TWI801921B - Yield correlation-driven in-line tool matching management method - Google Patents
Yield correlation-driven in-line tool matching management method Download PDFInfo
- Publication number
- TWI801921B TWI801921B TW110124551A TW110124551A TWI801921B TW I801921 B TWI801921 B TW I801921B TW 110124551 A TW110124551 A TW 110124551A TW 110124551 A TW110124551 A TW 110124551A TW I801921 B TWI801921 B TW I801921B
- Authority
- TW
- Taiwan
- Prior art keywords
- yield
- machine
- online
- index
- machines
- Prior art date
Links
- 238000007726 management method Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 365
- 238000009826 distribution Methods 0.000 claims description 79
- 238000010586 diagram Methods 0.000 claims description 59
- 238000003908 quality control method Methods 0.000 claims description 55
- 238000012360 testing method Methods 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 230000000875 corresponding effect Effects 0.000 description 21
- 238000004364 calculation method Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 238000012544 monitoring process Methods 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 230000002902 bimodal effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241001416181 Axis axis Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- -1 deposition Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Landscapes
- General Factory Administration (AREA)
Abstract
Description
本發明是有關於一種機台匹配管理方法,且特別是有關於一種良率導向之線上機台匹配管理方法。 The present invention relates to a machine matching management method, and in particular to a yield-oriented online machine matching management method.
一般而言,一個半導體製程從晶圓到產品需要經過數百道的製程程序,例如薄膜、沈積、化學研磨(CMP)、植入、黃光(曝光、蝕刻)等等。此外,每一道製程程序都可能包括數台機台。例如,在微影蝕刻這個製程中,每一機台曝光完,所量測到的關鍵尺寸(CD)不盡相同。此外,一開始每個製程的各機台差異性不大,但量產久了之後,各機台便會產生變異性,進而會影響整體的良率。 Generally speaking, a semiconductor process requires hundreds of processes from wafer to product, such as thin film, deposition, chemical polishing (CMP), implantation, yellow light (exposure, etching) and so on. In addition, each process procedure may include several machines. For example, in the process of lithography etching, the measured critical dimension (CD) of each machine is different after exposure. In addition, at the beginning, there is not much difference between each machine of each process, but after a long period of mass production, each machine will have variability, which will affect the overall yield.
客戶均會依照其各自的需求而強調線上機台匹配的重要性。亦即,要調整各機台的參數,使其分配能盡量匹配,進而讓整體良率可以維持在所需要的水準。在此匹配過程,箱型圖(box plot)是常用的一種方式,但箱型圖只能採用目視或統計檢定來比較各生產機台的線上平均數(或中位數)的差異。但是,其餘機差(機台差異)分布特性並無法由目視來正確比較與判定。因此,如果單純 觀察箱型圖,因為箱型圖只以平均數或中位數為準,所以從箱型圖中目視的結果會認為機台間的差異性並不大。 Customers will emphasize the importance of online machine matching according to their respective needs. That is to say, it is necessary to adjust the parameters of each machine so that the allocation can match as much as possible, so that the overall yield rate can be maintained at the required level. In this matching process, a box plot (box plot) is a commonly used method, but the box plot can only use visual or statistical verification to compare the differences in the online average (or median) of each production machine. However, the distribution characteristics of other machine differences (machine differences) cannot be compared and judged correctly by visual inspection. Therefore, if the simple Observe the box diagram, because the box diagram is only based on the average or median, so the visual results from the box diagram will suggest that the differences between machines are not large.
圖1A繪示以箱型圖來呈現鋁沉積製程中各機台的厚度值分布圖。如圖1A所示,機台1~機台4的鋁厚度(製程參數)分布的箱型區域範圍大概都在3600;也就是說,各機台的中位數並沒有甚麼差異。因此,如果從圖1A來看,有可能會得到機台1~機台4的機差並不大。此外,從圖1A來看,頂多可以看出機台2的最大值有超過上限一點點,但是還是無法清楚地知道此情況是否會產生機差,進而影響良率。
FIG. 1A is a box diagram showing the distribution of thickness values of each machine in the aluminum deposition process. As shown in Figure 1A, the box-shaped areas where the aluminum thickness (process parameters) of
圖1B繪示圖1A之例子的機率圖。如圖1B所示,橫軸是鋁厚度,而縱軸是累積機率值(百分比)。從圖1B的機率圖來看,大概可以進一步地明白,在此厚度分布,曲線的尾端處存在較大的機差。因此,從機率圖可以進一步了解機差分布狀況。但是,即使如此,操作員仍然不知道此機差對於整體製程的良率有何影響,進而很難知道要如何來對機台間進行匹配(調整)。 FIG. 1B shows a probability diagram of the example in FIG. 1A . As shown in FIG. 1B , the horizontal axis is the aluminum thickness, and the vertical axis is the cumulative probability value (percentage). From the probability diagram in Figure 1B, it can be further understood that in this thickness distribution, there is a large machine error at the end of the curve. Therefore, the distribution of machine error can be further understood from the probability diagram. However, even so, the operator still does not know how this machine difference affects the yield rate of the overall process, and it is difficult to know how to match (adjust) between machines.
因此,現行監控機制缺乏生產機台機差線上規格之製程資料與產品測試資料的雙向確認其相關性的功能。也就是說,雖然可以線上監控到各製程程序中各機台的變異性,但是在目前的監控機制都沒有將良率列入監控的因素。因此,即使線上監控可以控制個製程程序中各機台的差異性(機差),但是最後還是無法提高良率,也就是缺少雙向確認之良率與製程參數之間的關聯性。 Therefore, the current monitoring mechanism lacks the function of two-way confirmation of the correlation between the process data and product test data of the production machine differential line specification. In other words, although the variability of each machine in each process can be monitored online, the current monitoring mechanism does not include yield as a monitoring factor. Therefore, even though online monitoring can control the variability (machine error) of each machine in a process program, it still cannot improve the yield rate in the end, that is, there is a lack of correlation between the yield rate and process parameters for two-way confirmation.
根據本發明一實施例,提供一種一種良率導向之線上機台匹配管理方法,通過處理器執行,並對製程程序中的多個機台進行調整。線上機台匹配管理方法包括:收集所述多個機台之製程參數的量測值,以及與各所述多個機台相對應的良率;基於所述多個機台的所述製程參數,製作製程參數機率圖,並且基於預設判斷準則,計算線上品管指標;基於所述多個機台的所述良率,製作良率機率圖,並且基於所述預設判斷準則,計算線上良率指標;根據所述線上品管指標以及所述線上良率指標,製作良率-製程參數關聯圖;根據所述良率-製程參數關聯圖,決定在所述多個機台中會影響所述良率的風險機台;以及基於預設條件,對所述風險機台進行機台調整程序或製程邊界調整程序。所述預設判斷準則是在所述製程參數機率圖或所述良率機率圖設定多個機率值,計算與各所述多個機率值相對應的所述多個機台間之多個最大製程參數差或多個最大良率差,並以統計方式計算所述多個最大製程參數差或多個最大良率差的加權平均值。 According to an embodiment of the present invention, a yield-oriented online machine matching management method is provided, which is executed by a processor and adjusts multiple machines in a process program. The online machine matching management method includes: collecting the measured values of the process parameters of the multiple machines, and the yield rate corresponding to each of the multiple machines; based on the process parameters of the multiple machines , make a process parameter probability map, and calculate the online quality control index based on the preset judgment criterion; make a yield probability map based on the yield rate of the plurality of machines, and calculate the online Yield index; according to the online quality control index and the online yield index, make a yield-process parameter correlation diagram; according to the yield-process parameter correlation diagram, it is determined that all machines will be affected risk machines with the above-mentioned yield rate; and based on preset conditions, perform a machine adjustment program or a process boundary adjustment program on the risk machines. The preset judgment criterion is to set a plurality of probability values in the process parameter probability map or the yield probability map, and calculate a plurality of maximum values among the plurality of machines corresponding to each of the plurality of probability values. process parameter differences or multiple maximum yield rate differences, and calculate the weighted average of the multiple maximum process parameter differences or multiple maximum yield rate differences in a statistical manner.
根據本發明另一實施例,提供一種良率導向之線上機台匹配管理方法,通過處理器執行,所述線上機台匹配管理方法適用於包括多個製程程序所構成的架構,各所述多個製程程序包括多個機台,並對各所述多個製程成程序中的所述多個機台進行調整。所述線上機台匹配管理方法包括:收集各所述多個製程成程序中的所述多個機台之製程參數的量測值,以及與各所述多個機台相對應的良率;基於所述多個機台的所述製程參數,製作製程 參數機率圖,並且基於預設判斷準則,計算線上品管指標;基於所述多個機台的所述良率,製作良率機率圖,並且基於所述預設判斷準則,計算線上良率指標;根據所述線上品管指標以及所述線上良率指標,製作良率-製程參數關聯圖;根據所述良率-製程參數關聯圖,決定在所述多個機台中會影響所述良率的風險機台;基於預設條件,對所述風險機台進行機台調整程序或製程邊界調整程序;根據與各所述多個製程成程序的所述線上品管指標以及所述線上良率指標,找出所述多個製程成程序中的至少一個良率關鍵製程;以及基於所述至少一個良率關鍵製程的所述多個機台的組合,決定最佳良率機台路徑。所述預設判斷準則是在所述製程參數機率圖或所述良率機率圖設定多個機率值,計算與各所述多個機率值相對應的所述多個機台間之多個最大製程參數差或多個最大良率差,並以統計方式計算所述多個最大製程參數差或多個最大良率差的加權平均值。 According to another embodiment of the present invention, a yield-oriented online machine matching management method is provided, which is executed by a processor. The online machine matching management method is suitable for an architecture composed of multiple process programs, and each of the multiple A process procedure includes a plurality of machines, and adjustments are made to the plurality of machines in each of the plurality of process procedures. The online machine matching management method includes: collecting the measured values of the process parameters of the multiple machines in each of the multiple manufacturing processes, and the yield rate corresponding to each of the multiple machines; Based on the process parameters of the plurality of machines, making a process a parameter probability map, and calculate an online quality control index based on a preset judgment criterion; based on the yield rates of the plurality of machines, make a yield probability map, and calculate an online yield index based on the preset judgment criterion ; According to the online quality control index and the online yield index, make a yield-process parameter correlation diagram; according to the yield-process parameter correlation diagram, determine that the yield rate will be affected in the plurality of machines risk machines; based on preset conditions, perform a machine adjustment program or a process boundary adjustment program on the risk machines; An indicator, finding at least one yield-critical process in the plurality of process procedures; and determining an optimal yield-rate machine path based on a combination of the plurality of machines in the at least one yield-critical process. The preset judgment criterion is to set a plurality of probability values in the process parameter probability map or the yield probability map, and calculate a plurality of maximum values among the plurality of machines corresponding to each of the plurality of probability values. process parameter differences or multiple maximum yield rate differences, and calculate the weighted average of the multiple maximum process parameter differences or multiple maximum yield rate differences in a statistical manner.
根據本發明一實施例,在上述線上機台匹配管理方法中,所述所述線上品管指標與線上良率指標是基於下式來計算:
其中αi為權重,△i為對應各所述多個機率值的所述最大製程參數差或所述最大良率差,kσ為所製程參數差或所述良率之全分布範圍,σ為標準差,k為常數,為所述多個機率值的個數。 Wherein α i is the weight, △ i is the maximum process parameter difference or the maximum yield rate difference corresponding to each of the multiple probability values, k σ is the full distribution range of the process parameter difference or the yield rate, σ is the standard deviation, k is a constant, and is the number of the multiple probability values.
根據本發明一實施例,在上述線上機台匹配管理方法中,當所述線上品管指標大於第一預設值且所述線上良率指標大 於第二預設值,或所述線上品管指標小於第一預設值且所述線上良率指標大於第二預設值時,執行所述機台調整程序。所述第一預設值與所述第二預設值為相同或相異。 According to an embodiment of the present invention, in the above online machine matching management method, when the online quality control index is greater than the first preset value and the online yield index is greater than When the second preset value, or when the online quality control index is less than the first preset value and the online yield index is greater than the second preset value, execute the machine adjustment procedure. The first preset value is the same as or different from the second preset value.
根據本發明一實施例,在上述線上機台匹配管理方法中,當所述線上品管指標小於第一預設值且所述線上良率指標小於第二預設值,執行所述製程邊界調整程序。所述第一預設值與所述第二預設值為相同或相異。 According to an embodiment of the present invention, in the above online machine matching management method, when the online quality control index is smaller than a first preset value and the online yield index is smaller than a second preset value, the process boundary adjustment is performed program. The first preset value is the same as or different from the second preset value.
根據本發明一實施例,在上述線上機台匹配管理方法中,當所述線上良率指標小於所述第二預設值時,在執行所述製程邊界調整程序之前更包括:依據所述預設判斷準則,計算測試項目指標;判斷所述測試項目指標是否大於所述第二預設值;以及當所述測試項目指標是否大於所述第二預設值時,執行所述機台調整程序,當所述測試項目指標是否大於所述第二預設值時,執行製程邊界調整程序。 According to an embodiment of the present invention, in the above-mentioned online machine matching management method, when the online yield index is less than the second preset value, before executing the process boundary adjustment program, further includes: according to the preset Setting a judgment criterion, calculating a test item index; judging whether the test item index is greater than the second preset value; and executing the machine adjustment program when the test item index is greater than the second preset value , when the test item index is greater than the second preset value, execute a process boundary adjustment program.
根據本發明一實施例,在上述線上機台匹配管理方法中,所述機台調整程序更包括:以風險製程機台來分類所述良率;根據所述製程參數機率圖以及所述良率機率圖,來決定所述風險機台;產生所述良率-製程參數關聯圖;以及根據所述良率-製程參數關聯圖,調整所述風險機台的所述製程參數之範圍。 According to an embodiment of the present invention, in the above online machine matching management method, the machine adjustment procedure further includes: classifying the yield rate by risk process machines; according to the process parameter probability map and the yield rate a probability map to determine the risk machine; generate the yield-process parameter correlation map; and adjust the range of the process parameter of the risk machine according to the yield-process parameter correlation map.
根據本發明一實施例,在上述線上機台匹配管理方法中,所述製程邊界調整程序更包括:以所述製程程序之各所述機台來分類所述良率;產生各所述機台的所述良率-製程參數關聯圖;以 及根據所述良率-製程參數關聯圖,調整所述機台的所述製程參數的範圍。 According to an embodiment of the present invention, in the above online machine matching management method, the process boundary adjustment program further includes: classifying the yield rate by each of the machines in the process program; generating each of the machines The yield rate-process parameter correlation diagram; with and adjusting the range of the process parameter of the machine according to the yield rate-process parameter correlation diagram.
根據本發明一實施例,在上述線上機台匹配管理方法中,所述製程邊界調整程序為緊縮所述製程參數的範圍,或變更所述製程參數的範圍的中心線。 According to an embodiment of the present invention, in the above online machine matching management method, the process boundary adjustment procedure is to tighten the range of the process parameters, or change the center line of the range of the process parameters.
根據本發明一實施例,在上述線上機台匹配管理方法中,所述預設條件是基於所述良率來決定。 According to an embodiment of the present invention, in the above online machine matching management method, the preset condition is determined based on the yield rate.
根據本發明一實施例,在上述線上機台匹配管理方法中,決定所述決定最佳良率機台路徑是根據所述至少一良率關鍵製程中各所述機台間的良率機率圖,或利用關聯規則。 According to an embodiment of the present invention, in the above-mentioned online machine matching management method, determining the best yield machine path is based on the yield probability map among the machines in the at least one yield-critical process , or use association rules.
基於上述,根據本發明實施例,在監控機制上不僅僅只有考慮製程參數之分布差異,同時還考慮機台間的良率差異。因此,可以透過良率與製程參數之雙向確認的機制,讓機台之間的匹配更加地完善與精確,更可以提高整體的良率。 Based on the above, according to the embodiment of the present invention, the monitoring mechanism not only considers the distribution difference of process parameters, but also considers the yield difference between machines. Therefore, through the two-way confirmation mechanism of yield rate and process parameters, the matching between machines can be more perfect and accurate, and the overall yield rate can be improved.
10_1、10_2、...、10_k:製程參數機率圖 10_1, 10_2, ..., 10_k: process parameter probability map
20_1、20_2、...、20_k:良率機率圖 20_1, 20_2, ..., 20_k: Yield probability map
CTY:良率關鍵製程 CTY: Yield critical process
Yt_1、Yt_2、...、Yt_N:良率 Yt_1, Yt_2, ..., Yt_N: Yield rate
Wf_1、Wf_2、...、Wf_N:晶圓 Wf_1, Wf_2, ..., Wf_N: Wafers
Tool1_1~Tool1_n1:機台 Tool1_1~Tool1_n1: machine
Tool2_1~Tool2_n2:機台 Tool2_1~Tool2_n2: machine
Toolk_1~Tool1_nk:機台 Toolk_1~Tool1_nk: machine
S10~S22:線上機台匹配管理方法的流程步驟 S10~S22: Process steps of the online machine matching management method
S100~S230:線上機台匹配管理方法的流程步驟 S100~S230: Process steps of online machine matching management method
S100a~S100c:計算△QC的各步驟 S100a~S100c: each step of calculating △QC
S102a~S102c:計算△Yt的各步驟 S102a~S102c: each step of calculating ΔYt
S110a~S110c:計算△Bin的各步驟 S110a~S110c: each step of calculating △Bin
S300~S306:機台調整程序 S300~S306: Machine adjustment procedure
S400~S406:製程邊界調整程序 S400~S406: process boundary adjustment procedure
S500~S504:決定最佳良率機台路徑程序 S500~S504: Determine the best yield rate machine path program
圖1A繪示以箱型圖來呈現鋁沉積製程中各機台的厚度值分布圖。 FIG. 1A is a box diagram showing the distribution of thickness values of each machine in the aluminum deposition process.
圖1B繪示圖1A之例子的機率圖。 FIG. 1B shows a probability diagram of the example in FIG. 1A .
圖2是依照本發明所繪示的良率導向之線上機台匹配管理方法的系統示意圖。 FIG. 2 is a system schematic diagram of a yield-oriented online machine matching management method according to the present invention.
圖3是依照本發明所繪示線上機台匹配管理方法的流程示意圖。 FIG. 3 is a schematic flowchart of an online machine matching management method according to the present invention.
圖4繪示本發明實施例之機差判斷準則的說明圖。 FIG. 4 is an explanatory diagram of a machine error judgment criterion in an embodiment of the present invention.
圖5A與圖5B繪示機台差異的資料分布與機率圖分布具有極小值的情況。 FIG. 5A and FIG. 5B show the situation where the data distribution and the probability map distribution of machine differences have a minimum value.
圖6A與圖6B繪示機台差異的資料分布與機率圖分布具有極大值的情況。 FIG. 6A and FIG. 6B show the situation where the data distribution and the probability map distribution of machine differences have a maximum value.
圖7A與圖7B繪示機台差異的資料分布與機率圖分布具有偏移分布的情況。 FIG. 7A and FIG. 7B show the situation that the data distribution and the probability map distribution of machine differences have offset distributions.
圖8A與圖8B繪示機台差異的資料分布與機率圖分布具有雙峰分布的情況。 FIG. 8A and FIG. 8B show the situation that the data distribution and the probability map distribution of machine differences have a bimodal distribution.
圖9是依照本發明所繪示線上機台匹配管理方法的詳細流程示意圖。 FIG. 9 is a schematic flowchart of a detailed flow chart of an online machine matching management method according to the present invention.
圖10A繪示計算△QC的流程示意圖。 FIG. 10A is a schematic flow chart of calculating ΔQC .
圖10B繪示計算△Yt的流程示意圖。 FIG. 10B is a schematic flow chart of calculating ΔYt .
圖10C繪示計算△Bin的流程示意圖。 FIG. 10C is a schematic flow chart of calculating ΔBin .
圖11繪示機台調整的流程示意圖。 FIG. 11 shows a schematic flow chart of machine adjustment.
圖12A至圖12C繪示機台調整之例子的說明圖。 12A to 12C are explanatory diagrams showing examples of machine adjustment.
圖13A至圖13D繪示機台調整之另一例子的說明圖。 13A to 13D are explanatory diagrams illustrating another example of machine adjustment.
圖14A繪示製程邊界調整的流程示意圖。 FIG. 14A is a schematic flow chart of process boundary adjustment.
圖14B與圖14C繪示製程邊界調整的兩個例子。 14B and 14C illustrate two examples of process boundary adjustment.
圖15繪示決定最佳良率機台路徑的流程示意圖。 FIG. 15 is a schematic flow chart of determining the best yield machine path.
圖16繪示利用機率圖決定最佳良率機台路徑的例子。 FIG. 16 shows an example of using the probability map to determine the best yield machine path.
圖2是依照本發明所繪示的良率導向之線上機台匹配管理方法的系統示意圖。圖2基本上例示性地繪出從做為原始材料之晶圓進入各製程處理後,到最後生產出產品的示意圖。 FIG. 2 is a system schematic diagram of a yield-oriented online machine matching management method according to the present invention. FIG. 2 basically exemplarily draws a schematic diagram from the wafer as the raw material to the final product after entering various manufacturing processes.
如圖2所示,從原料晶圓(輸入側)Wf1~Wf_N到產品會經過多道製程程序,如製程程序1、製程程序2、...、製程程序k(k為整數)。此外,在每道製程程序1~k中,可能配置一至多個機台。如圖2所示的範例,製程程序1包含機台Tool 1_1、Tool 1_2、Tool 1_3、...、Tool 1_n1;製程程序2包含機台Tool 2_1、Tool 2_2、...、Tool 2_n1;製程程序k包含機台Tool k_1、Tool k_2、...、Tool k_nk等。
As shown in FIG. 2 , from the raw material wafer (input side) Wf1~Wf_N to the product, there will be multiple process procedures, such as
此外,製程程序1~k例如是沈積、植入、蝕刻、曝光等,從原料晶圓到產品之間所需要各製程程序的步驟,而在此所指的機台則為對應各製程程序所需的機台。每一個製程程序可以包括一至多個機台,其數量端視需求而設置。晶圓(輸入側)Wf1~Wf_N在經過完整的製程程序後(在本實施例為k道),在產品側便可以計算相應的良率(yield)Yt1_1、Yt1_2、...、Yt1_n。良率可以採用半導體製程中任何可以使用的方式,例如WAT(Wafer Acceptance Test)、WT(Wafer Test)、CP(chip probing)等等與品質有關的監控項目。
In addition, the
根據本發明實施例,在每道製程程序1~k結束後,均會計算對應該製程之線上品管指標(In-line QC index)△QC。例如在製
程程序1,便會對各機台進行線上製程參數的量測,並轉換成機率圖(probability plot)。一般來說,在該製程程序1中有配設機台都可以產生相應的機率圖。當將這些機率圖繪製在同一張機率圖上後,便可以計算相應此製程參數的線上品管指標(QC index)△QC1。此外,在圖2所示的例子中有製程程序1~k,因此便可以計算出相對應的線上品管指標△QC1~△QCk。與線上良率指標△Yt1~△Ytk。最後,經由本發明實施例之判斷準則,便可以獲得良率關鍵製程(critical to yield process)。
According to the embodiment of the present invention, after each
圖3是依照本發明所繪示線上機台匹配管理方法的流程示意圖。圖3所示的方法可以通過電腦、伺服器或終端裝置等之處理器來執行。針對圖2所示之每一道製程程序i(i=1~k),量測該製程程序i各機台的製程參數以及相對應的良率,以下將以製程程序1來說明,其他各製程序2~k的處理方式都相同。
FIG. 3 is a schematic flowchart of an online machine matching management method according to the present invention. The method shown in FIG. 3 can be executed by a processor of a computer, a server, or a terminal device. For each process i (i=1~k) shown in Figure 2, measure the process parameters and corresponding yield of each machine of the
首先,在步驟S10,系統會收集如圖2所示的多個機台Tool 1_1、Tool 1_2、Tool 1_3、...、Tool 1_n1之製程參數的量測值,以及與各機台相對應Tool 1_1、Tool 1_2、...、Tool 1_n1的良率Yt1_1、Yt1_2、...、Yt1_n1。此收集是指可以通過每道製程程序中之各機台結束後,即時進行該製程程序之製程參數進行量測。這些量測結果可以透過網路的方式傳送到做為控制用之電腦、伺服器或終端裝置等。 First, in step S10, the system will collect the measured values of the process parameters of multiple machines Tool 1_1, Tool 1_2, Tool 1_3, ..., Tool 1_n1 as shown in Figure 2, and the corresponding Tool Yields Yt1_1, Yt1_2, ..., Yt1_n1 of 1_1, Tool 1_2, ..., Tool 1_n1. This collection means that the process parameters of each process can be measured immediately after each machine in the process is finished. These measurement results can be sent to computers, servers or terminal devices for control through the network.
接著,在步驟S12,基於多個機台Tool 1_1、...、Tool 1_n1的製程參數,製作製程參數機率圖(如圖2之QC資料10_1、10_2、...、 10_k),並且基於後述之預設判斷準則,來計算線上品管指標△QC1。此外,在步驟S14,基於多個機台Tool 1_1、...、Tool 1_n1的良率Yt1_1、...、Yt1_n1,製作良率機率圖(如圖2之Yt資料20_1、20_2、...、20_k),並且基於後述之預設判斷準則,計算線上良率指標△Yt1。線上品管指標△QC1與線上良率指標△Yt1的計算方式與判斷準則會在後面詳細說明。 Next, in step S12, based on the process parameters of multiple machines Tool 1_1, ..., Tool 1_n1, a process parameter probability map (such as QC data 10_1, 10_2, ..., 10_k in Figure 2) is produced, and based on the following The default judgment criteria are used to calculate the online quality control index △ QC1 . In addition, in step S14, based on the yield rates Yt1_1, ..., Yt1_n1 of multiple machines Tool 1_1, ..., Tool 1_n1, a yield rate probability map (as shown in Figure 2 Yt data 20_1, 20_2, ... , 20_k), and based on the preset judgment criteria described later, calculate the online yield index ΔYt 1 . The calculation method and judgment criteria of the online quality control index △ QC1 and the online yield index △Yt 1 will be described in detail later.
接著,在步驟S16,根據線上品管指標△QC1以及線上良率指標△Yt1,製作良率-製程參數關聯圖。在步驟S18,根據良率-製程參數關聯圖,決定在多個機台Tool 1_1、...、Tool 1_n1中會影響所述良率的風險機台(risk tool)。在步驟S20,基於預設條件,例如根據所需要的良率值,對風險機台進行機台調整(tool adjustment)程序或製程邊界(tool margin)調整程序。機台調整程序或製程邊界調整程序會在後文中再詳細說明。 Next, in step S16, according to the online quality control index ΔQC1 and the online yield index ΔYt1 , a yield rate-process parameter correlation diagram is created. In step S18 , according to the yield rate-process parameter correlation diagram, the risk tool that will affect the yield rate among the plurality of tools Tool 1_1 , . . . , Tool 1_n1 is determined. In step S20 , based on a preset condition, such as a required yield value, a tool adjustment procedure or a tool margin adjustment procedure is performed on the risky machine. The machine adjustment procedure or process boundary adjustment procedure will be described in detail later.
此外,根據上述的程序,在步驟S22,可以從良率-製程參數關聯圖決定出良率關鍵(critical to yield,以下稱CYT)製程,亦即對於整個良率有關鍵影響的製程。因此,根據本發明實施例,更可以從數百道製程程序中決定出良率關鍵製程,從而據以決定最佳良率機台路徑(golden path)。同樣地,最佳良率機台路徑的決定方式也會在後文中再詳細說明。 In addition, according to the above procedure, in step S22 , a critical to yield (CYT) process can be determined from the yield-process parameter correlation graph, that is, a process that has a critical impact on the overall yield. Therefore, according to the embodiment of the present invention, the yield-critical process can be determined from hundreds of process procedures, so as to determine the optimal yield machine path (golden path). Similarly, the method of determining the path of the machine with the best yield rate will be described in detail later.
以上所說明的管理流程基本上是本發明實施例的基本處理流程,接著將更進一步地詳細說明本發明實施例的詳細流程。以下將先詳細說明本發明實施例之用來計算線上品管指標△QC和線 上良率指標△Yt的判斷準則。 The management flow described above is basically the basic processing flow of the embodiment of the present invention, and then the detailed flow of the embodiment of the present invention will be further described in detail. The judgment criteria used to calculate the online quality control index ΔQC and the online yield index ΔYt in the embodiment of the present invention will be described in detail below.
圖4繪示本發明實施例之機差判斷準則的說明圖。本實施例之判斷準則為機率圖上之多切critical段匹配準則(multi-slices matching criteria,MSMC),以下將使用圖4來詳細說明。此外,圖4中以兩條曲線來做為說明,每一條曲線代表一機台的資料值(製程參數)與累積機率(百分比)的圖表。故,圖4顯示出在一個製程中兩個機台之機率圖,亦即在相同的製程中,不同的機台對於同一個製程參數之機率分布的差異性。 FIG. 4 is an explanatory diagram of a machine error judgment criterion in an embodiment of the present invention. The judging criterion in this embodiment is the multi-slices matching criterion (MSMC) on the probability map, which will be described in detail below using FIG. 4 . In addition, two curves are used for illustration in FIG. 4 , and each curve represents a graph of data value (process parameter) and cumulative probability (percentage) of a machine. Therefore, Fig. 4 shows the probability diagrams of two machines in one process, that is, in the same process, the difference in the probability distribution of different machines for the same process parameter.
根據本發明實施例,如圖4所示,可以在兩條曲線之間取得多個切段的位置,並且在各切段的位置計算差值△i。此處,在圖4中X座標軸是代表製程參數的資料值而Y座標代表累積機率值。多個切段的取得位置基本上是選擇所需考慮的機率值(Y值),並且計算出在該機率值下,機台之間資料值的差值(X值)。在此例子中,以取7個切段來計算出7個資料值的差值△1~△7作為解說範例。在此例中,7個切段的機率值(百分比)大約在0.135、2.28、15.87、5、84.13、97.72、99.87,而與此相對應的資料值的差值則分別為△1~△7。接著,針對每個資料值的差值賦予權重αi。之後,以下面的數式來計算出線上品管指標△QC。 According to the embodiment of the present invention, as shown in FIG. 4 , the positions of multiple cut segments can be obtained between two curves, and the difference Δi is calculated at the positions of each cut segment. Here, in FIG. 4 , the X-coordinate axis represents the data value of the process parameter and the Y-coordinate represents the cumulative probability value. The acquisition position of multiple cut segments is basically to select the probability value (Y value) that needs to be considered, and calculate the difference (X value) of the data value between machines under this probability value. In this example, the difference △ 1 ~ △ 7 of 7 data values is calculated by taking 7 segments as an illustration example. In this example, the probability values (percentages) of the seven cut segments are about 0.135, 2.28, 15.87, 5, 84.13, 97.72, and 99.87, and the differences of the corresponding data values are △ 1 ~ △ 7 . Next, a weight α i is assigned to the difference of each data value. After that, use the following formula to calculate the online quality control index △ QC .
,其中 ,in
其中σp為標準差,αi為各資料值的差值之權重。 Among them, σ p is the standard deviation, and α i is the weight of the difference of each data value.
標準差σp可以採用統計學上的任何方式來加以計算,本 發明並沒有特別限制。此外,圖4中的kσ代表全分布範圍,一般可以採用正負6σ作為整個分布範圍,亦即上述常數k可以設定為12。當然,k也可以採用其他的數值,端視實際上的操作需求來設定。 The standard deviation σ p can be calculated in any statistical manner, and the present invention is not particularly limited. In addition, kσ in Figure 4 represents the full distribution range, and generally plus or minus 6σ can be used as the entire distribution range, that is, the above-mentioned constant k can be set to 12. Of course, k can also adopt other values, which are set according to actual operation requirements.
此外,關於權重αi,其可以視實際上的操作需求來設定。例如,如果所選擇的每個機率值切段的重要性是相同的,則上述例子之α1~α7可分別設為1/7。此外,如果需要特別考量機率值99.87和0.135部分的機台差異性,則可以調高對應的差值之權重α1與權重α7。因此,每個權重的設定均可以依據實際需求來設定。 In addition, regarding the weight α i , it can be set according to actual operation requirements. For example, if the importance of each selected probability value segment is the same, then α 1 to α 7 in the above example can be set to 1/7 respectively. In addition, if it is necessary to specially consider the machine differences between the probability values 99.87 and 0.135, the weight α 1 and weight α 7 of the corresponding difference can be increased. Therefore, the setting of each weight can be set according to actual needs.
此外,關於機率值之切段的選擇,本發明實施例並沒有特別限定。此外,切段數量可以依據實際需求來設定要取幾個切段來進行線上品管指標△QC的計算。 In addition, the embodiments of the present invention do not specifically limit the selection of the segment of the probability value. In addition, the number of cuts can be set according to actual needs. How many cuts should be taken to calculate the online quality control index △ QC .
此外,在圖4的例子中是以兩條曲線(兩個機台)作為說明,但是如果在該製程程序中有多台機台時,則此時所繪出機率圖上會呈現相應數目的曲線。在此情況下,上述的資料值差值是取在選定的機率值下具有最大差值(即最大製程參數差值)者來做為△i。 In addition, in the example in Figure 4, two curves (two machines) are used as an illustration, but if there are multiple machines in the process procedure, the corresponding number of curves will appear on the probability map drawn at this time. curve. In this case, the above data value difference is taken as Δi which has the largest difference (ie the largest process parameter difference) under the selected probability value.
通過上述本發明實施例之線上品管指標△QC的計算,可以在整個機率分布上取多個切段來進行各切段的資料值的差值,因此可以更有有效地考慮到機台之間的變異。例如,在習知的方法中,通常只會考慮圖4中的差值△4的部分,亦即相當於前面圖1A所示的箱型圖的中位數部分。但是,本發明進一步將曲線中具有較大差值之較大變異(機差)的因素也考量進去,例如圖4之尾端部 分。因此,在進行線上機台匹配管理(製程參數的調整等),可以更有效地管理。 Through the calculation of the online quality control index △ QC in the above-mentioned embodiment of the present invention, it is possible to take a plurality of segments in the entire probability distribution to perform the difference of the data values of each segment, so that the differences between machines can be considered more effectively. variation between. For example, in the known method, usually only the part of the difference Δ4 in Fig. 4 is considered, which is equivalent to the median part of the box diagram shown in Fig. 1A above. However, the present invention further takes into account the factors of larger variation (machine error) with larger differences in the curves, such as the tail end part in FIG. 4 . Therefore, it can be managed more effectively when performing online machine matching management (adjustment of process parameters, etc.).
此外,在上面的說明例中是以各製程程序中之機台的線上品管指標△QC的作為例子。但是,本發明實施例是更進一步考慮到良率這部分。因此,在圖2所示的良率量測後,也會繪製相關的良率機率圖。此時,對於此良率機率圖,也會進行相同的線上良率指標△Yt的計算。線上良率指標△Yt的計算方式基本上與線上品管指標△QC的計算方式相同,故在此便不多做冗述。 In addition, in the above description example, the online quality control index △ QC of the machine in each process procedure is taken as an example. However, the embodiment of the present invention further considers the yield rate. Therefore, after the yield measurement shown in Figure 2, the related yield probability map will also be drawn. At this time, for this yield probability map, the same calculation of the online yield index △ Yt will also be performed. The calculation method of the online yield index △ Yt is basically the same as that of the online quality control index △ QC , so I won’t go into details here.
根據本發明實施例,依據線上良率指標△Yt和線上品管指標△QC可以進行關鍵良率相關性的計算,進而來調整對良率最有影響的機台的製程參數。接著將會詳細說明此部分。 According to the embodiment of the present invention, the key yield correlation can be calculated according to the online yield index ΔYt and the online quality control index ΔQC , and then the process parameters of the machines most affecting the yield can be adjusted. This section will be described in detail next.
接著,以圖5A、5B~圖8A、8B說明幾種機台資料值(製程參數值)之分布差異(機差)以及相應之機率圖的例子,亦即例示一些資料值(製程參數值)之分布具有異常值(outlier)的例子。以下的例子均以兩個機台作為範例來說明,但實際並不限於此。圖5A與圖5B繪示機台差異的資料分布與機率圖分布具有極小值的情況。圖5A繪示取得機台1和機台2的資料分布圖。從圖5A來看,機台1和機台2在資料值(製程參數)約42~60之間的資料分布幾乎是重疊的,但是機台2(差異機台)在資料值18~24之間有一處分布。由此可以看出機台1和2中,機台2還存在一部分的極小值分布。此極小值分布即機台1和機台2之間的差異。
Next, use Figures 5A, 5B ~ Figures 8A, 8B to illustrate the distribution differences (machine differences) of several machine data values (process parameter values) and the examples of the corresponding probability diagrams, that is, to illustrate some data values (process parameter values) An example of a distribution with outliers. In the following examples, two machines are used as an example to illustrate, but it is not limited thereto. FIG. 5A and FIG. 5B show the situation where the data distribution and the probability map distribution of machine differences have a minimum value. FIG. 5A is a diagram showing the data distribution of
此外,圖5B繪示機台1和機台2在資料值(製程參數)轉
換成機率圖後的分布,其中橫軸為資料值(製程參數),縱軸為機率值。從圖5B也可以清楚看出,機台1和機台2在機率圖的分布上,有一段是重疊的(資料值約42~60之間),但是在極小值部分(資料值為18~24之間)與上述重疊區域是存在偏移的,亦即存在機差△1。
In addition, FIG. 5B shows the distribution of
圖6A、6B繪示機台差異的資料分布與機率圖分布具有極大值的情況。圖6A繪示取得機台1和機台2的資料分布圖。從圖6A來看,機台1和機台2在資料值(製程參數)約40~60之間的資料分布幾乎是重疊的,但是機台2(差異機台)在資料值70前後之間有一處分布。由此可以看出機台1和機台2中,機台2還存在一部分的極大值分布。此極大值分布即機台1和機台2之間的差異。
6A and 6B show the situation where the data distribution and probability map distribution of machine differences have a maximum value. FIG. 6A is a diagram showing the data distribution of
此外,圖6B繪示機台1和機台2在資料值(製程參數)轉換成機率圖後的分布,其中橫軸為資料值(製程參數),縱軸為機率值。從圖6B也可以清楚看出,機台1和機台2在機率圖的分布上,有一段是重疊的(資料值約40~60之間),但是在極大值部分(資料值為70前後)與上述重疊區域是存在偏移的,亦即存在機差△1。
In addition, FIG. 6B shows the distribution of
圖7A與圖7B繪示機台差異的資料分布與機率圖分布具有偏移分布的情況。圖7A繪示取得機台1和機台2的資料分布圖。從圖7A來看,機台1的資料值(製程參數)分布是約在42~58之間,而機台2的資料值分布是約在49~61之間。機台1和機台
2所量測到的數值分布之間存在偏移,亦即資料分布型態整個向右偏移。
FIG. 7A and FIG. 7B show the situation that the data distribution and the probability map distribution of machine differences have offset distributions. FIG. 7A is a diagram showing the data distribution of
此外,圖7B繪示機台1和機台2在資料值(製程參數)轉換成機率圖後的分布,其中橫軸為資料值(製程參數),縱軸為累積機率值。從圖7B也可以清楚看出,機台1和機台2兩者在機率圖上幾乎是平行的兩條線,其反應出圖7A所示一般,資料分布為整個平移的狀況。因此,在此情況下,機台1和機台2在資料數值約42~60之間是存在明顯的機差。此時,便可以利用上述圖4所說明的MSMC判斷準則,基於在合適的切段位置的各機率值來計算資料值差值(例如△1、△2、△3等),以計算出線上品管指標△QC。
In addition, FIG. 7B shows the distribution of
圖8A與圖8B繪示機台差異的資料分布與機率圖分布具有雙峰分布的情況。。圖8A繪示取得的機台1和機台2的資料分布圖。從圖8A來看,相較於機台1的資料分布,機台2在資料值幾乎呈現兩個峰值分布的狀態,其約資料數值12~50以及50~84之間。此外,圖8B繪示機台1和機台2在資料值(製程參數)轉換成機率圖後的分布,其中橫軸為資料值(製程參數),縱軸為累積機率值。從圖8B也可以看出,機台1和機台2在機率圖的會交叉在一起,然後在資料數據的前段與後段個存在偏移,即機差(如△1、△2等)大部分發生在頭段和尾段。
FIG. 8A and FIG. 8B show the situation that the data distribution and the probability map distribution of machine differences have a bimodal distribution. . FIG. 8A shows the obtained data distribution diagram of
從以上圖5A、圖5B至圖8A、圖8B的幾個例子可以看出,根據在每一道製程中對每個機台進行線上的製程參數的品管稽核所得到的資料,可以繪出在該製程中每個機台的製程參數(即 上述例子的資料值)的分布狀況。之後,以此線上取得的資料分布,可以轉換成各機台之製程參數的百分比線型圖(機率圖)。通過轉換得到的機率圖,便可以通過上述圖4所說明的MSMC判斷準則來求取每個製程中機台間的線上品管指標△QC以及線上良率指標△Yt。 It can be seen from the above several examples in Fig. 5A, Fig. 5B to Fig. 8A, Fig. 8B that according to the data obtained from the quality control audit of the online process parameters of each machine in each process, it can be drawn in the The distribution status of the process parameters (that is, the data values in the above example) of each machine in the process. Afterwards, the data distribution obtained online can be converted into a percentage line diagram (probability diagram) of the process parameters of each machine. Through the converted probability map, the online quality control index △ QC and the online yield index △ Yt between machines in each process can be obtained through the MSMC judgment criterion illustrated in Figure 4 above.
在本實施例中,每一道製程的各機台在線上運作時均為進行上述的各製程參數的機率圖。此外,在經過所有製程後,產品的良率也會進行相應的機率圖。 In this embodiment, each machine of each process is a probability map of performing the above-mentioned process parameters when operating online. In addition, after all the manufacturing processes, the yield rate of the product will also have a corresponding probability map.
圖9是依照本發明所繪示線上機台匹配管理方法的詳細流程示意圖,其為圖3所示流程的進一步說明。此線上機台匹配管理方法可以在例如由伺服器、電腦、平板、終端裝置等各種可使用的裝置所建構而成的系統來執行。此外,這些裝置可以透過與各製程程序之各機台連接的內部網路,來即時做到線上製程參數量測的控制、數據取得、機台參數調整等等運作。 FIG. 9 is a schematic flowchart of the detailed flow of the online machine matching management method according to the present invention, which is a further description of the flow shown in FIG. 3 . This online machine matching management method can be implemented in a system constructed by various available devices such as servers, computers, tablets, and terminal devices. In addition, these devices can realize online process parameter measurement control, data acquisition, machine parameter adjustment and other operations in real time through the internal network connected to each machine of each process procedure.
如圖9與圖2所示,首先,在步驟S100,在各製程程序1~k中,計算出各機台間的線上品管指標△QC1~△QCk。在此,線上品管指標△QC的計算方式可以參考圖10A所示的流程示意圖。如圖10A所示,在步驟S100a,以機台來分類製程參數的資料。亦即,如圖5A、圖6A、圖7A、圖8A等的方式,依據各製程程序的機台別來統計製程參數的分布。接著,在步驟S100b,產生製程參數機率圖,亦即將上述取得的製程參數在每個機台的分布百分比進行繪製,其如圖5B、圖6B、圖7B、圖8B等,產生各機台之製程參數與機率值的機率圖。之後,在步驟S100c,利用MSMC判
斷準則,計算出線上品管指標△QC。
As shown in Fig. 9 and Fig. 2, firstly, in step S100, in each
在步驟S102,在各製程程序1~k中,計算出各製程程序1~k的線上良率指標△Yt1~△Ytk。在此,線上品管指標△Yt的計算方式可以參考圖10B所示的流程示意圖。如圖10B所示,在步驟S102a,以機台來分類良率的資料。接著,在步驟S102b,產生良率機率圖。之後,在步驟S102c,利用MSMC判斷準則,計算出線上良率指標△Yt。 In step S102, in each process procedure 1-k, the online yield index Δ Yt1 -Δ Ytk of each process procedure 1-k is calculated. Here, the calculation method of the online quality control index ΔYt can refer to the schematic flowchart shown in FIG. 10B . As shown in FIG. 10B , in step S102 a , the yield data is classified by machine. Next, in step S102b, a yield probability map is generated. Afterwards, in step S102c, the online yield index Δ Yt is calculated by using the MSMC judgment criterion.
在步驟S104,判斷線上品管指標△QC是否大於第一預設值p(例如可以是圖4的例子12%)。通過此第一預設值p,可以判斷出在該製程程序中的各機台之間製程參數是否存在機差。如果線上品管指標△QC小於第一預設值p,其表示在該製程程序中的各機台之間製程參數沒有存在差異或者差異極小。此時,會進一步地執行步驟S106以判斷良率是否存在差異。 In step S104, it is judged whether the online quality control index ΔQC is greater than a first preset value p (for example, it may be 12% in the example shown in FIG. 4 ). Through the first preset value p, it can be judged whether there is a machine difference in the process parameters among the machines in the process procedure. If the online quality control index ΔQC is smaller than the first preset value p, it means that there is no or very little difference in the process parameters among the machines in the process procedure. At this time, step S106 will be further executed to determine whether there is a difference in the yield rate.
反之,如果線上品管指標△QC大於第一預設值p,其表示在該製程程序中的各機台之間製程參數存在差異(機差)。在此情況,也會進一步地執行步驟S108判斷良率是否存在差異(基本上等同於步驟S106)。 Conversely, if the online quality control index ΔQC is greater than the first preset value p, it indicates that there are differences in process parameters (machine differences) among the machines in the process procedure. In this case, step S108 is further executed to determine whether there is a difference in the yield (basically equivalent to step S106).
在步驟S106,判斷線上良率指標△Yt是否大於第一預設值q,通過此第二預設值q,可以判斷出在該製程程序中的各機台之間的良率是否存在機差。在此,第一預設值p與第一預設值q可以依據所需來設定,兩者可以設定成相同或相異的數值。此外,通過線上品管指標△QC是否大於第一預設值p以及線上良率指標△Yt 是否大於第一預設值q,可以將製程參數的品管量測(△QC)與良率的量測(△Yt)進行關聯。 In step S106, it is judged whether the online yield index △ Yt is greater than the first preset value q, and through the second preset value q, it can be judged whether there is machine difference in the yield rate among the machines in the process procedure . Here, the first preset value p and the first preset value q can be set according to needs, and both can be set to the same or different values. In addition, according to whether the online quality control index △ QC is greater than the first preset value p and whether the online yield rate index △ Yt is greater than the first preset value q, the quality control measurement (△ QC ) of the process parameters can be compared with the yield rate The measurement (△ Yt ) is correlated.
此外,線上品管指標△QC大於第一預設值p以及線上良率指標△Yt大於第二預設值q時,其表示不管是機台間的製程參數以及良率都存在明顯機差,或者線上品管指標△QC小於第一預設值p以及線上良率指標△Yt大於第二預設值q時,其表示機台間的製程參數沒有機差或不明顯,但是良率存在機差。在此兩種情形下,便會進一步執行S200的機台調整程序(子流程),其會根據良率條件,對機差大的風險機台(risk tool)進行機台調整,即製程參數的調整(例如,CD值、膜厚等)。步驟S200之機台調整程序會在下文進一步說明。 In addition, when the online quality control index △ QC is greater than the first preset value p and the online yield index △ Yt is greater than the second preset value q, it means that there are obvious differences in the process parameters and yield between machines. Or when the online quality control index △ QC is less than the first preset value p and the online yield rate index △ Yt is greater than the second preset value q, it means that there is no or no obvious difference in the process parameters between machines, but there are chances for the yield rate Difference. In these two cases, the tool adjustment program (sub-process) of S200 will be further executed, which will perform tool adjustment on risk tools with large machine differences according to the yield rate conditions, that is, the process parameters Adjustment (eg, CD value, film thickness, etc.). The machine adjustment procedure of step S200 will be further described below.
此外,當在步驟S106(或S108)判斷出線上良率指標△Yt小於第二預設值q時,則可以更進一步地進行步驟S110,計算測試項目指標△Bin。測試項目Bin例如是產品的電性測試等,也同樣是用來測試產品良率。測試項目Bin例如可以是電容測試、漏電流測試等等各種可行的項目,本發明實施利並沒有特別限制要採取何種項目。良率是對整體產品好壞進行評估,如果良率有滿足條件,還可以進一步地對細項進行更細微的測試。在此,測試項目Bin可以依據實際需求來選擇要測試的項目。測試項目指標△Bin的計算基本上與線上品管指標△QC和線上良率指標△Yt相同;亦即,採用如圖4所示的MSMC判斷準則來進行計算。在此,線上品管指標△Bin的計算方式可以參考圖10C所示的流程示意圖。如圖10C 所示,在步驟S110a,以機台來分類測試項目Bin的資料。接著,在步驟S110b,產生測試項目機率圖。之後,在步驟S110c,利用MSMC判斷準則,計算出測試項目指標△Bin。 In addition, when it is determined in step S106 (or S108 ) that the online yield index Δ Yt is smaller than the second preset value q, step S110 may be further performed to calculate the test item index Δ Bin . The test item Bin is, for example, the electrical test of the product, which is also used to test the yield rate of the product. The test item Bin can be, for example, various feasible items such as capacitance test, leakage current test, etc., and the implementation of the present invention does not specifically limit what kind of items to be used. The yield rate is to evaluate the quality of the overall product. If the yield rate meets the conditions, further finer tests can be carried out on the details. Here, the test item Bin can select an item to be tested according to actual requirements. The calculation of the test item index △ Bin is basically the same as the online quality control index △ QC and the online yield index △ Yt ; that is, the MSMC judgment criterion shown in Figure 4 is used for calculation. Here, the calculation method of the online quality control index ΔBin can refer to the schematic flowchart shown in FIG. 10C . As shown in FIG. 10C , in step S110a, the data of the test item Bin is classified by machine. Next, in step S110b, a test item probability map is generated. Afterwards, in step S110c, the test item index Δ Bin is calculated by using the MSMC judgment criterion.
接著,在步驟S112,根據步驟S110的計算結果,判斷測試項目指標△Bin是否大於第二預設值q。如果測試項目指標△Bin大於第二預設值q,這也代表良率有存在差異(機差)。此時,將進一步地執行步驟S200之機台調整程序。步驟S200之機台調整程序會在下文進一步說明。 Next, in step S112, according to the calculation result of step S110, it is judged whether the test item index ΔBin is greater than the second preset value q. If the test item index △ Bin is greater than the second preset value q, it also means that there is a difference in the yield rate (machine error). At this time, the machine adjustment procedure of step S200 will be further executed. The machine adjustment procedure of step S200 will be further described below.
此外,在步驟S112,如果判斷測試項目指標△Bin小於第二預設值q,這也代表良率不存在差異(機差)或差異即小。換句話說,根據本發明實施例,當線上良率指標△Yt與測試項目指標△Bin大都小於第二預設值時,操作員可以考慮執行步驟S220的子程式,亦即製程邊界調整。製程邊界調整通常是機台間沒有機差或不明顯,此時操作員可以在步驟S220,依據製程參數與良率之關聯圖來決定是否要將製程參數的範圍做較佳的調整。 In addition, in step S112, if it is determined that the test item index ΔBin is smaller than the second preset value q, this also means that there is no difference in the yield rate (machine error) or the difference is small. In other words, according to the embodiment of the present invention, when the online yield index ΔYt and the test item index ΔBin are mostly smaller than the second preset value, the operator may consider executing the subroutine of step S220 , ie process boundary adjustment. The adjustment of the process boundary usually means that there is no machine difference or is not obvious between the machines. At this time, the operator can decide whether to make better adjustments to the range of the process parameters according to the correlation diagram between the process parameters and the yield rate in step S220.
在步驟S200執行後,會進行步驟S210,找出良率關鍵製程。在此步驟,基於上述各步驟,可以在整個數百道製程程序中,找出對良率有關鍵影響的製程,並從其中找出良率關鍵製程(CTY)。 After step S200 is executed, step S210 is performed to find out the yield-critical process. In this step, based on the above-mentioned steps, it is possible to find out the process that has a critical impact on the yield rate in the entire hundreds of process procedures, and find out the yield-critical process (CTY) from it.
之後,執行步驟S230的子程式,根據步驟S210獲得的良率關鍵製程,可以將各良率關鍵製程中的各機台進行各種組合,從而找出良率最高的機台組合,亦即最佳良率機台路徑(golden path)。 Afterwards, the subroutine in step S230 is executed, and according to the key yield rate process obtained in step S210, various combinations of machines in each key yield rate process can be performed, so as to find out the machine combination with the highest yield rate, that is, the best Yield machine path (golden path).
接著說明圖9之步驟S200的機台調整程序(tool adjustment)。圖11繪示機台調整程序的流程示意圖,圖12A至圖12C繪示機台調整程序之例子的說明圖。 Next, the tool adjustment procedure (tool adjustment) of step S200 in FIG. 9 will be described. FIG. 11 is a schematic flowchart of the machine adjustment procedure, and FIGS. 12A to 12C are explanatory diagrams illustrating examples of the machine adjustment procedure.
如圖11所示,在步驟S300,以風險製程機台(risk process tool)來分類良率。在此,風險製程是指會影響良率之關鍵製程。接著,在步驟S302,根據製程參數機率圖以及良率機率圖(及/或測試項目機率圖),來決定風險機台。在此,風險機台是指在會影響良率之關鍵製程中,存在機差的機台,亦即該機台會產生較差的良率。利用製程參數機率圖以及良率機率圖,再加上前述的線上品管指標△QC以及線上良率指標△Yt(及/或測試項目指標△Bin)的分析,便可以決定出在該關鍵製程中的風險機台。 As shown in FIG. 11 , in step S300 , the yield rate is classified by risk process tool. Here, the risk process refers to the key process that will affect the yield. Next, in step S302, the risk machines are determined according to the process parameter probability map and the yield probability map (and/or the test item probability map). Here, a risk machine refers to a machine with a machine error in a key process that will affect the yield rate, that is, the machine will produce a poor yield rate. Using the process parameter probability map and the yield probability map, together with the analysis of the aforementioned online quality control index △ QC and online yield index △ Yt (and/or test item index △ Bin ), it is possible to determine the The risk machine in .
接著,在步驟S304,產生良率-製程參數關聯圖。從良率-製程參數關聯圖中,便可以看出機台間製程參數之分布對於良率的影響。接著,在步驟S306,根據良率-製程參數關聯圖,調整風險機台的製程參數範圍。通過此程序,在該良率關鍵製程中,便可以將風險機台依據所需要的預訂條件(由良率決定,如需要設定95%以上等),來調整該風險機台的製程參數範圍,藉此使該良率關鍵製程中之所有機台的良率都可以達到預設目標。 Next, in step S304, a yield-process parameter correlation map is generated. From the correlation diagram of yield rate-process parameters, we can see the influence of the distribution of process parameters among machines on the yield rate. Next, in step S306, according to the yield rate-process parameter correlation diagram, the process parameter range of the risk machine is adjusted. Through this procedure, in the yield-critical process, the risk machine can be adjusted according to the required reservation conditions (determined by the yield rate, if it needs to be set above 95%), the process parameter range of the risk machine can be adjusted. This enables the yield rate of all machines in the yield-critical process to reach the preset target.
接著,以圖12A至圖12C所繪示的例子來說明機台調整流程的具體例子。此例子相當於線上品管指標△QC大於第一預設值p,且線上良率指標△Yt也大於第二預設值q之情況,即圖9之步驟S108為“是”的狀況。另外,此例子將一個製程程序中兩台機
台的關鍵尺寸(critical dimension,CD)作為製程參數之線上監控對象。圖12A所呈現的是線上取得機台1和機台2之CD值量測資料值分布後,再轉換成機率圖,其中線上CD值(製程參數,資料值)為橫軸,機率值為縱軸。圖12B所呈現的是在此製程中,機台1與機台2相對應的良率機率圖,其中各機台之良率為橫軸,累積機率值為縱軸。
Next, a specific example of the machine adjustment process will be described with the example shown in FIG. 12A to FIG. 12C . This example corresponds to the situation where the online quality control indicator ΔQC is greater than the first preset value p, and the online yield indicator ΔYt is also greater than the second preset value q, that is, the situation in step S108 of FIG. 9 is "Yes". In addition, in this example, the critical dimension (CD) of two machines in a process program is used as the online monitoring object of process parameters. Figure 12A presents the distribution of the CD value measurement data of
圖12C繪示機台調整製程參數的示意圖。圖12C是將圖12A之各機台製程參數機率圖以及圖12B之各機台良率機率圖繪製而成的各機台之製程參數對良率的分布圖。如圖12C所示,如果設定要滿足良率大於90%的話,可以看出機台1在整個CD值(製程參數)範圍內的良率都可以滿足90%以上,但是機台2在CD值大於58時,良率就會低於90%,而無法滿足良率的要求。
FIG. 12C is a schematic diagram of machine tool adjusting process parameters. FIG. 12C is a distribution diagram of each machine's process parameter versus yield rate obtained by plotting the process parameter probability map of each machine in FIG. 12A and the yield rate probability map of each machine in FIG. 12B . As shown in Figure 12C, if it is set to meet the yield rate greater than 90%, it can be seen that the yield rate of
因此,為了讓整體良率都可以達到90%以上,就必須要進行機台的製程參數調整。從圖12C可以看出對於機台2,只要CD值調降到58以下,機台2的良率就可以維持在90%以上。因此,根據本發明實施例的方法,可以找出在機台1與機台2中,機台2之機差對良率有較大的影響,藉此可以即時線上調整機台2之製程參數的範圍,使機台2的良率也可以達到90%以上。
Therefore, in order to make the overall yield rate reach more than 90%, it is necessary to adjust the process parameters of the machine. It can be seen from Figure 12C that for
接著,再說明利用本發明實施例之另一個機台調整例子。圖13A至圖13D繪示另一個例子來說明機台調整流程。在此例子,其相當於線上品管指標△QC小於第一預設值p,而線上良率指標△Yt是大於第二預設值q之情況,即圖9之步驟S108為”是”的狀
況。在此情形,從圖13A可以看出,機台1與機台2之間的線上品管指標△QC是幾乎沒有差異,但是從圖13B看出機台1與機台2之間良率是存在差異的,亦即線上良率指標△Yt是超過預定值。
Next, another machine adjustment example using the embodiment of the present invention will be described. FIG. 13A to FIG. 13D show another example to illustrate the machine adjustment process. In this example, it is equivalent to the situation where the online quality control index △ QC is smaller than the first preset value p, while the online yield index △ Yt is larger than the second preset value q, that is, step S108 in Figure 9 is "Yes" situation. In this case, it can be seen from Figure 13A that there is almost no difference in the online quality control index △ QC between
如圖13C所示,其為機台1與機台2間之製程參數(CD值)對良率的分布圖。如上所述,因為線上品管指標△QC所呈現的結果是兩機台間沒有差異,故在圖13C中橫軸上的分布範圍幾乎是相同的。但是,兩機台間之良率是有差異的,即在圖13C中縱軸上的分布範圍是呈現出分開的狀態。因此,如圖13D所示,根據圖13C之相關圖的結果,操作人員可以將良率比較低的機台1的製程參數CD值調整到53以上,藉此可以讓機台1的良率可以滿足95%以上的條件,同時機台2也可以達到95%以上的良率。
As shown in FIG. 13C , it is a distribution diagram of process parameters (CD values) versus yield between
接著,說明圖9之步驟S220,步驟S220是製程邊界調整程序。圖14A繪示製程邊界調整程序的流程示意圖。圖14B與圖14C繪示製程邊界檢查的兩個例子。 Next, step S220 in FIG. 9 will be described. Step S220 is a process boundary adjustment procedure. FIG. 14A is a schematic flowchart of a process boundary adjustment procedure. 14B and 14C illustrate two examples of process boundary checking.
此外,此製程邊界調整程序通常是針對線上良率指標△Yt或測試項目指標△Bin小於第二預設值的情況,亦即良率部分差異小的狀況。在此情況,不只線上良率指標△Yt或測試項目指標△Bin小於第二預設值,而且線上品管指標△QC也小於第一預設值。此時,在基於此而繪出之機台間製程參數與良率關聯圖,其各機台之分布圖基本上是幾乎重疊的,亦即機差即小,甚至沒有。但是,即使如此,如機台的製程參數範圍沒有設定好,某會有某些區域的良率會有低於目標值的狀況發生。因此,在這種情形下,即使機台間 是匹配的,但還是有需要重新設定範圍。 In addition, the process boundary adjustment procedure is usually aimed at the situation that the online yield index ΔYt or the test item index ΔBin is smaller than the second preset value, that is, the partial difference of the yield rate is small. In this case, not only the online yield index △ Yt or the test item index △ Bin is smaller than the second preset value, but also the online quality control index △ QC is also smaller than the first preset value. At this time, in the relationship diagram between process parameters and yield rate drawn based on this, the distribution diagrams of each machine are basically almost overlapping, that is, the machine difference is small or even non-existent. However, even so, if the process parameter range of the machine is not set properly, the yield rate in some areas will be lower than the target value. Therefore, in this case, even if the machines are matched, it is still necessary to reset the range.
如圖14A所示,在步驟S400,以製程機台來分類良率。接著,在步驟S402,確認各機台的匹配。接著,在步驟S404,產生良率-製程參數關聯圖。從良率-製程參數關聯圖中,便可以看出機台間製程參數分布與良率之間的關係。在此情況下,即使機台之間的機差並不明顯或沒有,但是往往由於製程參數範圍沒有適當地調整,故會造成在此製程參數範圍中,還是會有部分區域的良率會有較差的情形發生。接著,在步驟S406,根據良率-製程參數關聯圖,調整機台的製程參數範圍(邊界調整等)。在此,調整的方式例如有緊縮參數範圍,或調整中心線而調整參數範圍等。以下將說明兩個具體的例子。 As shown in FIG. 14A , in step S400 , the yields are classified by process equipment. Next, in step S402, the matching of each machine is confirmed. Next, in step S404, a yield-process parameter correlation map is generated. From the yield-process parameter correlation diagram, we can see the relationship between the distribution of process parameters among machines and the yield rate. In this case, even if the difference between the machines is not obvious or not, but the process parameter range is not properly adjusted, it will cause the yield rate of some areas to be lower in the process parameter range. Worse things happen. Next, in step S406 , according to the yield rate-process parameter correlation diagram, the process parameter range of the machine is adjusted (boundary adjustment, etc.). Here, the adjustment methods include, for example, tightening the parameter range, or adjusting the centerline to adjust the parameter range, and the like. Two specific examples will be described below.
圖14B所示的製程邊界檢查是根據良率來緊縮製程參數範圍。在圖14B的例子中,橫軸為製程參數CD值,縱軸為良率Yt。如上所述,在這種情況下,機台1與機台2的分布製程參數CD值是40~60幾乎是重疊的。但是,即使是重疊的,但是機台1和機台2在cd值大於58時,其對應的良率值卻在93以下。因此,為了讓各機台良率表現更好,即使機台1與機台2的機差不是很明顯,但是操作員可以控制機台1與2的製程參數CD值,將其緊縮到CD值在42~58之間。因此,透過這樣的製程邊界調整(此例為緊縮邊界範圍),可以讓各機台的良率都能維持在93以上。
The process boundary check shown in FIG. 14B is to tighten the range of process parameters according to yield. In the example of FIG. 14B , the horizontal axis represents the value of the process parameter CD, and the vertical axis represents the yield Yt. As mentioned above, in this case, the distributed process parameter CD values of
圖14C所示的製程邊界檢查是根據良率來調整參數範圍的中心線。同樣地,在圖14C的例子中,橫軸為製程參數CD值,
縱軸為良率Yt。如上所述,在這種情況下,如果機台1與機台2之製程參數CD值的分布是35~65,其中心線則落在50。但是此情況會有分布不平均的問題,即良率在94以上的製程參數CD值幾乎都在中心線50的右側。亦即最佳良率是產生在CD值約為53的時候。故在此情況,操作員可以重設中心線,以改善此不均的分布現象。換句話,操作員可以將整個CD值分布範圍從原本的35~65調整到到43~63,進而重設中心線為53。如圖15B所示,在調整中心線後,整個製程參數CD值相較於中心線53之分布的良率可以更加提高。
The process boundary check shown in FIG. 14C adjusts the center line of the parameter range according to the yield. Similarly, in the example of FIG. 14C, the horizontal axis is the process parameter CD value,
The vertical axis is the yield rate Yt. As mentioned above, in this case, if the distribution of the process parameter CD values of
接著,說明應用本發明實施例的結果來決定最佳良率機台路徑的方法。圖15繪示決定最佳良率機台路徑的流程示意圖。如圖15所示,在步驟S500,以良率關鍵製程來分類良率。接著,在步驟S502,基於上述分類來產生相應的機率圖。之後,在步驟S504,根據機率圖,找出良率最好的機台組合作為最佳良率機台路徑。 Next, a method for determining the best-yield machine path by using the results of the embodiments of the present invention will be described. FIG. 15 is a schematic flow chart of determining the best yield machine path. As shown in FIG. 15 , in step S500 , the yield is classified according to the yield-critical process. Next, in step S502, a corresponding probability map is generated based on the above classification. Afterwards, in step S504, according to the probability map, find out the machine combination with the best yield rate as the machine path with the best yield rate.
圖16決定最佳良率機台路徑的一個例子。圖16所示為良率關鍵製程中各機台之良率的機率圖。如圖16所示,良率關鍵製程2包括機台C與機台D,良率關鍵製程5包括機台P與機台Q,良率關鍵製程6包括機台W與機台Z。從圖16可以看出,在機台C、P、W之組合下,具有最高的良率95.32,因此包含機台C、P、W便是最佳良率機台路徑。
Figure 16 is an example of determining the best yield machine path. Figure 16 shows the probability diagram of the yield rate of each machine in the yield-critical process. As shown in FIG. 16 , the yield-
此外,最佳良率機台路徑還可以利用大數據的方式來決 定,例如使用關聯規則(association rule)。關聯規則是在大數據資料庫中可以找到變數之間的有相關性的方法,並藉此來找到最佳良率機台路徑。表一為利用關聯規則的一個例子。 In addition, the best yield rate machine path can also use big data to determine defined, for example using association rules. Association rules are a way to find the correlation between variables in the big data database, and use this to find the best yield machine path. Table 1 is an example of using association rules.
從表一可以看出,在整個製程中,如果採用包含良率關鍵製程(CYT)2之機台C、良率關鍵製程5之P機台以及良率關鍵製程6之W機台的組合,則整體的良率可以達到95%以上。因此,包含標示灰色之機台C、P、W的組合便是最佳良率機台路徑。
It can be seen from Table 1 that in the entire process, if a combination of machine C including yield-critical process (CYT) 2, machine P with yield-
綜上所述,根據本發明實施例,在監控機制上不僅僅只有考慮製程參數之分布差異,同時還考慮機台間的良率差異。因此,可以透過良率與製程參數之雙向確認的機制,讓機台之間的匹配更加地完善與精確,更可以提高整體的良率。 To sum up, according to the embodiment of the present invention, not only the distribution difference of process parameters is considered in the monitoring mechanism, but also the yield difference between machines is considered. Therefore, through the two-way confirmation mechanism of yield rate and process parameters, the matching between machines can be more perfect and accurate, and the overall yield rate can be improved.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110124551A TWI801921B (en) | 2021-07-05 | 2021-07-05 | Yield correlation-driven in-line tool matching management method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110124551A TWI801921B (en) | 2021-07-05 | 2021-07-05 | Yield correlation-driven in-line tool matching management method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202303315A TW202303315A (en) | 2023-01-16 |
| TWI801921B true TWI801921B (en) | 2023-05-11 |
Family
ID=86657904
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110124551A TWI801921B (en) | 2021-07-05 | 2021-07-05 | Yield correlation-driven in-line tool matching management method |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI801921B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI273361B (en) * | 2004-12-30 | 2007-02-11 | Ind Tech Res Inst | System and method for real-time quality detection |
| TW200720849A (en) * | 2005-11-29 | 2007-06-01 | Powerchip Semiconductor Corp | Method for measuring overlay error of exposure machine |
| TWI509550B (en) * | 2010-02-16 | 2015-11-21 | Applied Materials Inc | Methods and apparatuses for utilizing adaptive predictive algorithms and determining when to use the adaptive predictive algorithms for virtual metrology |
| CN106557540A (en) * | 2015-09-30 | 2017-04-05 | 台湾积体电路制造股份有限公司 | System for wafer and machine assignment |
| US20210116898A1 (en) * | 2013-10-14 | 2021-04-22 | Applied Materials, Inc. | Matching process controllers for improved matching of process |
-
2021
- 2021-07-05 TW TW110124551A patent/TWI801921B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI273361B (en) * | 2004-12-30 | 2007-02-11 | Ind Tech Res Inst | System and method for real-time quality detection |
| TW200720849A (en) * | 2005-11-29 | 2007-06-01 | Powerchip Semiconductor Corp | Method for measuring overlay error of exposure machine |
| TWI509550B (en) * | 2010-02-16 | 2015-11-21 | Applied Materials Inc | Methods and apparatuses for utilizing adaptive predictive algorithms and determining when to use the adaptive predictive algorithms for virtual metrology |
| US20210116898A1 (en) * | 2013-10-14 | 2021-04-22 | Applied Materials, Inc. | Matching process controllers for improved matching of process |
| CN106557540A (en) * | 2015-09-30 | 2017-04-05 | 台湾积体电路制造股份有限公司 | System for wafer and machine assignment |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202303315A (en) | 2023-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI720227B (en) | System and method for tool health monitoring and matching | |
| US8417477B2 (en) | Methods and apparatus for local outlier detection | |
| JP4920268B2 (en) | Semiconductor process monitoring method and system | |
| US7904279B2 (en) | Methods and apparatus for data analysis | |
| US20040147121A1 (en) | Method and system for manufacturing a semiconductor device | |
| US11404331B2 (en) | System and method for determining cause of abnormality in semiconductor manufacturing processes | |
| CN115032493B (en) | Wafer testing method and system based on tube core parameter display | |
| WO1997035337A1 (en) | Process control system | |
| US6975953B2 (en) | Analysis method for semiconductor device, analysis system and a computer program product | |
| JP5080526B2 (en) | Method and apparatus for data analysis | |
| US20150213172A1 (en) | Method for measuring and analyzing surface structure of chip or wafer | |
| WO2021199227A1 (en) | Error cause estimation device and estimation method | |
| JP7430271B2 (en) | Error factor estimation device and estimation method | |
| TWI801921B (en) | Yield correlation-driven in-line tool matching management method | |
| TWI689888B (en) | Method for determining abnormal equipment in semiconductor processing system and program product | |
| US6424881B1 (en) | Computer generated recipe selector utilizing defect file information | |
| US6615157B1 (en) | System method and computer program product for automatically assessing experiment results | |
| TWI754911B (en) | System and method for determining cause of abnormality in semiconductor manufacturing processes | |
| US7230239B2 (en) | Apparatus for inspecting three dimensional shape of a specimen and method of watching an etching process using the same | |
| CN108062718B (en) | Processing method and processing system for semiconductor manufacturing information | |
| CN117272122A (en) | Common wafer abnormality analysis method and device, readable storage medium, terminal | |
| US6931297B1 (en) | Feature targeted inspection | |
| JP2022187070A (en) | Image recognition system | |
| TWI744493B (en) | Control system | |
| US12169178B2 (en) | IC fabrication flow with dynamic sampling for measurement |