Milling Tools with Structured Flank Faces on the Minor Cutting Edges
KR20150006356A (en) System and method for selecting a tool assembly
Ibrahim et al. Experimental investigation of HSS face milling to AL6061 using Taguchi method
da Silva et al. Experimental research on the dynamic stability of internal turning tools for long overhangs
Daud et al. Prediction of chatter in CNC machining based on dynamic cutting force for ball end milling
Chakraborty et al. Measuring of Surface Roughness of Al-6061 Alloy by CNC Milling by using of Taguchi Method
Gaitonde et al. Selection of optimal process parameters for minimizing burr size in drilling using Taguchi's quality loss function approach