TWI814471B - Processing parameters optimizing system of precision component product and method thereof - Google Patents
Processing parameters optimizing system of precision component product and method thereof Download PDFInfo
- Publication number
- TWI814471B TWI814471B TW111125333A TW111125333A TWI814471B TW I814471 B TWI814471 B TW I814471B TW 111125333 A TW111125333 A TW 111125333A TW 111125333 A TW111125333 A TW 111125333A TW I814471 B TWI814471 B TW I814471B
- Authority
- TW
- Taiwan
- Prior art keywords
- factor
- spindle
- capability index
- index
- process capability
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 244
- 238000012545 processing Methods 0.000 title abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 190
- 238000000556 factor analysis Methods 0.000 claims abstract description 75
- 238000004458 analytical method Methods 0.000 claims abstract description 59
- 238000001303 quality assessment method Methods 0.000 claims abstract description 9
- 230000004044 response Effects 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims description 54
- 238000005457 optimization Methods 0.000 claims description 24
- 238000013441 quality evaluation Methods 0.000 claims description 15
- 230000007547 defect Effects 0.000 claims description 8
- 230000000007 visual effect Effects 0.000 claims 2
- 238000011156 evaluation Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 12
- 238000003754 machining Methods 0.000 description 12
- 210000000078 claw Anatomy 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 102000003712 Complement factor B Human genes 0.000 description 2
- 108090000056 Complement factor B Proteins 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- General Factory Administration (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
本發明係有關一種優化系統,特別是指一種精密零件產品的製程參數優化系統及其方法。The invention relates to an optimization system, in particular to a process parameter optimization system and method for precision parts products.
從全球工具機的應用發展趨勢,目前已由過去的重工業,轉型到光電、資訊通訊科技及生技等產業,而我國機械工業以工具機產業為基礎核心,面對未來機械精密製造技術的發展趨勢,相關設備與重要零組件需求將更加殷切。The application development trend of global machine tools has currently transformed from heavy industry in the past to industries such as optoelectronics, information communication technology, and biotechnology. my country's machinery industry, with the machine tool industry as its basic core, is facing the development of future mechanical precision manufacturing technology. Trends, the demand for related equipment and important components will be even more intense.
而工具機主是用於加工工件的動力裝置,是機械零件製造過程當中重要的設備。其中,工具機中的精密主軸更是工具機的核心,工具機需要品質穩定、運轉適當的精密主軸才能正常的運轉。The machine tool owner is a power device used to process workpieces and is an important equipment in the manufacturing process of mechanical parts. Among them, the precision spindle in the machine tool is the core of the machine tool. The machine tool needs a precision spindle with stable quality and proper operation to operate normally.
然而,現今的精密主軸零件在加工過程中,容易因形狀不對稱、加工裝配誤差、材質不均勻、內外徑同心度不佳、不正確的移動車床方式等因素,導致旋轉中心偏離,使得工具機產生離心的振動,進而造成工具機具有加工精密度低及品質不佳的問題。However, during the processing of today's precision spindle parts, it is easy to cause the rotation center to deviate due to factors such as asymmetric shape, processing and assembly errors, uneven materials, poor inner and outer diameter concentricity, incorrect moving lathe methods, etc., causing the machine tool to deviate. Centrifugal vibration is generated, which in turn causes the machine tool to have problems with low processing precision and poor quality.
為解決上述課題,本發明揭露一種精密零件產品的製程參數優化系統,其使用特性要因圖分析出影響工具機精密主軸之加工製程能力之關鍵因素,並利用田口方法與反應曲面法,協助找出工具機精密主軸之加工製程的最佳製程參數組合,以此達到能夠改善製程且更有效率的製造出符合工作母機高精度、高轉速、高穩度之關鍵精密主軸,並同時提升產業競爭力之目的。In order to solve the above problems, the present invention discloses a process parameter optimization system for precision parts products. Its use characteristic diagram analyzes the key factors that affect the processing capability of the precision spindle of the machine tool, and uses the Taguchi method and the reaction surface method to help find out The optimal combination of process parameters for the machining process of precision spindles of machine tools, in order to improve the process and more efficiently manufacture key precision spindles that meet the high precision, high speed and high stability of the workpiece, and at the same time enhance industrial competitiveness purpose.
為達上述目的,本發明一項實施例提供一種精密零件產品的製程參數優化系統,其係應用於優化工具機之精密主軸之製程參數。精密零件產品的製程參數優化系統包含相互耦接之一品質特性輸入模組、一製程能力指標模組、一要因分析模組、一顯著因子分析模組及一最佳參數分析模組。品質特性輸入模組供使用者輸入一零件產品之複數品質評估項目,並供使用者依據品質評估項目對應設定複數品質特性資料;製程能力指標模組具有一製程能力指標轉換單元及一製程能力指標分析單元,製程能力指標轉換單元利用一指標轉換方程式將品質特性資料對應轉換為複數製程能力指標數值,製程能力指標分析單元根據一能力指標分析表將製程能力指標數值區分為一達標數值及一未達標數值;要因分析模組利用一要因分析方法對未達標數值進行要因分析,以取得複數製程不佳因子;顯著因子分析模組係對應製程不佳因子設定複數因子水準,顯著因子分析模組係根據因子水準並利用一田口方法對製程不佳因子進行分析,以此將製程不佳因子區分為一影響顯著因子及一影響不顯著因子;最佳參數分析模組係利用一反應曲面法對影響顯著因子進行分析,以取得一最佳製程參數組合數值。To achieve the above object, one embodiment of the present invention provides a process parameter optimization system for precision parts products, which is used to optimize the process parameters of a precision spindle of a machine tool. The process parameter optimization system for precision parts products includes a quality characteristic input module, a process capability index module, a factor analysis module, a significant factor analysis module and an optimal parameter analysis module that are coupled to each other. The quality characteristic input module allows users to input multiple quality evaluation items of a part product, and allows users to set multiple quality characteristic data correspondingly according to the quality evaluation items; the process capability index module has a process capability index conversion unit and a process capability The index analysis unit and the process capability index conversion unit use an index conversion equation to correspondingly convert the quality characteristic data into a plurality of process capability index values. The process capability index analysis unit distinguishes the process capability index value into a standard value and a standard value according to a capability index analysis table. The non-standard value; the factor analysis module uses a factor analysis method to perform factor analysis on the non-standard value to obtain complex process poor factors; the significant factor analysis module sets complex factor levels corresponding to the process poor factors, and the significant factor analysis module The process poor factors are analyzed based on factor levels and using the Taguchi method, so that the process poor factors are divided into a significant factor and a non-significant factor; the optimal parameter analysis module uses a reaction surface method to analyze the poor process factors. Significant influencing factors are analyzed to obtain an optimal process parameter combination value.
本發明之一項實施例提供一種精密零件產品的製程參數優化方法,其包含一品質特性輸入步驟、一製程能力指標分析步驟、一要因分析步驟、一顯著因子分析步驟及一最佳參數分析步驟。於品質特性輸入步驟中,係透過一品質特性輸入模組,提供使用者輸入一零件產品之複數品質評估項目,並提供使用者依據品質評估項目對應設定複數品質特性資料;於製程能力指標分析步驟中,係透過一製程能力指標模組之一指標轉換方程式將品質特性資料對應轉換為複數製程能力指標數值,並利用製程能力指標模組之一能力指標分析表將製程能力指標數值區分為一達標數值及一未達標數值;於要因分析步驟中,係透過一要因分析模組利用一要因分析方法對未達標數值進行要因分析,以取得複數製程不佳因子;於顯著因子分析步驟中,係透過一顯著因子分析模組對應製程不佳因子設定複數因子水準,顯著因子分析模組係根據因子水準並利用一田口方法對製程不佳因子進行分析,以此將製程不佳因子區分為一影響顯著因子及一影響不顯著因子;於最佳參數分析步驟中,係透過一最佳參數分析模組利用一反應曲面法對影響顯著因子進行分析,以取得一最佳製程參數組合數值。One embodiment of the present invention provides a process parameter optimization method for precision parts products, which includes a quality characteristic input step, a process capability index analysis step, a factor analysis step, a significant factor analysis step and an optimal parameter analysis step. . In the quality characteristic input step, a quality characteristic input module is used to provide the user with the ability to input multiple quality evaluation items of a part product, and to provide the user with the ability to set multiple quality characteristic data corresponding to the quality evaluation items; in the process capability index analysis In the step, an index conversion equation of a process capability index module is used to convert the quality characteristic data into a plurality of process capability index values, and a capability index analysis table of the process capability index module is used to divide the process capability index values into one. The standard value and a non-standard value; in the factor analysis step, a factor analysis module is used to perform a factor analysis on the non-standard value using a factor analysis method to obtain the complex process failure factors; in the significant factor analysis step, the A significant factor analysis module is used to set complex factor levels corresponding to the process poor factors. The significant factor analysis module analyzes the process poor factors based on the factor levels and uses the Itaguchi method to classify the process poor factors into one influence. A significant factor and a factor with insignificant influence; in the optimal parameter analysis step, the significant factor is analyzed using a response surface method through an optimal parameter analysis module to obtain an optimal process parameter combination value.
藉此,本發明使用特性要因圖分析出影響工具機精密主軸之加工製程能力之關鍵因素,並利用田口方法與反應曲面法,協助找出工具機精密主軸之加工製程的最佳製程參數組合,以此達到能夠改善製程且更有效率的製造出符合工作母機高精度、高轉速、高穩度之關鍵精密主軸,並同時提升產業競爭力之目的。Through this, the present invention analyzes the key factors that affect the machining process capability of the precision spindle of the machine tool, and uses the Taguchi method and the reaction surface method to help find the optimal combination of process parameters for the machining process of the precision spindle of the machine tool. In this way, we can improve the process and more efficiently manufacture the key precision spindle that meets the high precision, high speed and high stability of the workpiece, and at the same time enhance the industrial competitiveness.
為便於說明本發明於上述創作內容一欄中所表示的中心思想,茲以具體實施例表達。實施例中各種不同物件係按適於列舉說明之比例,而非按實際元件的比例予以繪製,合先敘明。In order to facilitate the explanation of the central idea of the present invention expressed in the above creative content column, specific embodiments are hereby expressed. Various objects in the embodiments are drawn according to proportions suitable for enumeration and description, rather than according to the proportions of actual components, and will be described first.
請參閱圖1至圖6所示,係揭示本發明實施例之一種精密零件產品的製程參數優化系統及其方法,其係應用於優化工具機之精密主軸之製程參數。精密零件產品的製程參數優化系統100包含相互耦接之一品質特性輸入模組10、一製程能力指標模組20、一要因分析模組30、一顯著因子分析模組40及一最佳參數分析模組50。Please refer to FIGS. 1 to 6 , which illustrate a process parameter optimization system and method for precision parts products according to an embodiment of the present invention, which is applied to optimize the process parameters of a precision spindle of a machine tool. The process parameter optimization system 100 for precision parts products includes a mutually coupled quality characteristic input module 10, a process capability index module 20, a factor analysis module 30, a significant factor analysis module 40 and an optimal parameter analysis Mod 50.
品質特性輸入模組10,其供使用者輸入一零件產品之複數品質評估項目11,並供使用者依據品質評估項目11對應設定複數品質特性資料12。於本發明實施例中,所述零件產品係為工具機之精密主軸,品質評估項目11包含主軸長度、主軸外徑、主軸內徑、主軸硬度、主軸同心度及主軸大端厚度,且品質特性資料12包含望目型品質特性資料、望大型品質特性資料及望小型品質特性資料。The quality characteristic input module 10 allows the user to input multiple quality evaluation items 11 of a part product, and allows the user to correspondingly set multiple quality characteristic data 12 based on the quality evaluation items 11 . In the embodiment of the present invention, the component product is a precision spindle of a machine tool. The quality evaluation item 11 includes spindle length, spindle outer diameter, spindle inner diameter, spindle hardness, spindle concentricity and spindle big end thickness, and quality characteristics. The data 12 includes large-sized quality characteristic data, large-sized quality characteristic data, and small-sized quality characteristic data.
製程能力指標模組20,其具有一製程能力指標轉換單元21及一製程能力指標分析單元22。製程能力指標轉換單元21係利用一指標轉換方程式將品質特性資料12對應轉換為複數製程能力指標數值;製程能力指標分析單元22係根據一能力指標分析表將所述製程能力指標數值區分為一達標數值及一未達標數值。The process capability index module 20 has a process capability index conversion unit 21 and a process capability index analysis unit 22 . The process capability index conversion unit 21 uses an index conversion equation to correspondingly convert the quality characteristic data 12 into complex process capability index values; the process capability index analysis unit 22 distinguishes the process capability index values into a standard according to a capability index analysis table. value and a value that did not meet the standard.
所述指標轉換方程式係包含一望目型指標轉換方程式、一望大型指標轉換方程式及一望小型指標轉換方程式,所述製程能力指標數值包含一望目型製程能力指標數值、一望大型製程能力指標數值及一望小型製程能力指標數值。The index conversion equation includes a one-mesh type index conversion equation, a one-mesh large-scale index conversion equation, and a one-mesh small-scale index conversion equation. The process capability index values include a one-mesh type process capability index value, a one-mesh large process capability index value, and one Wang small-sized one. Process capability index value.
望目型指標轉換方程式為 ;望大型指標轉換方程式為 ;望小型指標轉換方程式為 ,其中,C pk為所述望目型製程能力指標數值;C pl為所述望大型製程能力指標數值;C pu為所述望小型製程能力指標數值;μ為製程平均數;σ為製程標準差;USL為規格上限;LSL為規格下限。 The conversion equation of the looking-type indicator is: ;The large-scale indicator conversion equation is ;The small indicator conversion equation is , where C pk is the value of the large-scale process capability index; C pl is the value of the large-scale process capability index; C pu is the value of the small-scale process capability index; μ is the process average; σ is the process standard. Difference; USL is the upper specification limit; LSL is the lower specification limit.
於本發明實施例中,所述能力指標分析表係透過以下步驟而得:In the embodiment of the present invention, the capability index analysis table is obtained through the following steps:
(1)由於所述製程能力指標數值皆是基於良率所定義出來的指標數值,因此本發明以Yield%(良率)=(3C pki)為基礎,將t個所述製程能力指標數值整合形成精密主軸產品品質指標,其公式為 ,其中, 為所述製程能力指標數值, 為所述精密主軸產品品質指標; (1) Since the process capability index values are all defined based on yield, the present invention integrates the t process capability index values based on Yield% (yield) = (3C pki ) The quality index of precision spindle products is formed, and its formula is: ,in, is the value of the process capability index, is the quality index of the precision spindle product;
(2)而由於精密主軸個別的所述製程能力指標數值,於各個加工製程的關係是獨立的,因此本發明能夠提出一個可以反應整個所述精密主軸產品品質指標與產品良率的關係式如下: ,其中, 、 為良率; (2) Since the process capability index value of each precision spindle is independent of each processing process, the present invention can propose a relationship that can reflect the entire precision spindle product quality index and product yield as follows: : ,in, , is the yield rate;
(3)而為了確保精密主軸的產品品質良率符合要求,因此 需符合下列關係式: ; (3) In order to ensure that the product quality and yield of precision spindles meet the requirements, therefore The following relationships must be met: ;
(4)本發明能夠根據(3)所得之關係式,得到一最小製程能力指標數值C 0,其公式如下: ; (4) The present invention can obtain a minimum process capability index value C 0 based on the relationship obtained in (3). The formula is as follows: ;
(5)本發明能夠根據(4)所得到之公式整理出所述能力指標分析表(如下表1所示)。
要因分析模組30,其係利用一要因分析方法對所述未達標數值進行要因分析,以取得複數製程不佳因子。於本發明實施例中,要因分析方法係為魚骨分析法(Fishbone Diagram);所述製程不佳因子係包含工件軟爪同心度因子、中心架同心度因子、刀具硬度因子及加工進給因子。The factor analysis module 30 uses a factor analysis method to perform factor analysis on the unqualified values to obtain complex process failure factors. In the embodiment of the present invention, the factor analysis method is Fishbone Diagram; the poor process factors include the workpiece soft claw concentricity factor, the center frame concentricity factor, the tool hardness factor and the machining feed factor. .
顯著因子分析模組40,其係對應所述製程不佳因子設定複數因子水準,顯著因子分析模組40係根據所述因子水準並利用一田口方法對所述製程不佳因子進行分析,以此將所述製程不佳因子區分為一影響顯著因子及一影響不顯著因子。The significant factor analysis module 40 sets a complex factor level corresponding to the process defect factor. The significant factor analysis module 40 analyzes the process defect factor based on the factor level and uses the Itachiguchi method. The process poor factors are divided into a significant factor and a non-significant factor.
於本發明實施例中,顯著因子分析模組40係利用所述田口方法之訊噪比分析將所述製程不佳因子區分為所述影響顯著因子及所述影響不顯著因子,並且顯著因子分析模組40係利用所述田口方法之變異數分析確認所述影響顯著因子是否正確。In the embodiment of the present invention, the significant factor analysis module 40 uses the signal-to-noise ratio analysis of the Taguchi method to distinguish the poor process factors into the significant factors and the insignificant factors, and the significant factor analysis The module 40 uses the variation analysis of the Taguchi method to confirm whether the significant influencing factors are correct.
最佳參數分析模組50,其係利用一反應曲面法對所述影響顯著因子進行分析,以取得一最佳製程參數組合數值。於本發明實施例中,最佳參數分析模組50係利用所述反應區面法之Box-Behnken設計對所述影響顯著因子進行分析。The optimal parameter analysis module 50 uses a response surface method to analyze the significant influencing factors to obtain an optimal process parameter combination value. In the embodiment of the present invention, the optimal parameter analysis module 50 uses the Box-Behnken design of the reaction zone method to analyze the significant influencing factors.
以下係進一步說明精密零件產品的製程參數優化系統100之精密零件產品的製程參數優化方法200,如圖2所示,精密零件產品的製程參數優化方法200包含一品質特性輸入步驟S1、一製程能力指標分析步驟S2、一要因分析步驟S3、一顯著因子分析步驟S4及一最佳參數分析步驟S5。The following is a further explanation of the process parameter optimization method 200 of the precision part product process parameter optimization system 100. As shown in Figure 2, the precision part product process parameter optimization method 200 includes a quality characteristic input step S1 and a process capability. Index analysis step S2, a factor analysis step S3, a significant factor analysis step S4 and an optimal parameter analysis step S5.
於品質特性輸入步驟S1中,係透過品質特性輸入模組10,提供使用者輸入所述零件產品之品質評估項目11,並提供使用者依據品質評估項目11對應設定品質特性資料12。In the quality characteristic input step S1, the quality characteristic input module 10 is used to allow the user to input the quality evaluation items 11 of the component product, and to provide the user to set the quality characteristic data 12 correspondingly based on the quality evaluation items 11.
於本發明實施例中,所述零件產品係為工具機之精密主軸,品質評估項目11包含主軸長度、主軸外徑、主軸內徑、主軸硬度、主軸同心度及主軸大端厚度,且品質特性資料12包含所述望目型品質特性資料、所述望大型品質特性資料及所述望小型品質特性資料。In the embodiment of the present invention, the component product is a precision spindle of a machine tool. The quality evaluation item 11 includes spindle length, spindle outer diameter, spindle inner diameter, spindle hardness, spindle concentricity and spindle big end thickness, and quality characteristics. The data 12 includes the large-sized quality characteristic data, the large-sized quality characteristic data, and the small-sized quality characteristic data.
舉例來說,於本發明實施例中,如下表2所示,品質評估項目11係細部區分為裁切製程中的主軸長度、車床加工製程中的主軸外徑和主軸內徑、熱處理製程中的主軸硬度、研磨製程中的主軸外徑和主軸內徑以及切削製程中的主軸同心度和主軸大端厚度,共8個品質評估項目11。而使用者係依據各個品質評估項目11的規格對應設定品質特性資料12,例如,將主軸長度設定為望大型品質特性資料,將主軸硬度設定為望目型品質特性資料等。
於製程能力指標分析步驟S2中,係透過製程能力指標模組20之所述指標轉換方程式將品質特性資料12對應轉換為所述製程能力指標數值,並利用製程能力指標模組20之所述能力指標分析表將所述製程能力指標數值區分為所述達標數值及所述未達標數值。In the process capability index analysis step S2, the quality characteristic data 12 is correspondingly converted into the process capability index value through the index conversion equation of the process capability index module 20, and the capability of the process capability index module 20 is utilized. The index analysis table divides the process capability index values into the standard value and the non-standard value.
於本發明實施例中,製程能力指標模組20係透過所述指標轉換方程式之所述望目型指標轉換方程式,將所述望目型品質特性資料轉換為所述製程能力指標數值之所述望目型製程能力指標數值;製程能力指標模組20係透過所述指標轉換方程式之所述望大型指標轉換方程式,將所述望大型品質特性資料轉換為所述製程能力指標數值之所述望大型製程能力指標數值;製程能力指標模組20係透過所述指標轉換方程式之所述望小型指標轉換方程式,將所述望小型品質特性資料轉換為所述製程能力指標數值之所述望小型製程能力指標數值。In the embodiment of the present invention, the process capability indicator module 20 converts the target-type quality characteristic data into the process capability index value through the target-type index conversion equation of the indicator conversion equation. The process capability index value of the target type is obtained; the process capability index module 20 converts the size quality characteristic data into the process capability index value through the size index conversion equation of the index conversion equation. The large-scale process capability index value; the process capability index module 20 converts the small-scale quality characteristic data into the small-scale process of the process capability index value through the small-scale indicator conversion equation of the indicator conversion equation. Capability index value.
其中,所述望目型指標轉換方程式為 ;所述望大型指標轉換方程式為 ;所述望小型指標轉換方程式為 。其中,C pk為所述望目型製程能力指標數值;C pl為所述望大型製程能力指標數值;C pu為所述望小型製程能力指標數值;μ為製程平均數;σ為製程標準差;USL為規格上限;LSL為規格下限。 Among them, the conversion equation of the sight-type indicator is: ;The conversion equation of the large-scale indicator is ;The conversion equation of the small-scale indicator is . Wherein, C pk is the value of the large-scale process capability index; C pl is the value of the large-scale process capability index; C pu is the value of the small-scale process capability index; μ is the process average; σ is the process standard deviation. ;USL is the upper specification limit; LSL is the lower specification limit.
舉例來說,於本發明實施例中,製程能力指標模組20係在每一所述望目型品質特性資料中、每一所述望大型品質特性資料中及每一所述望小型品質特性資料中,分別抽取30個樣本數據,並將前述樣本數據經過所述指標轉換方程式對應轉換為所述製程能力指標數值,並將得到的所述製程能力指標數值整理如下表3。
舉例來說,於本發明實施例中,精密主軸共有8個所述製程能力指標數值,而本發明之精密主軸之所述精密主軸產品品質指標需達到1.2(即C T=1.2),因此使用者能夠根據所述能力指標分析表(如表1所示)以及表3之內容,得到每一所述製程能力指標數值需達到1.3696(即C 0=1.3696),並以此得到所述達標數值及所述未達標數值。其中,所述達標數值包含裁切製程中的主軸長度、車床加工製程中的主軸外徑、熱處理製程中的主軸硬度、研磨製程中的主軸外徑和主軸內徑以及切削製程中的主軸同心度和主軸大端厚度;所述未達標數值為車床加工製程中的主軸內徑。 For example, in the embodiment of the present invention, the precision spindle has a total of 8 process capability index values, and the precision spindle product quality index of the precision spindle of the present invention needs to reach 1.2 (i.e. C T =1.2), so using According to the capability index analysis table (shown in Table 1) and the content of Table 3, the researcher can obtain that the value of each process capability index needs to reach 1.3696 (i.e., C 0 =1.3696), and thereby obtain the standard value and the stated unmet values. Among them, the standard values include the spindle length in the cutting process, the spindle outer diameter in the lathe processing process, the spindle hardness in the heat treatment process, the spindle outer diameter and spindle inner diameter in the grinding process, and the spindle concentricity in the cutting process. and the thickness of the big end of the spindle; the unqualified value is the inner diameter of the spindle in the lathe machining process.
於要因分析步驟S3中,係透過要因分析模組30利用所述要因分析方法對所述未達標數值進行要因分析,以取得所述製程不佳因子。於本發明實施例中,要因分析方法係為魚骨分析法(Fishbone Diagram);所述製程不佳因子係包含工件軟爪同心度因子、中心架同心度因子、刀具硬度因子及加工進給因子。In the factor analysis step S3, the factor analysis module 30 is used to perform factor analysis on the unqualified value using the factor analysis method to obtain the process defect factor. In the embodiment of the present invention, the factor analysis method is Fishbone Diagram; the poor process factors include the workpiece soft claw concentricity factor, the center frame concentricity factor, the tool hardness factor and the machining feed factor. .
舉例來說,於本發明實施例中,要因分析模組30係透過魚骨分析法(Fishbone Diagram)對所述未達標數值(車床加工製程中的主軸內徑)進行分析,並以此得到所述製程不佳因子,其中,所述製程不佳因子包含工件軟爪同心度因子、中心架同心度因子、刀具硬度因子及加工進給因子。For example, in the embodiment of the present invention, the factor analysis module 30 analyzes the unqualified value (the inner diameter of the spindle in the lathe processing process) through the Fishbone Diagram method, and thereby obtains the result. The process defect factors include the workpiece soft claw concentricity factor, the center frame concentricity factor, the tool hardness factor and the machining feed factor.
於顯著因子分析步驟S4中,係透過顯著因子分析模組40對應所述製程不佳因子設定複數因子水準,顯著因子分析模組40係根據所述因子水準並利用所述田口方法對所述製程不佳因子進行分析,以此將所述製程不佳因子區分為所述影響顯著因子及所述影響不顯著因子。於本發明實施例中,顯著因子分析模組40係利用所述田口方法之訊噪比分析將所述製程不佳因子區分為所述影響顯著因子及所述影響不顯著因子,並且顯著因子分析模組40係利用所述田口方法之變異數分析確認所述影響顯著因子是否正確。In the significant factor analysis step S4, complex factor levels are set corresponding to the process poor factors through the significant factor analysis module 40. The significant factor analysis module 40 analyzes the process based on the factor levels and using the Taguchi method. Analyze the defective factors, thereby distinguishing the process defective factors into the factors with significant influence and the factors with insignificant influence. In the embodiment of the present invention, the significant factor analysis module 40 uses the signal-to-noise ratio analysis of the Taguchi method to distinguish the poor process factors into the significant factors and the insignificant factors, and the significant factor analysis The module 40 uses the variation analysis of the Taguchi method to confirm whether the significant influencing factors are correct.
舉例來說,於本發明實施例中,顯著因子分析模組40係設定每一所述製程不佳因子有3個所述因子水準,並整理如下表4所示。
接續上述,顯著因子分析模組40係根據表4之所述因子水準,並利用所述田口方法中的L
9(3
4)直交表將所得之數據整理如下表5所示。
接續上述,由於所述未達標數值(車床加工製程中的主軸內徑)屬於望目品質特性,因此顯著因子分析模組40能夠根據表5之內容,並利用一訊噪比公式計算出所述製程不佳因子之信號雜音比,並呈現如圖3所示。其中,所述訊噪比公式為 。 Continuing from the above, since the unqualified value (the inner diameter of the spindle in the lathe machining process) is a quality characteristic, the significant factor analysis module 40 can calculate the value based on the content of Table 5 and using a signal-to-noise ratio formula. The signal-to-noise ratio of poor process factors is shown in Figure 3. Among them, the signal-to-noise ratio formula is .
接續上述,顯著因子分析模組40能夠根據圖3之內容,將數據整理如下表6所示。
接續上述,根據表6之內容,顯著因子分析模組40能夠得知刀具硬度因子(因子C)之數值較不明顯,因此顯著因子分析模組40能夠得到所述影響顯著因子包含件軟爪同心度因子、中心架同心度因子及加工進給因子,而所述影響不顯著因子為刀具硬度因子。並且顯著因子分析模組40能夠利用所述田口方法之變異數分析,整理出如下表7之數據,並以此得知所述影響顯著因子確實包含件軟爪同心度因子、中心架同心度因子及加工進給因子。
於最佳參數分析步驟S5中,透過最佳參數分析模組50利用所述反應曲面法對所述影響顯著因子進行分析,以取得所述最佳製程參數組合數值。於本發明實施例中,最佳參數分析模組50係利用所述反應區面法之Box-Behnken設計對所述影響顯著因子進行分析。In the optimal parameter analysis step S5, the significant influencing factors are analyzed using the response surface method through the optimal parameter analysis module 50 to obtain the optimal process parameter combination value. In the embodiment of the present invention, the optimal parameter analysis module 50 uses the Box-Behnken design of the reaction zone method to analyze the significant influencing factors.
舉例來說,於本發明實施例中,最佳參數分析模組50係根據表4之所述因子水準,將關於所述影響顯著因子之數據整理如下表8所示。
接續上述,最佳參數分析模組50將表8之數據內容,利用所述反應區面法之Box-Behnken設計進行分析,並將分析結果整理如下表9所示。其中,A為工件軟爪同心度因子、B為中心架同心度因子、C為加工進給因子,A*B、A*C、B*C為分析因子是否存在交互作用,A*A、B*B、C*C為判別因子對於品質是否存在反曲率。
接續上述,如圖4至圖6所示,最佳參數分析模組50係能夠根據表9之內容,繪製出主軸深孔加工製程各因子交互作用之等高線圖,並在等高線圖上找出所述最佳製程參數組合數值。其中,如圖4至圖6所示,能夠得到所述最佳製程參數組合數值為工件軟爪同心度因子等於0.0925mm、中心架同心度因子等於0.015mm以及加工進給因子等於0.3mm。Continuing from the above, as shown in Figures 4 to 6, the optimal parameter analysis module 50 can draw a contour diagram of the interaction of various factors in the spindle deep hole machining process based on the contents of Table 9, and find out all the factors on the contour diagram. The optimal combination of process parameters. Among them, as shown in Figures 4 to 6, the optimal process parameter combination values that can be obtained are the workpiece soft claw concentricity factor equal to 0.0925mm, the center frame concentricity factor equal to 0.015mm, and the processing feed factor equal to 0.3mm.
接續上述,根據下表10之內容所示,透過所述最佳製程參數組合數值組合後的車床加工製程中的主軸內徑的製程能力獲得顯著的提升。
藉此,本發明使用特性要因圖分析出影響工具機精密主軸之加工製程能力之關鍵因素,並利用田口方法與反應曲面法,協助找出工具機精密主軸之加工製程的最佳製程參數組合,以此達到能夠改善製程且更有效率的製造出符合工作母機高精度、高轉速、高穩度之關鍵精密主軸,並同時提升產業競爭力之目的。Through this, the present invention analyzes the key factors that affect the machining process capability of the precision spindle of the machine tool, and uses the Taguchi method and the reaction surface method to help find the optimal combination of process parameters for the machining process of the precision spindle of the machine tool. In this way, we can improve the process and more efficiently manufacture the key precision spindle that meets the high precision, high speed and high stability of the workpiece, and at the same time enhance the industrial competitiveness.
雖然本發明是以一個最佳實施例作說明,精於此技藝者能在不脫離本創作精神與範疇下作各種不同形式的改變。以上所舉實施例僅用以說明本創作而已,非用以限制本創作之範圍。舉凡不違本創作精神所從事的種種修改或改變,俱屬本創作申請專利範圍。Although the present invention has been described with a preferred embodiment, those skilled in the art can make various modifications without departing from the spirit and scope of the present invention. The above embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention. All modifications or changes that do not violate the spirit of this creation are within the scope of the patent application for this creation.
100:精密零件產品的製程參數優化系統100: Process parameter optimization system for precision parts products
200:精密零件產品的製程參數優化方法200: Process parameter optimization method for precision parts products
10:品質特性輸入模組10:Quality characteristic input module
11:品質評估項目11:Quality Assessment Project
12:品質特性資料12:Quality characteristics information
20:製程能力指標模組20: Process capability indicator module
21:製程能力指標轉換單元21: Process capability index conversion unit
22:製程能力指標分析單元22: Process capability index analysis unit
30:要因分析模組30: Factor analysis module
40:顯著因子分析模組40: Significant factor analysis module
50:最佳參數分析模組50: Best parameter analysis module
S1:品質特性輸入步驟S1: Quality characteristics input step
S2:製程能力指標分析步驟S2: Process capability index analysis steps
S3:要因分析步驟S3: Factor analysis steps
S4:顯著因子分析步驟S4: Significant factor analysis steps
S5:最佳參數分析步驟S5: Optimal parameter analysis steps
[圖1]係本發明之系統方塊示意圖。 [圖2]係本發明之方法流程示意圖。 [圖3]係本發明之各個製程不佳因子之S/N比因子效果示意圖。 [圖4]係本發明之中心架同心度因子-工件軟爪同心度因子與加工進給因子等高線圖。 [圖5]係本發明之加工進給因子-工件軟爪同心度因子與中心架同心度因子等高線圖。 [圖6]係本發明之加工進給因子-中心架同心度因子與工件軟爪同心度因子等高線圖。 [Fig. 1] is a schematic block diagram of the system of the present invention. [Fig. 2] is a schematic flow diagram of the method of the present invention. [Figure 3] is a schematic diagram of the S/N ratio factor effect of each process defect factor of the present invention. [Fig. 4] is a contour diagram of the center frame concentricity factor-workpiece soft claw concentricity factor and processing feed factor of the present invention. [Fig. 5] is a contour diagram of the processing feed factor of the present invention - the workpiece soft claw concentricity factor and the center frame concentricity factor. [Figure 6] is a contour diagram of the processing feed factor of the present invention - the center frame concentricity factor and the workpiece soft claw concentricity factor.
100:精密零件產品的製程參數優化系統 100: Process parameter optimization system for precision parts products
10:品質特性輸入模組 10:Quality characteristic input module
11:品質評估項目 11:Quality Assessment Project
12:品質特性資料 12:Quality characteristics information
20:製程能力指標模組 20: Process capability indicator module
21:製程能力指標轉換單元 21: Process capability index conversion unit
22:製程能力指標分析單元 22: Process capability index analysis unit
30:要因分析模組 30: Factor analysis module
40:顯著因子分析模組 40: Significant factor analysis module
50:最佳參數分析模組 50: Best parameter analysis module
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111125333A TWI814471B (en) | 2022-07-06 | 2022-07-06 | Processing parameters optimizing system of precision component product and method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111125333A TWI814471B (en) | 2022-07-06 | 2022-07-06 | Processing parameters optimizing system of precision component product and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI814471B true TWI814471B (en) | 2023-09-01 |
| TW202403481A TW202403481A (en) | 2024-01-16 |
Family
ID=88965868
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111125333A TWI814471B (en) | 2022-07-06 | 2022-07-06 | Processing parameters optimizing system of precision component product and method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI814471B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201211807A (en) * | 2010-09-09 | 2012-03-16 | Hon Hai Prec Ind Co Ltd | Method of controlling factors that influence an electronic rule of printed circuit boards |
| TW201314474A (en) * | 2011-09-28 | 2013-04-01 | Univ Nat Formosa | Optimized analysis method of photoelectric element process parameters |
| TW201541270A (en) * | 2014-04-23 | 2015-11-01 | Cheng Uei Prec Ind Co Ltd | Connector dimensions design optimization system and method thereof |
-
2022
- 2022-07-06 TW TW111125333A patent/TWI814471B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201211807A (en) * | 2010-09-09 | 2012-03-16 | Hon Hai Prec Ind Co Ltd | Method of controlling factors that influence an electronic rule of printed circuit boards |
| TW201314474A (en) * | 2011-09-28 | 2013-04-01 | Univ Nat Formosa | Optimized analysis method of photoelectric element process parameters |
| TW201541270A (en) * | 2014-04-23 | 2015-11-01 | Cheng Uei Prec Ind Co Ltd | Connector dimensions design optimization system and method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202403481A (en) | 2024-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Nurhaniza et al. | Analyzing the Effect of Machining Parameters Setting to the Surface Roughness during End Milling of CFRP‐Aluminium Composite Laminates | |
| Hazir et al. | Optimization of CNC cutting parameters using design of experiment (DOE) and desirability function | |
| Uddin et al. | Evaluating hole quality in drilling of Al 6061 alloys | |
| Babu et al. | Effect of machining parameters on milled natural fiber-reinforced plastic composites | |
| Walia et al. | Parametric optimization of centrifugal force-assisted abrasive flow machining (CFAAFM) by the Taguchi method | |
| Shajari et al. | The influence of tool path strategies on cutting force and surface texture during ball end milling of low curvature convex surfaces | |
| CN107065778B (en) | A method for the selection of the most energy-efficient machine tool for the entire use phase of the machine tool | |
| CN114626190B (en) | A method for constructing a process design resource model based on knowledge graph | |
| Köklü | Optimisation of machining parameters in interrupted cylindrical grinding using the Grey-based Taguchi method | |
| Wei et al. | Research progress of noise in high-speed cutting machining | |
| Gök et al. | Determination of experimental, analytical, and numerical values of tool deflection at ball end milling of inclined surfaces | |
| Wu et al. | Investigation on milling quality of stone–plastic composite using response surface methodology | |
| TWI814471B (en) | Processing parameters optimizing system of precision component product and method thereof | |
| Guo et al. | Cutting forces and cutting quality in the up-milling of solid wood using ceramic cutting tools | |
| D’yakonov et al. | Selecting the cutting conditions for plane grinding by the wheel periphery | |
| CN1785559A (en) | Processing method of germanium single crystal aspheric optical element | |
| Kim et al. | Determination of the optimal milling feed direction for unidirectional CFRPs using a predictive cutting-force model | |
| Ginta et al. | Development of surface roughness models in end milling titanium alloy Ti-6Al-4V using uncoated tungsten carbide inserts | |
| Schönecker et al. | Fundamental Investigation of the Application Behavior and Stabilization Potential of Milling Tools with Structured Flank Faces on the Minor Cutting Edges | |
| KR20150006356A (en) | System and method for selecting a tool assembly | |
| Ibrahim et al. | Experimental investigation of HSS face milling to AL6061 using Taguchi method | |
| da Silva et al. | Experimental research on the dynamic stability of internal turning tools for long overhangs | |
| Daud et al. | Prediction of chatter in CNC machining based on dynamic cutting force for ball end milling | |
| Chakraborty et al. | Measuring of Surface Roughness of Al-6061 Alloy by CNC Milling by using of Taguchi Method | |
| Gaitonde et al. | Selection of optimal process parameters for minimizing burr size in drilling using Taguchi's quality loss function approach |