TWI809195B - 用於埋藏缺陷之特徵化之系統及方法 - Google Patents
用於埋藏缺陷之特徵化之系統及方法 Download PDFInfo
- Publication number
- TWI809195B TWI809195B TW108133744A TW108133744A TWI809195B TW I809195 B TWI809195 B TW I809195B TW 108133744 A TW108133744 A TW 108133744A TW 108133744 A TW108133744 A TW 108133744A TW I809195 B TWI809195 B TW I809195B
- Authority
- TW
- Taiwan
- Prior art keywords
- defects
- tile images
- processors
- sample
- defect
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- H10P72/06—
-
- H10P72/0616—
-
- H10P74/203—
-
- H10P74/235—
-
- H10P74/277—
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Image Analysis (AREA)
- Automation & Control Theory (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本發明提供一種用於缺陷偵測及分析之系統。該系統可包含一檢測子系統及包含一記憶體及一或多個處理器之一控制器。該檢測子系統可包含一照明源及一或多個偵測器,該一或多個偵測器經組態以沿著一或多個偵測器通道獲得一控制樣本之缺陷之控制圖塊影像。該一或多個處理器可經組態以使用與該控制樣本之該等缺陷相關聯之該等控制圖塊影像及已知參數訓練一缺陷分類器。該檢測子系統可經進一步組態以獲取一額外樣本上之經識別缺陷之圖塊影像。該一或多個處理器可經組態以使用該缺陷分類器判定該等經識別缺陷之參數。
Description
本發明大體係關於缺陷檢視及分類,且更特定言之係關於使用機器學習來進行缺陷檢視及分類。
製造半導體裝置(諸如VNAND結構及半導體晶圓)通常包含在一半導體基板之頂部上形成大量薄膜及絕緣層。在製造程序期間,可在製造各種層之任一者時出現缺陷。偵測及/或量測此等缺陷可為非常困難的,尤其對於裝置之表面下方之層中之缺陷。當前系統及方法可能無法精確量測此等缺陷之大小及深度。因此,將期望提供用於解決如上文識別之先前方法之缺點之一或多者之一系統及方法。
根據本發明之一或多項實施例揭示一種系統。在一項實施例中,該系統包含一檢測子系統。在另一實施例中,該檢測子系統包含一或多個偵測通道,該一或多個偵測通道經組態以沿著一或多個散射角自一樣本獲得一或多個圖塊影像。在另一實施例中,該系統包含通信地耦合至該檢測子系統之一控制器,該控制器包含一或多個處理器及記憶體。在另一實施例中,該一或多個處理器經組態以執行儲存於該記憶體中之一程式
指令集,該程式指令集經組態以使該一或多個處理器:自該檢測子系統接收一控制樣本之一或多個訓練缺陷之一或多個控制圖塊影像;基於自該一或多個訓練缺陷獲得之該一或多個控制圖塊影像及與該一或多個訓練缺陷相關聯之一或多個已知參數訓練一缺陷分類器;引導該檢測子系統識別一額外樣本之一或多個缺陷;自該檢測子系統接收該額外樣本之該一或多個經識別缺陷之一或多個圖塊影像;及應用該缺陷分類器至該額外樣本之該一或多個經識別缺陷之該一或多個圖塊影像以判定該額外樣本之該一或多個經識別缺陷之一或多個參數。
根據本發明之一或多項實施例揭示一種系統。在一項實施例中,該系統包含通信地耦合至一檢測子系統之一控制器。在另一實施例中,該控制器包含一或多個處理器及記憶體,其中該一或多個處理器經組態以執行儲存於該記憶體中之一程式指令集,該程式指令集經組態以使該一或多個處理器:自該檢測子系統接收一控制樣本之一或多個訓練缺陷之一或多個控制圖塊影像;基於自該一或多個訓練缺陷獲得之該一或多個控制圖塊影像及與該一或多個訓練缺陷相關聯之一或多個已知參數訓練一缺陷分類器;引導該檢測子系統識別一額外樣本之一或多個缺陷;自該檢測子系統接收該額外樣本之該一或多個經識別缺陷之一或多個圖塊影像;及應用該缺陷分類器至該額外樣本之該一或多個經識別缺陷之該一或多個圖塊影像以判定該額外樣本之該一或多個經識別缺陷之一或多個參數。
根據本發明之一或多項實施例揭示一種方法。在一項實施例中,該方法包含使用一檢測子系統獲取一控制樣本之一或多個訓練缺陷之一或多個控制圖塊影像。在另一實施例中,該方法包含基於與該一或多個訓練缺陷相關聯之該一或多個控制圖塊影像及一或多個已知參數訓練一
缺陷分類器。在另一實施例中,該方法包含識別一額外樣本上之一或多個缺陷。在另一實施例中,該方法包含使用該檢測子系統獲取該額外樣本之該一或多個經識別缺陷之一或多個圖塊影像。在另一實施例中,該方法包含基於該一或多個圖塊影像使用該缺陷分類器判定該額外樣本之該一或多個經識別缺陷之一或多個參數。
應理解,前文概述及下列實施方式兩者僅係例示性的及說明性的且未必要限制如主張之本發明。被併入本說明書中且構成本說明書之一部分之附圖繪示本發明之實施例且與概述一起用於解釋本發明之原理。
100:系統
101:檢測子系統
102:照明源
104:光學元件
106:樣本
107a:第一偵測通道
107b:第二偵測通道
107c:第三偵測通道
108:載台總成
109a:第一散射方向
109b:第二散射方向
109c:第三散射方向
110a:第一偵測器
110b:第二偵測器
110c:第三偵測器
111a:第一圖塊影像
111b:第二圖塊影像
111c:第三圖塊影像
112:控制器
114:處理器
116:記憶體
118:程序工具
200:表
300:圖表
302:圖表
304:圖表
400:輪廓圖
500:輪廓圖
502:標繪圖
504:標繪圖
600:方法
602:步驟
604:步驟
606:步驟
608:步驟
610:步驟
藉由參考附圖熟習此項技術者可更佳理解本發明之數種優勢,在圖式中:圖1A至圖1B繪示根據本發明之一或多項實施例之用於缺陷偵測及分析之一系統之簡化方塊圖;圖2繪示根據本發明之一或多項實施例之使用圖1A至圖1B之系統獲取之影像之一表,其描繪在不同深度下之不同大小之缺陷;圖3A至圖3B繪示根據本發明之一或多項實施例之一卷積類神經網路(CNN)訓練程序之圖表;圖4繪示根據本發明之一或多項實施例之繪示不同深度及大小之缺陷之分離之一輪廓圖;圖5繪示根據本發明之一或多項實施例之繪示使用一三偵測通道組態及一單偵測通道組態之不同深度及大小之缺陷之分離之一輪廓圖;及圖6繪示根據本發明之一或多項實施例之用於偵測及分析缺陷之一方
法之一流程圖。
相關申請案之交叉參考
本申請案根據35 U.S.C.§ 119(e)規定主張2018年9月19日申請之將Jason Kirkwood及Jan Lauber指定為發明者之標題為DEPTH MEASUREMENT OF BURIED DEFECTS IN VNAND STACKS USING DEEP-LEARNING之美國臨時申請案第62/733,463號之權利,該案之全部內容以引用的方式併入本文中。
已關於特定實施例及其等之特定特徵特別展示且描述本發明。本文闡述之實施例被視為繪示性而非限制性的。一般技術者應容易明白,可在不脫離本發明之精神及範疇之情況下對形式及細節進行各種改變及修改。
現在將詳細參考附圖中繪示之所揭示標的物。
大體上參考圖1A至圖6,根據本發明之一或多項實施例展示且描述用於使用機器學習之缺陷偵測及分類之一系統及方法。
本發明之實施例係關於使用一機器學習分類器(例如,缺陷分類器)來進行缺陷偵測及分類。更具體言之,本發明之實施例係關於使用具有已知參數之缺陷之影像訓練一缺陷分類器。本發明之額外實施例係關於使用包含三個或三個以上偵測器通道之一檢測子系統獲取缺陷之影像。
當製造半導體裝置(諸如VNAND結構及半導體晶圓)時,在一半導體基板之頂部上形成大量層(包含薄膜層及絕緣層)。此多層製造程序可導致垂直分層/堆疊之半導體裝置。在整個製造程序中,缺陷可出
現在裝置之一或多個層中。偵測及/或量測此等缺陷(尤其係埋藏於半導體裝置之表面下方之缺陷)可為一困難且低效之程序。藉由實例,用於判定一缺陷之位置及深度之一些當前方法包含獲取不同聚焦設定下之缺陷之多個影像。雖然比較經獲取之影像可提供關於缺陷之大小及深度之一些資訊,但該資訊通常係不準確且僅具有有限用途。此外,程序係費時且冗長的。因此,本發明之實施例係關於用於量測埋藏於堆疊式半導體裝置內之缺陷之大小及深度之一系統及方法。
圖1A繪示根據本發明之一或多項實施例之用於缺陷偵測及分析之一系統100之一簡化方塊圖。在一項實施例中,系統100包含一檢測子系統101及一控制器112。
在一項實施例中,檢測子系統101包含一照明源。照明源102經組態以產生一照明光束且將照明光束引導至一樣本106。在另一實施例中,照明源102經組態以將照明光束引導至樣本106,使得照明光束以一聚焦線組態照射樣本106。照明源102可包含此項技術中已知用於產生一照明光束之任何照明源。例如,照明源102可包含一窄頻帶照明源,諸如一或多個雷射。例如,照明源102可包含經組態以產生具有355nm之一波長之一照明光束之一或多個雷射。
在另一實施例中,一或多個光學元件104經組態以將照明光束引導至樣本106。一或多個光學元件104可包含技術中已知之任何光學元件,其等包含但不限於一或多個傾斜轉向器、一或多個透鏡、一或多個鏡、一或多個濾光器、一或多個光束分離器及類似物。類似地,樣本106可包含技術中已知之任何樣品或基板,其等包含但不限於半導體晶圓、半導體基板、VNAND結構及類似物。
在一項實施例中,樣本106經安置於一載台總成108上以促進樣本106之移動。載台總成108可包含技術中已知之任何載台總成108,其等包含但不限於一X-Y載台、一R-θ載台及類似物。在另一實施例中,載台總成108能夠在檢測或成像期間調整樣本106之高度以維持樣本106上之聚焦。
在一項實施例中,檢測子系統101包含一或多個偵測通道107。一或多個偵測通道107可包含經組態以收集自樣本106散射之照明且獲取樣本106之影像之一或多個偵測器110。例如,如在圖1A中展示,系統100可包含:一第一偵測通道107a,其包含一第一偵測器110a;一第二偵測通道107b,其包含一第二偵測器110b;及一第三偵測通道107c,其包含一第三偵測器110c。可參考圖1B進一步理解檢測子系統101及偵測通道107a、107b、107c。
圖1B繪示根據本發明之一或多項實施例之檢測子系統101之一簡化方塊圖。如在圖1B中展示,檢測子系統101可包含但不限於一照明源102、一或多個光學元件104、一樣本106、一載台總成108及包含一或多個偵測器110a、110b、110c之一或多個偵測通道107a、107b、107c。
在一項實施例中,一或多個偵測通道107包含一或多個偵測器110。在額外及/或替代性實施例中,一或多個偵測通道107可包含經組態以收集自樣本106散射之照明且引導照明至一或多個偵測器110之一或多個光學元件。一或多個光學元件可包含技術中已知之任何光學元件,其等包含但不限於一或多個鏡、一或多個透鏡、一或多個光束分離器及類似物。
在一項實施例中,一或多個偵測通道107經組態以使用一或多個偵測器110收集自樣本106散射之照明。例如,一或多個偵測器110可經組態以收集自樣本106散射之照明以便識別樣本106中之一或多個缺陷。在另一實施例中,一或多個偵測器110經組態以獲取樣本106之影像。一或多個偵測器110可包含技術中已知之用於獲取一樣本106之影像之任何成像裝置及/或偵測器,其等包含但不限於一或多個相機。
如本文之前提及,一或多個偵測通道107可包含一或多個偵測器110。藉由實例,第一偵測通道107a可包含一第一偵測器110a,第二偵測通道107b可包含一第二偵測器110b且第三偵測通道107c可包含一第三偵測器110c。在另一實施例中,一或多個偵測通道107可經組態以收集按一或多個角度自樣本106散射之照明。就此而言,第一偵測通道107a可經組態以沿著一第一散射方向109a獲取樣本106之圖塊影像111a,第二偵測通道107b可經組態以沿著一第二散射方向109b獲取樣本106之圖塊影像111b,且第三偵測通道107c可經組態以沿著一第三散射方向109c獲取樣本106之圖塊影像111c。
例如,如在圖1B中展示,第一偵測通道107a及第三偵測通道107c可經組態以分別沿著一第一散射方向109a及一第三散射方向109c獲取樣本106之圖塊影像111a、111c,其中第一散射方向109a及第三散射方向109c以相對於樣本106之表面之一角度配置。繼續相同實例,第二偵測通道107b可經組態以沿著一第二散射方向109b獲取樣本106之圖塊影像111b,其中第二散射角109b相對於樣本106之表面實質上正交配置。
在一額外及/或替代性實施例中,包含一或多個感測器之一單一偵測器110可經組態以沿著多個散射方向109獲取圖塊影像111。例
如,具有三個或三個以上感測器之一單一偵測器110可經組態以沿著第一散射方向109a、第二散射方向109b及第三散射方向109c獲取圖塊影像111。
雖然圖1A及圖1B繪示包含經組態以沿著三個散射方向109獲取圖塊影像111之三個偵測器110之一檢測子系統101,但此不被視為限制本發明,除非本文另有提及。就此而言,預期檢測子系統101可以任何組態配置,其等包含但不限於一單偵測通道組態、一兩偵測通道組態、一三偵測通道組態、一五偵測通道組態及類似物。將在本文中進一步詳細論述各種通道組態之間的比較。
將再次參考圖1A。在一項實施例中,檢測子系統101之一或多個偵測器110通信耦合至一控制器112。控制器112可包含一或多個處理器114及一記憶體116。在另一實施例中,控制器112可經通信耦合至一或多個程序工具118。一或多個程序工具118可包含任何數目個上游或下游程序工具。一或多個程序工具118可包含技術中已知之任何程序工具,其等包含但不限於一或多個微影工具、一或多個拋光工具及類似物。藉由另一實例,一或多個程序工具可包含一或多個度量工具。在另一實施例中,控制器112通信地耦合至一使用者介面(未展示)。
在一項實施例中,一或多個處理器114可經組態以執行儲存於記憶體116中之一程式指令集,其中程式指令集經組態以使一或多個處理器114執行本發明之步驟。
在一項實施例中,程式指令集經組態以使一或多個處理器114使用檢測子系統101獲取一控制樣本106a之一或多個訓練缺陷之一或多個控制圖塊影像111。在另一實施例中,程式指令集經組態以使一或多
個處理器114基於與一或多個訓練缺陷相關聯之一或多個控制圖塊影像111及一或多個已知參數訓練一缺陷分類器。在另一實施例中,程式指令集經組態以使一或多個處理器114使用檢測子系統101識別一額外樣本106b上之一或多個缺陷。在另一實施例中,程式指令集經組態以使一或多個處理器114使用檢測子系統101獲取額外樣本106b之一或多個經識別缺陷之一或多個圖塊影像111。在另一實施例中,程式指令集經組態以使一或多個處理器114基於一或多個圖塊影像111使用缺陷分類器判定額外樣本106b之一或多個經識別缺陷之一或多個參數。將在本文中進一步詳細論述藉由一或多個處理器執行之此等步驟之各者。
在一項實施例中,一控制樣本106(下文中被稱為「控制樣本106a」)可被放置於載台總成108上。可在之前已經檢測控制樣本106a,使得已知控制樣本106a之缺陷(例如,「訓練缺陷」)。本文中預期,可已經使用系統100及/或一或多個外部檢測系統檢測控制樣本106a。另外,本文中預期控制樣本106a之已知、經識別缺陷(例如,訓練缺陷)之一或多個參數可經判定且儲存於記憶體116中。與訓練缺陷相關聯之參數可包含但不限於缺陷之位置、缺陷之深度、缺陷之大小、缺陷之類型(例如,缺陷類別)及類似物。本文中應注意,訓練缺陷可在控制樣本106a內有意地產生或「植入」,使得可已知具有一高準確度之各種參數(例如,位置、深度、大小、類型)。
在一項實施例中,程式指令集經組態以使一或多個處理器114使用檢測子系統101獲取控制樣本106a之一或多個訓練缺陷之一或多個控制圖塊影像111。例如,一或多個處理器114可使檢測子系統101之一或多個偵測器110獲取控制樣本106a之圖塊影像111。就此而言,第一偵
測器110a可沿著第一散射方向109a獲取控制樣本106a之一第一控制圖塊影像111a,第二偵測器110b可沿著第二散射方向109b獲取控制樣本106a之一第二控制圖塊影像111b,且第三偵測器110c可沿著第三散射方向109c獲取控制樣本106a之一第三控制圖塊影像111c。本文應注意,在術語「圖塊影像111」之前之術語「控制」可被視為表示自一控制樣本106a獲取圖塊影像111。
在另一實施例中,程式指令集經組態以使一或多個處理器114接收一或多個控制圖塊影像111。在一項實施例中,一或多個處理器114經組態以自一或多個偵測器110獲取一或多個控制圖塊影像111。在一額外及/或替代性實施例中,一或多個偵測器110經組態以將一或多個控制圖塊影像111傳輸至控制器112及/或一或多個處理器114。一或多個處理器114可經進一步組態以將一或多個控制圖塊影像111儲存於記憶體116中。
本文中應注意,圖塊影像111之聚焦及品質可相依於各自偵測器110之聚焦。例如,若第一偵測器110a之聚焦聚焦於樣本106之表面上,則埋藏於樣本106之表面下方之一缺陷可離焦。就此而言,可調整一或多個偵測器110之聚焦。藉由調整一或多個偵測器110之聚焦,缺陷之圖塊影像111之形狀可依據缺陷之深度而改變。接著,此資訊可用於在隨後步驟中判定缺陷之深度。藉由實例,缺陷分類器可利用使用不同聚焦獲取之圖塊影像111之間的差異來判定缺陷之深度。
預期,可調整檢測子系統101之「全域聚焦」。在額外及/或替代性實施例中,可個別地調整一或多個偵測器110之各者之個別聚焦。在另一實施例中,可緊接著偵測器110聚焦之調整獲取後續圖塊影像111。預期,一或多個偵測器110之聚焦可基於數個因素調整,其等包含但
不限於所獲取之圖塊影像111之品質、所獲取之圖塊影像111之聚焦及類似物。可參考圖2更佳理解描繪具有不同大小及深度之缺陷之圖塊影像111之聚焦及品質。
圖2繪示根據本發明之一或多項實施例之使用系統100獲取之圖塊影像111之一表200,其描繪在不同深度下之不同大小之缺陷。
如在圖2中可見,表200中之第一行圖塊影像111繪示具有20nm大小之缺陷之影像,其中第二行及第三行圖塊影像111分別繪示具有40nm及60nm大小之缺陷之影像。類似地,表200中之第一列圖塊影像111繪示具有0.36μm之深度之缺陷之影像,其中第二列、第三列及第四列圖塊影像111分別繪示具有1.2μm、2.04μm及2.88μm之深度之缺陷之影像。
將再次參考圖1A。
在另一實施例中,程式指令集經組態以使一或多個處理器114基於與一或多個訓練缺陷相關聯之一或多個控制圖塊影像111及一或多個已知參數訓練一缺陷分類器。缺陷分類器可包含技術中已知之任何類型之深度學習技術及/或機器學習演算法或分類器,其等包含但不限於一卷積類神經網路(CNN)(例如,GoogleNet、AlexNet及類似物)、一總體學習分類器、一隨機森林分類器、人工類神經網路(ANN)及類似物。
例如,在其中控制樣本106a使用訓練缺陷植入,且訓練缺陷之參數(例如,位置、大小、深度、類型及類似物)儲存於記憶體116中之實施例中,一或多個處理器114可使用一或多個監督學習技術訓練一缺陷分類器。例如,控制樣本106a中之一訓練缺陷之一或多個控制圖塊影像111之參數可儲存於記憶體116中。在此實例中,一或多個處理器114可藉
由提供訓練缺陷之控制圖塊影像111及參數至一缺陷分類器而經由監督學習訓練缺陷分離器。本文應注意,缺陷分類器可包含經組態以預測及/或分類經識別缺陷之一或多個參數之任何演算法或預測模型。可參考圖3A至圖3B更佳理解訓練缺陷分類器。
圖3A至圖3B繪示根據本發明之一或多項實施例之一卷積類神經網路(CNN)訓練程序之圖表300、302、304。特定言之,圖3A繪示CNN訓練程序之圖表300、302,且圖3B繪示描繪一組選定缺陷之深度量測之一直方圖304。
圖3A之圖表300繪示在訓練CNN時之CNN(例如,缺陷分類器)之均方根誤差(RMSE)。如在圖表300中可見,RMSE可在時期1(提供至CNN之資料之第一週期)期間大幅降低,且在後續時期稍微降低直至一最終RMSE值,指示一經訓練CNN。因此,圖表300繪示CNN可繼續在更多資料(例如,與一或多個訓練缺陷相關聯之控制圖塊影像111及已知參數)被提供至CNN(例如,缺陷分類器)時改良。如在圖3B中可見,CNN(例如,系統100之缺陷分類器)可具有經識別缺陷,其等大約集中於5nm、20nm、33nm及45nm。
將再次參考圖1A。
在另一實施例中,控制樣本106a可自載台總成108移除,且一額外樣本106b可被放置於載台總成108上。在實施例中,額外樣本106b可包含不同於控制樣本106a之一樣本106。例如,額外樣本106b可包含(但不限於)一產品半導體晶圓、一產品VNAND結構及類似物。就此而言,額外樣本106b可包含緊接著待針對缺陷檢測之控制樣本106a之任何樣本106。就此而言,相較於控制樣本106a,其中可在之前已知訓練缺陷
之參數,額外樣本106b中之經識別缺陷之參數可在分析額外樣本106b時未知且受關注。
在另一實施例中,程式指令集經組態以使一或多個處理器114使用檢測子系統101識別一額外樣本106b上之一或多個缺陷。例如,一或多個處理器114可自偵測器110接收一或多個影像且利用一或多個偵測演算法來識別額外樣本106b之一或多個缺陷。本文應注意,一或多個處理器114可利用技術中已知之任何演算法或偵測程序來識別額外樣本106b之一或多個缺陷。如之前在本文中提及,在一額外及/或替代性實施例中,可使用檢測子系統101外部之一檢測系統識別額外樣本106b上之一或多個缺陷。
在另一實施例中,程式指令集經組態以使一或多個處理器114使用檢測子系統101獲取額外樣本106b之一或多個經識別缺陷之一或多個圖塊影像111。例如,一或多個處理器114可使檢測子系統101之一或多個偵測器110獲取額外樣本106b之圖塊影像111。就此而言,第一偵測器110a可沿著第一散射方向109a獲取額外樣本106b之一第一圖塊影像111a,第二偵測器110b可沿著第二散射方向109b獲取額外樣本106b之一第二圖塊影像111b,且第三偵測器110c可沿著第三散射方向109c獲取額外樣本106b之一第三圖塊影像111c。在一項實施例中,如之前在本文中提及,可調整一或多個偵測器110之聚焦。
在一項實施例中,一或多個圖塊影像111可組合為一單一RGB影像。RGB影像之色彩平面之各者可對應於藉由各偵測通道107獲取之一圖塊影像111。例如,在具有一三偵測通道組態之實施例中,如在圖1A及圖1B中描繪,一整體RGB影像之一第一色彩平面可對應於沿著第一
偵測通道107a獲取之一第一圖塊影像111a,一第二色彩平面可對應於沿著第二偵測通道107b獲取之一第二圖塊影像111b,且一第三色彩平面可對應於沿著第三偵測通道107c獲取之一第三圖塊影像111c。
在另一實施例中,程式指令集經組態以使一或多個處理器114接收額外樣本106b之一或多個圖塊影像111。如之前在本文中提及,一或多個處理器114可經組態以自一或多個偵測器110獲取額外樣本106b之一或多個圖塊影像111。在一額外及/或替代性實施例中,一或多個偵測器110可經組態以將一或多個圖塊影像111傳輸至控制器112及/或一或多個處理器114。一或多個處理器114可經進一步組態以將額外樣本106b之一或多個圖塊影像111儲存於記憶體116中。
在另一實施例中,程式指令集經組態以使一或多個處理器114基於一或多個圖塊影像111使用缺陷分類器判定額外樣本106b之一或多個經識別缺陷之一或多個參數。就此而言,額外樣本106b之一或多個圖塊影像111可經提供至經訓練缺陷分類器。缺陷分類器可接著經組態以基於一或多個經接收圖塊影像111判定額外樣本106b之一或多個缺陷之一或多個參數。例如,缺陷分類器可經組態以判定一或多個缺陷之大小及深度。藉由另一實例,缺陷分類器可經組態以判定一或多個缺陷之位置。藉由另一實例,缺陷分類器可經組態以基於一或多個缺陷之類型/特性分類一或多個缺陷。本文中提及,藉由缺陷分類器判定之參數可包含技術中已知之任何參數,其等可在分析一樣本106時受關注,包含但不限於缺陷之位置、缺陷之大小、缺陷之深度、缺陷之類別/類型及類似物。
在另一實施例中,藉由缺陷分類器判定之一或多個缺陷之一或多個參數經儲存於記憶體116。就此而言,記憶體116可經組態以編
譯包含與各經檢測缺陷相關聯之資料之一資料庫。例如,記憶體116可經組態以編譯包含關於一或多個缺陷之大小、深度、位置、類別/類型及其他資訊之一資料庫。
在另一實施例中,程式指令集經組態以使一或多個處理器114調整一或多個程序工具118之一或多個特性。如之前在本文中提及,一或多個程序工具118可包含任何數目個上游或下游程序工具。一或多個程序工具118可包含技術中已知之任何程序工具,其等包含但不限於一或多個微影工具、一或多個拋光工具及類似物。藉由另一實例,一或多個程序工具可包含一或多個度量工具。在另一實施例中,控制器112通信地耦合至一使用者介面(未展示)。
調整一或多個程序工具118之一或多個特性可包含但不限於調整程序工具118之一載體總成、調整程序工具118之強度及/或一照明方向及類似物。就此而言,一或多個處理器114可經組態以在一前饋或回饋通信迴路中調整一或多個程序工具118之一或多個特性。本文中提及,經提供用於調整一或多個程序工具118之特性之實例僅針對繪示性目的提供,且不被視為限制性的。就此而言,調整程序工具118之一或多個特性可包含調整技術中已知之一程序工具118之任何特性。
可參考圖4及圖5A至圖5B進一步理解系統100判定一額外樣本106中之缺陷之受關注參數之能力。
圖4繪示根據本發明之一或多項實施例之繪示不同深度及大小之缺陷之分離之一輪廓圖400。
系統100可能能夠使具有不同深度之缺陷明確彼此區分。例如,如在圖4中展示,系統100之缺陷分類器可能已經能夠識別大約集
中於5nm、20nm、33nm及45nm之缺陷。輪廓圖400繪示系統100之缺陷分類器可能能夠識別缺陷且根據缺陷之深度及/或大小將缺陷分離至離散類別中。就此而言,本發明之實施例能夠產生比可使用之前檢測方法已經達成更高之缺陷深度解析度。本文中進一步提及,圖4中描繪之此等經識別缺陷可對應於圖3B之圖表304中繪示之CNN訓練程序資料。
圖5繪示根據本發明之一或多項實施例之繪示使用一三偵測通道組態及一單偵測通道組態之不同深度及大小之缺陷之分離之一輪廓圖500。特定言之,標繪圖502繪示利用一三偵測通道組態之經識別缺陷,且標繪圖504繪示利用一單偵測通道組態之經識別缺陷。比較標繪圖502及504,可見具有一三偵測通道組態之實施例可能能夠提供相較於具有一單偵測通道組態之實施例明顯改良之深度解析度。
如之前提及,系統100亦可包含一使用者介面(未展示)。在一項實施例中,一使用者介面通信地耦合至控制器112。在一項實施例中,使用者介面可包含但不限於一或多個桌上型電腦、平板電腦、智慧型電話、智慧型手錶或類似物。在另一實施例中,使用者介面包含將系統100之資料顯示給一使用者之一顯示器。使用者介面之顯示器可包含技術中已知的任何顯示器。例如,顯示器可包含但不限於一液晶顯示器(LCD)、一基於有機發光二極體(OLED)之顯示器或一CRT顯示器。使用者介面可進一步經組態以自一使用者接收一或多個輸入命令,其中一或多個輸入命令經組態以更改系統100之一或多個組件。熟習此項技術者應認識到,能夠與一使用者介面整合之任何顯示器裝置適用於在本發明中實施。在另一實施例中,一使用者可回應於經由使用者介面顯示給使用者之資料輸入選擇及/或指令。
在另一實施例中,系統100可包含經組態以將系統100之控制器112通信耦合至一外部網路之一網路介面(未展示)。就此而言,本文中預期,已經被描述為藉由控制器112及/或一或多個處理器114執行之本發明之任一步驟可替代地藉由一伺服器或其他遠端處理器經由一網路執行。藉由實例,儲存於記憶體116中之資料(例如,控制圖塊影像111、訓練缺陷之參數、圖塊影像111及類似物)可藉由一使用者介面傳輸至一遠端伺服器或處理器。就此而言,本文中預期,可在一遠端伺服器或處理器上訓練缺陷分類器。
注意,網路介面(未展示)可包含適用於與一網路介接之任何網路介面電路或網路介面裝置。例如,網路介面電路可包含基於纜線之介面裝置(例如,基於DSL之互連、基於電纜之互連、基於T9之互連及類似物)。在另一實施例中,網路介面電路可包含採用GSM、GPRS、CDMA、EV-DO、EDGE、WiMAX、3G、4G、4G LTE、5G、WiFi協定、RF、LoRa及類似物之一基於無線介面裝置。藉由另一實例,網路介面可經組態以將系統100通信耦合至具有一基於雲端架構之一網路。
本文中應注意,系統100之一或多個組件(例如,檢測子系統101、控制器112及類似物)可以技術中已知之任何方式通信耦合至系統100之各種其他組件。例如,一或多個處理器114可經由一纜線(例如,銅導線、光纖電纜及類似物)或無線連接(例如,RF耦合件、IR耦合件、資料網路通信(例如,3G、4G、4G LTE、5G、WiFi、WiMax、藍芽及類似物))通信耦合至彼此及其他組件。
在一項實施例中,一或多個處理器114可包含此項技術中已知的任何一或多個處理元件。從此意義上來說,一或多個處理器114可
包含經組態以執行軟體演算法及/或指令之任何微處理器類型之裝置。在一項實施例中,一或多個處理器114可由一桌上型電腦、主機電腦系統、工作站、影像電腦、並行處理器或經組態以執行經組態以操作系統100之一程式之其他電腦系統(例如,網路電腦)構成,如貫穿本發明描述。應認識到,可由一單一電腦系統或(替代性地)多個電腦系統執行貫穿本發明描述之步驟。此外,應認識到,貫穿本發明描述之步驟可在一或多個處理器114上之任何一或多者上執行。一般言之,術語「處理器」可經廣泛定義以涵蓋具有執行來自記憶體116之程式指令之一或多個處理元件之任何裝置。再者,系統100之不同子系統(例如,檢測子系統101、控制器112及類似物)可包含適合於執行貫穿本發明描述之步驟之至少一部分之處理器或邏輯元件。因此,上文描述不應被解釋為對本發明之一限制而僅為一繪示。
記憶體116可包含此項技術中已知的適合於儲存可藉由相關聯之一或多個處理器114執行之程式指令及自傳輸裝置接收之資料(例如,與控制樣本106a、控制圖塊影像111、圖塊影像111及類似物之已知缺陷相關聯之參數)之任何儲存媒體。例如,記憶體116可包含一非暫時性記憶體媒體。例如,記憶體116可包含(但不限於)一唯讀記憶體(ROM)、一隨機存取記憶體(RAM)、一磁性或光學記憶體裝置(例如,磁碟)、一磁帶、一固態碟機及類似物。進一步注意,記憶體116可與一或多個處理器114容置於一共同控制器外殼中。在一替代實施例中,記憶體116可相對於處理器114、控制器112及類似物之實體位置遠端定位。在另一實施例中,記憶體116維持使一或多個處理器114執行透過本發明描述之各種步驟之程式指令。
圖6繪示根據本發明之一或多項實施例之用於偵測及分析缺陷之一方法600之一流程圖。在本文中注意,方法600之步驟可由系統100完全實施或部分實施。然而,進一步認識到,方法600不限於系統100,其中額外或替代系統級實施例可執行方法600之步驟之全部或部分。
在步驟602中,使用一檢測子系統獲取一控制樣本之一或多個訓練缺陷之一或多個控制圖塊影像。例如,程式指令集可經組態以使一或多個處理器114使用檢測子系統101獲取控制樣本106a之一或多個訓練缺陷之一或多個控制圖塊影像111。如之前在本文中提及,訓練缺陷可在控制樣本106a內有意地產生或「植入」,使得可已知具有一高準確度之各種參數(例如,位置、深度、大小、類型)。與訓練缺陷相關聯之參數可包含但不限於缺陷之位置、缺陷之深度、缺陷之大小、缺陷之類型(例如,缺陷類別)及類似物。
在一步驟604中,基於與一或多個訓練缺陷相關聯之一或多個控制圖塊影像及一或多個已知參數訓練一缺陷分類器。缺陷分類器可包含技術中已知之任何類型之深度學習技術及/或機器學習演算法或分類器,其等包含但不限於一卷積類神經網路(CNN)(例如,GoogleNet、AlexNet及類似物)、一總體學習分類器、一隨機森林分類器、人工類神經網路(ANN)及類似物。
在一步驟606中,識別一額外樣本上之一或多個缺陷。例如,一或多個處理器114可自偵測器110接收一或多個影像且利用一或多個偵測演算法來識別額外樣本106b之一或多個缺陷。本文應注意,一或多個處理器114可利用技術中已知之任何演算法或偵測程序來識別額外樣
本106b之一或多個缺陷。
在一步驟608中,使用檢測子系統獲取額外樣本之一或多個經識別缺陷之一或多個圖塊影像。例如,一或多個處理器114可使檢測子系統101之一或多個偵測器110獲取額外樣本106b之圖塊影像111。例如,在具有一三偵測通道組態之實施例中,可沿著一第一散射方向、一第二散射方向及一第三散射方向獲取圖塊影像111。
在一步驟610中,基於一或多個圖塊影像使用缺陷分類器識別額外樣本之一或多個經識別缺陷之一或多個參數。例如,可提供額外樣本106b之一或多個圖塊影像111至經訓練缺陷分類器,其中經訓練缺陷分類器經組態以識別一或多個經識別缺陷之一或多個參數。與額外樣本106b之一或多個經識別缺陷相關聯之參數可包含但不限於缺陷之位置、缺陷之深度、缺陷之大小、缺陷之類型(例如,缺陷類別)及類似物。
熟習此項技術者將認識到,在本文中描述之組件(例如,操作)、裝置、物件及隨附其等之論述為概念清晰起見而被用作實例,且預期各種組態修改。因此,如在本文中使用,所闡述之特定範例及隨附論述旨在表示其等之更普通類別。一般言之,任何特定範例之使用旨在表示其類別,且未包含特定組件(例如,操作)、裝置及物件不應被視為限制性。
熟習此項技術者將瞭解,存在可藉由其等實現本文中描述之程序及/或系統及/或其他技術之各種工具(例如,硬體、軟體及/或韌體),且較佳工具將隨著其中部署程序及/或系統及/或其他技術之內容脈絡而變化。舉例而言,若一實施者判定速度及精確性最重要,則實施者可選擇一主要硬體及/或韌體工具;替代性地,若靈活性最重要,則實施者可選擇一主要軟體實施方案;或又再次替代性地,實施者可選擇硬體、軟體
及/或韌體之某組合。因此,存在可藉由其等實現本文中描述之程序及/或裝置及/或其他技術之若干可能工具,其等皆不固有地優於其他者,其中待利用之任何工具係取決於其中將部署工具之內容脈絡及實施者之特定關注(例如,速度、靈活性或可預測性)(其等之任一者可變化)之一選擇。
呈現之前描述以使一般技術者能夠製作且使用如在一特定申請案及其要求之內容脈絡中提供之本發明。如本文使用,方向性術語,諸如「頂部」、「底部」、「上方」、「下方」、「上」、「朝上」、「下」、「向下」及「朝下」意在為描述之目的而提供相對位置,且不意在指定一絕對參考架構。熟習此項技術者將瞭解對所描述之實施例之各種修改,且本文中定義之一般原理可應用至其他實施例。因此,本發明並不意在限於所展示及描述之特定實施例,而將符合與本文所揭示之原理及新穎特徵一致的最廣範疇。
關於本文中之實質上任何複數及/或單數術語之使用,熟習此項技術者可視內容脈絡及/或申請案需要而從複數轉變為單數及/或從單數轉變為複數。為清晰起見而未在本文中明確闡述各種單數/複數排列。
本文中描述之所有方法可包含將方法實施例之一或多個步驟之結果儲存於記憶體中。結果可包含本文中描述之結果之任一者且可以此項技術中已知的任何方式儲存。記憶體可包含本文中描述之任何記憶體或此項技術中已知的任何其他合適儲存媒體。在已儲存結果之後,結果可在記憶體中存取且由本文中描述之方法或系統實施例之任一者使用,經格式化以顯示給一使用者,由另一軟體模組、方法或系統使用等等。此外,該等結果可「永久地」、「半永久地」、「暫時地」儲存或儲存達某一時段。例如,記憶體可為隨機存取記憶體(RAM),且結果可不必無限存留於記憶
體中。
應進一步預期的是,上文所述之方法之實施例之各者可包含本文中所述之任何其他方法之任何其他步驟。另外,上文所述之方法之實施例之各者可由本文中所述之系統之任一者執行。
在本文中描述之標的物有時繪示含於其他組件內或與其他組件連接之不同組件。應理解,此等所描繪之架構僅為例示性的,且事實上可實施達成相同功能性之諸多其他架構。在一概念意義上,達成相同功能性之組件之任何配置經有效「相關聯」,使得達成所要功能性。因此,本文中經組合以達成一特定功能性之任何兩個組件可被視為彼此「相關聯」,使得達成所要功能性,而與架構或中間組件無關。同樣地,如此相關聯之任何兩個組件亦可被視為彼此「連接」或「耦合」以達成所要功能性,且能夠如此相關聯之任何兩個組件亦可被視為彼此「可耦合」以達成所要功能性。可耦合之特定實例包含但不限於可實體配接及/或實體相互作用之組件及/或可無線相互作用及/或無線相互作用之組件及/或邏輯相互作用及/或可邏輯相互作用之組件。
此外,應瞭解,本發明係由隨附發明申請專利範圍定義。熟習此項技術者將理解,一般言之,在本文中使用且尤其在隨附發明申請專利範圍(例如,隨附發明申請專利範圍之主體)中使用之術語大體上旨在為「開放性」術語(例如,術語「包含(including)」應被解釋為「包含但不限於」,術語「具有」應被解釋為「至少具有」,術語「包含(includes)」應被解釋為「包含但不限於」等等)。熟習此項技術者將進一步瞭解,若預期一特定數目個所介紹請求項敘述,則此一意圖將明確敘述於請求項中,且在不存在此敘述之情況下,不存在此意圖。例如,為幫助
理解,下列隨附發明申請專利範圍可含有介紹性片語「至少一個」及「一或多個」之使用以介紹請求項敘述。然而,此等片語之使用不應被解釋為暗示藉由不定冠詞「一」或「一個」介紹一請求項敘述將含有此所介紹請求項敘述之任何特定請求項限於僅含有一個此敘述之發明,即使在相同請求項包含介紹性片語「一或多」或「至少一」及諸如「一」或「一個」之不定冠詞(例如,通常應將「一」或「一個」解譯為意指「至少一」或「一或多」)時亦如此;用於介紹請求項敘述之定冠詞的使用亦為如此。此外,即使明確敘述特定數目個所介紹請求項敘述,熟習此項技術者仍將認識到,此敘述通常應被解譯為意謂至少所敘述數目個(例如,不具有其他修飾語之「兩個敘述」之單純敘述通常意謂至少兩個敘述或兩個或兩個以上敘述)。此外,在其中使用類似於「A、B及C之至少一者等」之一慣例之該等例項中,一般而言在熟習此項技術者將理解該慣例(例如,「具有A、B及C之至少一者之一系統」將包含(但不限於)僅具有A、僅具有B、僅具有C、具有A及B、具有A及C、具有B及C及/或具有A、B及C等之系統)之意義上期望此一構造。在其中使用類似於「A、B或C之至少一者等」之一慣例之該等例項中,一般而言在熟習此項技術者將理解該慣例(例如,「具有A、B或C之至少一者之一系統」將包含(但不限於)僅具有A、僅具有B、僅具有C、具有A及B、具有A及C、具有B及C及/或具有A、B及C等之系統)之意義上期望此一構造。相關技術者將進一步理解,呈現兩個或兩個以上替代術語之實際上任何轉折詞及/或片語(無論在描述、發明申請專利範圍或圖式中)應被理解為預期包含術語之一者、術語之任一者或兩個術語之可能性。例如,片語「A或B」將被理解為包含「A」或「B」或「A及B」之可能性。
據信,將藉由前述描述理解本發明及諸多其伴隨優勢,且將明白,可在不脫離所揭示之標的物或不犧牲所有其重大優勢之情況下對組件之形式、構造及配置做出各種改變。所描述之形式僅為說明性的,且以下發明申請專利範圍意欲涵蓋且包含此等改變。此外,應瞭解,本發明係由隨附發明申請專利範圍定義。
100:系統
101:檢測子系統
102:照明源
104:光學元件
106:樣本
107a:第一偵測通道
107b:第二偵測通道
107c:第三偵測通道
108:載台總成
110a:第一偵測器
110b:第二偵測器
110c:第三偵測器
111a:第一圖塊影像
111b:第二圖塊影像
111c:第三圖塊影像
112:控制器
114:處理器
116:記憶體
118:程序工具
Claims (23)
- 一種用於埋藏缺陷之特徵化之系統,其包括:一檢測子系統,其中該檢測子系統包含一或多個偵測通道,該一或多個偵測通道經組態以沿著一或多個散射角自一樣本獲得一或多個圖塊影像,其中該檢測子系統包括經組態以沿著一第一散射方向獲取一或多個圖塊影像之一第一偵測通道、經組態以沿著一第二散射方向獲取一或多個圖塊影像之一第二偵測通道及經組態以沿著至少一第三散射方向獲取一或多個圖塊影像之至少一第三偵測通道,其中該第二散射方向相對於該樣本之一表面實質上正交配置;及一控制器,其通信地耦合至該檢測子系統,該控制器包含一或多個處理器及記憶體,其中該一或多個處理器經組態以執行儲存於該記憶體中之一程式指令集,該程式指令集經組態以使該一或多個處理器:自該檢測子系統接收包括一半導體基板或一VNAND堆疊之至少一者之一控制樣本之一或多個訓練缺陷之一或多個控制圖塊影像;基於自該一或多個訓練缺陷獲取之該一或多個控制圖塊影像及與該一或多個訓練缺陷相關聯之一或多個已知參數訓練一缺陷分類器;引導該檢測子系統以識別一額外樣本之一或多個缺陷;自該檢測子系統接收該額外樣本之該一或多個經識別缺陷之一或多個圖塊影像;及 應用該缺陷分類器至該額外樣本之該一或多個經識別缺陷之該一或多個圖塊影像以判定該額外樣本之該一或多個經識別缺陷之一或多個參數,其中該一或多個處理器經進一步組態以調整該第一偵測通道、該第二偵測通道及該至少第三偵測通道之至少一者之聚焦,使得該一或多個訓練缺陷之該一或多個控制圖塊影像之一形狀作為該一或多個訓練缺陷之一深度之一函數而改變,其中該一或多個經識別缺陷之一深度可基於該函數而被判定。
- 如請求項1之系統,其進一步包括一或多個程序工具,其中該一或多個處理器經進一步組態以調整該一或多個程序工具之一或多個特性。
- 如請求項2之系統,其中該一或多個程序工具包含一微影工具及一拋光工具之至少一者。
- 如請求項1之系統,其中該一或多個參數包括一缺陷大小及一缺陷深度之至少一者。
- 如請求項1之系統,其中該缺陷分類器包括一卷積類神經網路(CNN)。
- 如請求項1之系統,其中該額外樣本包括一半導體基板及一VNAND堆疊之至少一者。
- 如請求項1之系統,其中該一或多個處理器經進一步組態以將該額外樣本之該一或多個經識別缺陷之該一或多個圖塊影像組合為一RGB影像。
- 如請求項1之系統,其中該一或多個處理器經進一步組態以將該控制樣本之該一或多個訓練缺陷分類為一或多個缺陷類別。
- 一種用於埋藏缺陷之特徵化之系統,其包括:一控制器,其通信地耦合至一檢測子系統,該控制器包含一或多個處理器及記憶體,其中該一或多個處理器經組態以執行儲存於該記憶體中之一程式指令集,該程式指令集經組態以使該一或多個處理器:自該檢測子系統接收包括一半導體基板或一VNAND堆疊之至少一者之一控制樣本之一或多個訓練缺陷之一或多個控制圖塊影像;基於自該一或多個訓練缺陷獲取之該一或多個控制圖塊影像及與該一或多個訓練缺陷相關聯之一或多個已知參數訓練一缺陷分類器;引導該檢測子系統以識別一額外樣本之一或多個缺陷;自該檢測子系統接收該額外樣本之該一或多個經識別缺陷之一或多個圖塊影像;及應用該缺陷分類器至該額外樣本之該一或多個經識別缺陷之該一或多個圖塊影像以判定該額外樣本之該一或多個經識別缺陷之 一或多個參數,其中該檢測子系統包括經組態以沿著一第一散射方向獲取一或多個圖塊影像之一第一偵測通道、經組態以沿著一第二散射方向獲取一或多個圖塊影像之一第二偵測通道及經組態以沿著至少一第三散射方向獲取一或多個圖塊影像之至少一第三偵測通道,其中該第二散射方向相對於該控制樣本之一表面實質上正交配置,其中該一或多個處理器經進一步組態以調整該第一偵測通道、該第二偵測通道及該至少第三偵測通道之至少一者之聚焦,使得該一或多個訓練缺陷之該一或多個控制圖塊影像之一形狀作為該一或多個訓練缺陷之一深度之一函數而改變,其中該一或多個經識別缺陷之一深度可基於該函數而被判定。
- 如請求項9之系統,其進一步包括一或多個程序工具,其中該一或多個處理器經進一步組態以調整該一或多個程序工具之一或多個特性。
- 如請求項10之系統,其中該一或多個程序工具包含一微影工具及一拋光工具之至少一者。
- 如請求項9之系統,其中該一或多個參數包括一缺陷大小及一缺陷深度之至少一者。
- 如請求項9之系統,其中該缺陷分類器包括一卷積類神經網路(CNN)。
- 如請求項9之系統,其中該額外樣本包括一半導體基板及一VNAND堆疊之至少一者。
- 如請求項9之系統,其中該一或多個處理器經進一步組態以將該額外樣本之該一或多個經識別缺陷之該一或多個圖塊影像組合為一RGB影像。
- 如請求項9之系統,其中該一或多個處理器經進一步組態以將該控制樣本之該一或多個訓練缺陷分類為一或多個缺陷類別。
- 一種用於量測一樣本中之埋藏缺陷之深度及大小之方法,其包括:使用一檢測子系統獲取包括一半導體基板或一VNAND堆疊之至少一者之一控制樣本之一或多個訓練缺陷之一或多個控制圖塊影像;基於與該一或多個訓練缺陷相關聯之該一或多個控制圖塊影像及一或多個已知參數訓練一缺陷分類器;識別一額外樣本上之一或多個缺陷;使用該檢測子系統獲取該額外樣本之該一或多個經識別缺陷之一或多個圖塊影像;及基於該一或多個圖塊影像使用該缺陷分類器判定該額外樣本之該一或多個經識別缺陷之一或多個參數,其中該檢測子系統包括經組態以沿著一第一散射方向獲取一或多個圖塊影像之一第一偵測通道、經組態以沿著一第二散射方向獲取一或多個圖塊影像之一第二偵測通道及經組態以沿著至少一第三散 射方向獲取一或多個圖塊影像之至少一第三偵測通道,其中該第二散射方向相對於該控制樣本之一表面實質上正交配置,其中該一或多個處理器經進一步組態以調整該第一偵測通道、該第二偵測通道及該至少第三偵測通道之至少一者之聚焦,使得該一或多個訓練缺陷之該一或多個控制圖塊影像之一形狀作為該一或多個訓練缺陷之一深度之一函數而改變,其中該一或多個經識別缺陷之一深度可基於該函數而被判定。
- 如請求項17之方法,其進一步包括基於該一或多個經識別缺陷之該經判定一或多個參數調整一程序工具之一或多個特性。
- 如請求項17之方法,其中該一或多個參數包括一缺陷大小及一缺陷深度之至少一者。
- 如請求項17之方法,其中該缺陷分類器包括一卷積類神經網路(CNN)。
- 如請求項17之方法,其中該額外樣本包括一半導體基板及一VNAND堆疊之至少一者。
- 如請求項17之方法,其進一步包括將該額外樣本之該一或多個經識別缺陷之該一或多個圖塊影像組合為一RGB影像。
- 如請求項17之方法,其進一步包括將該控制樣本之該一或多個訓練缺陷分類為一或多個缺陷類別。
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862733463P | 2018-09-19 | 2018-09-19 | |
| US62/733,463 | 2018-09-19 | ||
| US16/189,497 | 2018-11-13 | ||
| US16/189,497 US10854486B2 (en) | 2018-09-19 | 2018-11-13 | System and method for characterization of buried defects |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202024611A TW202024611A (zh) | 2020-07-01 |
| TWI809195B true TWI809195B (zh) | 2023-07-21 |
Family
ID=69773025
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108133744A TWI809195B (zh) | 2018-09-19 | 2019-09-19 | 用於埋藏缺陷之特徵化之系統及方法 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US10854486B2 (zh) |
| JP (1) | JP7289912B2 (zh) |
| KR (1) | KR102543870B1 (zh) |
| CN (1) | CN112703589B (zh) |
| IL (1) | IL281402B2 (zh) |
| TW (1) | TWI809195B (zh) |
| WO (1) | WO2020061125A1 (zh) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11774371B2 (en) * | 2020-05-22 | 2023-10-03 | Kla Corporation | Defect size measurement using deep learning methods |
| WO2022255518A1 (ko) * | 2021-06-03 | 2022-12-08 | 주식회사 솔루션에이 | 딥러닝 신경망 모델을 이용한 검사대상 패널의 결함 판정장치 |
| US12293504B2 (en) | 2022-05-06 | 2025-05-06 | Viasat, Inc. | Semiconductor package inspection with predictive model for wirebond radio frequency performance |
| CN114613705B (zh) * | 2022-05-10 | 2022-09-06 | 深圳市众望丽华微电子材料有限公司 | 一种半导体元器件加工的控制方法、系统及介质 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7554656B2 (en) * | 2005-10-06 | 2009-06-30 | Kla-Tencor Technologies Corp. | Methods and systems for inspection of a wafer |
| US8150141B2 (en) * | 2006-02-27 | 2012-04-03 | Hitachi High-Technologies Corporation | Defect classifier using classification recipe based on connection between rule-based and example-based classifiers |
| US8537350B2 (en) * | 2004-12-19 | 2013-09-17 | Kla-Tencor Corporation | Inspecting a workpiece using scattered light |
| TW201507046A (zh) * | 2013-05-23 | 2015-02-16 | Tao Luo | 使用特製印刷方法的多重柱電子束檢測 |
| US9696264B2 (en) * | 2013-04-03 | 2017-07-04 | Kla-Tencor Corporation | Apparatus and methods for determining defect depths in vertical stack memory |
| US20180107928A1 (en) * | 2016-10-14 | 2018-04-19 | Kla-Tencor Corporation | Diagnostic systems and methods for deep learning models configured for semiconductor applications |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001156135A (ja) * | 1999-11-29 | 2001-06-08 | Hitachi Ltd | 欠陥画像の分類方法及びその装置並びにそれを用いた半導体デバイスの製造方法 |
| JP3978098B2 (ja) * | 2002-08-12 | 2007-09-19 | 株式会社日立製作所 | 欠陥分類方法及びその装置 |
| KR100675885B1 (ko) | 2005-03-16 | 2007-02-02 | 주식회사 하이닉스반도체 | 전자빔을 이용한 웨이퍼 검사방법 |
| SG164293A1 (en) | 2009-01-13 | 2010-09-29 | Semiconductor Technologies & Instruments Pte | System and method for inspecting a wafer |
| JP5550862B2 (ja) | 2009-07-23 | 2014-07-16 | 株式会社日立ハイテクノロジーズ | 欠陥分類装置及び分類調整方法 |
| US9091666B2 (en) * | 2012-02-09 | 2015-07-28 | Kla-Tencor Corp. | Extended defect sizing range for wafer inspection |
| JP6942925B2 (ja) * | 2013-11-08 | 2021-09-29 | ソニーグループ株式会社 | 細胞分析システム、細胞分析プログラム及び細胞分析方法 |
| US9430743B2 (en) * | 2014-03-06 | 2016-08-30 | Kla-Tencor Corp. | Composite defect classifier |
| US9898811B2 (en) * | 2015-05-08 | 2018-02-20 | Kla-Tencor Corporation | Method and system for defect classification |
| US10436720B2 (en) * | 2015-09-18 | 2019-10-08 | KLA-Tenfor Corp. | Adaptive automatic defect classification |
| US10360477B2 (en) * | 2016-01-11 | 2019-07-23 | Kla-Tencor Corp. | Accelerating semiconductor-related computations using learning based models |
| JP6696323B2 (ja) * | 2016-06-27 | 2020-05-20 | 大日本印刷株式会社 | パターン検査装置およびパターン検査方法 |
| US10267748B2 (en) | 2016-10-17 | 2019-04-23 | Kla-Tencor Corp. | Optimizing training sets used for setting up inspection-related algorithms |
| US10713534B2 (en) * | 2017-09-01 | 2020-07-14 | Kla-Tencor Corp. | Training a learning based defect classifier |
| US10809635B2 (en) * | 2017-11-20 | 2020-10-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Defect inspection method and defect inspection system |
| US10713769B2 (en) * | 2018-06-05 | 2020-07-14 | Kla-Tencor Corp. | Active learning for defect classifier training |
| US10949964B2 (en) * | 2018-09-21 | 2021-03-16 | Kla Corporation | Super-resolution defect review image generation through generative adversarial networks |
| US11037289B2 (en) * | 2018-10-26 | 2021-06-15 | Taiwan Semiconductor Manufacturing Company Ltd. | Method and system for scanning wafer |
| US10922807B2 (en) * | 2018-10-29 | 2021-02-16 | Stmicroelectronics S.R.L. | Wafer manufacturing system, device and method |
| US11731232B2 (en) * | 2018-10-30 | 2023-08-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Irregular mechanical motion detection systems and method |
-
2018
- 2018-11-13 US US16/189,497 patent/US10854486B2/en active Active
-
2019
- 2019-09-18 CN CN201980060612.0A patent/CN112703589B/zh active Active
- 2019-09-18 WO PCT/US2019/051616 patent/WO2020061125A1/en not_active Ceased
- 2019-09-18 JP JP2021515079A patent/JP7289912B2/ja active Active
- 2019-09-18 KR KR1020217011215A patent/KR102543870B1/ko active Active
- 2019-09-19 TW TW108133744A patent/TWI809195B/zh active
-
2021
- 2021-03-10 IL IL281402A patent/IL281402B2/en unknown
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8537350B2 (en) * | 2004-12-19 | 2013-09-17 | Kla-Tencor Corporation | Inspecting a workpiece using scattered light |
| US7554656B2 (en) * | 2005-10-06 | 2009-06-30 | Kla-Tencor Technologies Corp. | Methods and systems for inspection of a wafer |
| US8150141B2 (en) * | 2006-02-27 | 2012-04-03 | Hitachi High-Technologies Corporation | Defect classifier using classification recipe based on connection between rule-based and example-based classifiers |
| US9696264B2 (en) * | 2013-04-03 | 2017-07-04 | Kla-Tencor Corporation | Apparatus and methods for determining defect depths in vertical stack memory |
| TW201507046A (zh) * | 2013-05-23 | 2015-02-16 | Tao Luo | 使用特製印刷方法的多重柱電子束檢測 |
| US20180107928A1 (en) * | 2016-10-14 | 2018-04-19 | Kla-Tencor Corporation | Diagnostic systems and methods for deep learning models configured for semiconductor applications |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112703589B (zh) | 2022-09-06 |
| IL281402A (en) | 2021-04-29 |
| IL281402B1 (en) | 2023-04-01 |
| CN112703589A (zh) | 2021-04-23 |
| KR20210048564A (ko) | 2021-05-03 |
| JP7289912B2 (ja) | 2023-06-12 |
| TW202024611A (zh) | 2020-07-01 |
| US10854486B2 (en) | 2020-12-01 |
| IL281402B2 (en) | 2023-08-01 |
| JP2022502838A (ja) | 2022-01-11 |
| KR102543870B1 (ko) | 2023-06-14 |
| US20200090969A1 (en) | 2020-03-19 |
| WO2020061125A1 (en) | 2020-03-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI809195B (zh) | 用於埋藏缺陷之特徵化之系統及方法 | |
| JP7080884B2 (ja) | 三次元半導体構造の検査用の欠陥発見およびレシピ最適化 | |
| US11880193B2 (en) | System and method for rendering SEM images and predicting defect imaging conditions of substrates using 3D design | |
| TWI551855B (zh) | 檢測晶圓之系統與方法以及由該系統讀取的程式儲存裝置 | |
| JP7284813B2 (ja) | 半導体基板の限界寸法測定のための深層学習ベースの適応関心領域 | |
| US9053390B2 (en) | Automated inspection scenario generation | |
| KR102550474B1 (ko) | 자율 결함 세그먼트화 | |
| TWI673489B (zh) | 以使用一適應性滋擾過濾器產生針對一樣本之檢驗結果之系統及方法,以及非暫時性電腦可讀媒體 | |
| US9733178B2 (en) | Spectral ellipsometry measurement and data analysis device and related systems and methods | |
| US11676264B2 (en) | System and method for determining defects using physics-based image perturbations | |
| TWI785253B (zh) | 基於多個散射信號之嵌入式粒子深度分級 | |
| TW201825883A (zh) | 最佳化使用於設定檢查相關演算法之訓練組 | |
| TWI888403B (zh) | 用以在電漿處理期間調整表面反應之動力模型之系統及方法 | |
| TW202225677A (zh) | 使用深度學習之3d結構檢測或計量 | |
| TW202407331A (zh) | 多模式光學檢測 |