TWI880775B - Battery capacity calculation method and battery capacity calculation system - Google Patents
Battery capacity calculation method and battery capacity calculation system Download PDFInfo
- Publication number
- TWI880775B TWI880775B TW113121446A TW113121446A TWI880775B TW I880775 B TWI880775 B TW I880775B TW 113121446 A TW113121446 A TW 113121446A TW 113121446 A TW113121446 A TW 113121446A TW I880775 B TWI880775 B TW I880775B
- Authority
- TW
- Taiwan
- Prior art keywords
- battery
- internal resistance
- discharge
- internal
- sampling point
- Prior art date
Links
Images
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本發明描述一種電池電量計算方法及電池電量計算系統,尤指一種低複雜度以及高準確率的電池電量計算方法及電池電量計算系統。 The present invention describes a battery power calculation method and a battery power calculation system, and in particular, a low-complexity and high-accuracy battery power calculation method and a battery power calculation system.
隨著科技日新月異,各種可攜式電子產品也紛紛問世。近年來,使用者對於可攜式電子產品的需求為:高效能、長續航、以及微型化。因此,可攜式電子產品內電池的使用以及管理,為重要的設計考量。影響電池電量狀態的因素非常多,例如電池充放電速率、溫度、電池老化狀態等等。為了正確獲得正確的電池電量狀態,許多系統會採取計算複雜度高的方式實現。例如,現今在求得電池電量狀態(State of Charge,SOC)時,會採取開路電壓法(Open Circuit Voltage,OCV)或是庫倫計數法(Coulomb Counting)。 With the rapid development of technology, various portable electronic products have been launched. In recent years, users have been demanding high performance, long battery life, and miniaturization for portable electronic products. Therefore, the use and management of batteries in portable electronic products are important design considerations. There are many factors that affect the battery power state, such as battery charge and discharge rate, temperature, battery aging state, etc. In order to correctly obtain the correct battery power state, many systems will adopt a highly complex calculation method to achieve it. For example, when obtaining the battery power state (State of Charge, SOC) today, the open circuit voltage method (Open Circuit Voltage, OCV) or the coulomb counting method (Coulomb Counting) will be adopted.
由於影響電量狀態的因素太多,個別因素還會互相影響,使得計算電池電量狀態變成一個複雜的問題,如僅用單純的開路電壓法或是庫倫計數法並無法準確地計算電池電量狀態。因此,在目前的技術中,常常會結合高維度的回歸計算、迭代運算、或是類神經網路(Neural Network,NN)以增加精確度。然而,引入高維度的回歸計算、迭代運算、或是類神經網路的代價為高複雜度以及高耗能。換句話說,若是引入高複雜度的演算法來計算電池電量狀態,將 會加速可攜式電子產品的電量消耗,使其續航能力降低。 Since there are too many factors that affect the battery status, and individual factors will affect each other, calculating the battery status becomes a complex problem. For example, the simple open circuit voltage method or coulomb counting method cannot accurately calculate the battery status. Therefore, in current technology, high-dimensional regression calculations, iterative operations, or neural networks (NN) are often combined to increase accuracy. However, the cost of introducing high-dimensional regression calculations, iterative operations, or neural networks is high complexity and high energy consumption. In other words, if a highly complex algorithm is introduced to calculate the battery status, it will accelerate the power consumption of portable electronic products and reduce their battery life.
因此,發展一種低複雜度以及高準確率的電池電量計算系統,是一個重要的設計議題。 Therefore, developing a low-complexity and high-accuracy battery charge calculation system is an important design issue.
本發明一實施例提出一種電池電量計算方法。電池電量計算方法包含取得電池的理想開路電壓曲線,利用放電電流將電池放電,在電池被放電時,偵測N個放電深度對應的N個放電電壓,依據理想開路電壓曲線、放電電流以及N個放電電壓,產生N個放電深度對應的N個內電阻,依據N個內電阻在電池電阻曲線上對應之N個內電阻取樣點的(N-1)個斜率,調整電池電阻曲線上之至少一個內電阻取樣點的分佈,以使N個內電阻取樣點擬合電池電阻曲線,以及於N個內電阻取樣點的分佈被調整後,更新N個內電阻。N為大於2的正整數。 An embodiment of the present invention proposes a battery capacity calculation method. The battery capacity calculation method includes obtaining an ideal open-circuit voltage curve of the battery, discharging the battery with a discharge current, detecting N discharge voltages corresponding to N discharge depths when the battery is discharged, generating N internal resistances corresponding to N discharge depths according to the ideal open-circuit voltage curve, the discharge current, and the N discharge voltages, adjusting the distribution of at least one internal resistance sampling point on the battery resistance curve according to the (N-1) slopes of the N internal resistance sampling points corresponding to the N internal resistances on the battery resistance curve so that the N internal resistance sampling points fit the battery resistance curve, and updating the N internal resistances after the distribution of the N internal resistance sampling points is adjusted. N is a positive integer greater than 2.
本發明另一實施例提出一種電池電量計算系統。電池電量計算系統包含電池、電流偵測電路、電壓偵測電路、記憶體及處理器。電流偵測電路耦接於電池。電壓偵測電路耦接於電池。記憶體用以儲存資料。處理器,耦接於電流偵測電路、電壓偵測電路及記憶體。處理器由記憶體中取得電池的理想開路電壓曲線後,利用放電電流將電池放電。在電池被放電時,處理器控制電壓偵測電路偵測N個放電深度對應的N個放電電壓。放電電流被電流偵測電路偵測。處理器依據理想開路電壓曲線、放電電流以及N個放電電壓,產生N個放電深度對應的N個內電阻。處理器依據N個內電阻在電池電阻曲線上對應之N個內電阻取樣點的(N-1)個斜率,調整電池電阻曲線上之至少一個內電阻取樣點的分佈,以使N個內電阻取樣點擬合電池電阻曲線。處理器於N個內電阻取樣點的分佈被調整後,更新N個內電阻。N為大於2的正整數。 Another embodiment of the present invention provides a battery capacity calculation system. The battery capacity calculation system includes a battery, a current detection circuit, a voltage detection circuit, a memory, and a processor. The current detection circuit is coupled to the battery. The voltage detection circuit is coupled to the battery. The memory is used to store data. The processor is coupled to the current detection circuit, the voltage detection circuit, and the memory. After the processor obtains the ideal open-circuit voltage curve of the battery from the memory, it discharges the battery using a discharge current. When the battery is discharged, the processor controls the voltage detection circuit to detect N discharge voltages corresponding to N discharge depths. The discharge current is detected by the current detection circuit. The processor generates N internal resistors corresponding to N discharge depths according to the ideal open-circuit voltage curve, the discharge current, and N discharge voltages. The processor adjusts the distribution of at least one internal resistor sampling point on the battery resistance curve according to the (N-1) slopes of the N internal resistor sampling points corresponding to the N internal resistors on the battery resistance curve, so that the N internal resistor sampling points fit the battery resistance curve. After the distribution of the N internal resistor sampling points is adjusted, the processor updates the N internal resistors. N is a positive integer greater than 2.
100:電池電量計算系統 100:Battery power calculation system
10:電池 10:Battery
11:電流偵測電路 11: Current detection circuit
12:電壓偵測電路 12: Voltage detection circuit
13:記憶體 13: Memory
14:處理器 14: Processor
COCV:理想開路電壓曲線 C OCV : Ideal open circuit voltage curve
CBAT:開路電壓曲線 C BAT : Open circuit voltage curve
DOD(n):第n個放電深度 DOD(n): nth discharge depth
VOCV(n):第n個理想放電電壓 V OCV (n): nth ideal discharge voltage
VBAT(n):第n個放電電壓 V BAT (n): nth discharge voltage
△V:電壓差 △V: voltage difference
R(n):第n個內電阻 R(n): nth internal resistance
RS(n):第n個內電阻取樣點 RS(n): nth internal resistance sampling point
CR:電池電阻曲線 C R : Battery resistance curve
RS(n-1):第n-1個內電阻取樣點 RS(n-1): the n-1th internal resistance sampling point
RS(n+1):第n+1個內電阻取樣點 RS(n+1): the n+1th internal resistance sampling point
S1、S1’:第一斜率 S1, S1’: first slope
S2、S2’:第二斜率 S2, S2’: Second slope
RS’(m-1):第m-1個內電阻取樣點 RS’(m-1): m-1th internal resistance sampling point
RS’(m+1):第m+1個內電阻取樣點 RS’(m+1): m+1th internal resistance sampling point
RS’(m):第m個內電阻取樣點 RS’(m): mth internal resistance sampling point
DOD(m):第m個放電深度 DOD(m): mth discharge depth
S701至S706:步驟 S701 to S706: Steps
第1圖係為本發明之電池電量計算系統之實施例的方塊圖。 Figure 1 is a block diagram of an embodiment of the battery capacity calculation system of the present invention.
第2圖係為第1圖之電池電量計算系統中,取得第n個理想放電電壓以及第n個放電電壓的示意圖。 Figure 2 is a schematic diagram of obtaining the nth ideal discharge voltage and the nth discharge voltage in the battery capacity calculation system of Figure 1.
第3圖係為第1圖之電池電量計算系統中,取得第n個內電阻的示意圖。 Figure 3 is a schematic diagram of obtaining the nth internal resistance in the battery capacity calculation system of Figure 1.
第4圖係為第1圖之電池電量計算系統中,在第一種模式下,依據兩鄰近斜率調整電池電阻曲線上之至少一個內電阻取樣點的分佈的示意圖。 FIG. 4 is a schematic diagram showing the distribution of at least one internal resistance sampling point on the battery resistance curve adjusted according to two adjacent slopes in the first mode in the battery capacity calculation system of FIG. 1.
第5圖係為第1圖之電池電量計算系統中,在第二種模式下,依據兩鄰近斜率調整電池電阻曲線上之至少一個內電阻取樣點的分佈的示意圖。 FIG5 is a schematic diagram showing the distribution of at least one internal resistance sampling point on the battery resistance curve adjusted according to two adjacent slopes in the battery capacity calculation system of FIG1 in the second mode.
第6圖係為第1圖之電池電量計算系統中,在電池電阻曲線上之N個內電阻取樣點的分佈被調整完成的示意圖。 Figure 6 is a schematic diagram showing the adjustment of the distribution of N internal resistance sampling points on the battery resistance curve in the battery capacity calculation system of Figure 1.
第7圖係為第1圖之電池電量計算系統執行電池電量計算方法的流程圖。 Figure 7 is a flow chart of the battery power calculation system in Figure 1 executing the battery power calculation method.
第1圖係為本發明之電池電量計算系統100之實施例的方塊圖。電池電量計算系統100包含電池10、電流偵測電路11、電壓偵測電路12、記憶體13以及處理器14。電量計算系統100的電池10可為任何種類的電池,例如可充電電池(Rechargeable Battery)、鋰電池或是鎳氫電池等等。電池10也可為電池組(Battery Pack),其包含一組串聯的電池單元。電流偵測電路11耦接於電池10,用以偵測電池10在放電或充電時的電流。電壓偵測電路12耦接於電池10,用以偵測電池10在放電或充電時的兩端點電壓。應當理解的是,電壓偵測電路12可耦接於電池10的正負極兩端點。當電池10為電池組時,電壓偵測電路12也可以透過多工器耦接於電池組中每一個電池單元的正負極兩端點。任何合理的硬體變更都屬
於本發明所揭露的範疇。記憶體13用以儲存資料。處理器14耦接於電流偵測電路11、電壓偵測電路12及記憶體13。處理器14可為任何形式的運算單元,例如中央處理器(Central Processing Unit)或是微處理器(Microprocessor)等等。記憶體13可為快閃記憶體(Flash Memory)或是隨機存取記憶體(Random Access Memory),但不以此為限制。在電池電量計算系統100中,在處理器14由記憶體13中取得電池10的理想開路電壓(Open Circuit Voltage)曲線後,可利用放電電流將電池10放電。在電池10被放電時,處理器14可以控制電壓偵測電路12偵測N個放電深度(Depth of discharge)對應的N個放電電壓。放電電流可被電流偵測電路11偵測。處理器14可以依據理想開路電壓曲線、放電電流以及N個放電電壓,產生N個放電深度對應的N個內電阻。並且,處理器14可依據N個內電阻在電池電阻曲線上對應之N個內電阻取樣點的(N-1)個斜率,調整電池電阻曲線上之至少一個內電阻取樣點的分佈,以使N個內電阻取樣點擬合電池電阻曲線。最後,處理器14可於N個內電阻取樣點的分佈被調整後,更新N個內電阻。N為大於2的正整數。電池電量計算系統100執行電池電量計算方法的細節將於後文詳述。
FIG. 1 is a block diagram of an embodiment of a battery
第2圖係為電池電量計算系統100中,取得第n個理想放電電壓VOCV(n)以及第n個放電電壓VBAT(n)的示意圖。如前述提及,處理器14可由記憶體13中取得電池10的理想開路電壓曲線COCV。理想開路電壓曲線COCV可預先設定並儲存於記憶體13內。在其他實施例中,理想開路電壓曲線COCV上的所有理想開路電壓VOCV之方程式或是查詢表(Lookup Table)可預先儲存於記憶體13內。如第2圖所示,理想開路電壓曲線COCV可視為電池10無內電阻時(例如剛出廠的電池),電池10的放電電壓V與放電深度DOD的關係曲線。於此,Y軸為放電電壓V,表示電池10在放電時量測的電壓。X軸為放電深度DOD。放電深度DOD的定義為滿荷電狀態至當前已釋出之電量比。放電深度DOD的範圍在0%到100%之間。在電池電量計算系統100中,處理器14可於記憶體13內取得N個放電深度在理想開路電
壓曲線COCV上對應的N個理想放電電壓。並且,處理器14可依據理想開路電壓曲線COCV、N個放電電壓以及放電電流,產生N個放電深度對應的N個內電阻。舉例而言,在第2圖中,第n個放電深度DOD(n)可為x%。在第n個放電深度DOD(n)下,處理器14可依據理想開路電壓曲線COCV取得第n個理想放電電壓VOCV(n)。並且,處理器14可以控制電壓偵測電路12偵測第n個放電電壓VBAT(n)的實際值。應當理解的是,由於電池10會因為電池會受到充放電速率、溫度、電池老化狀態等等諸多因素影響而產生內電阻,因此其實際的第n個放電電壓VBAT(n)會受到內電阻的影響而小於理想放電電壓VOCV(n)。因此,在取得第n個理想放電電壓VOCV(n)以及第n個放電電壓VBAT(n)後,處理器14可以得出在第n個放電深度DOD(n)下的電壓差△V。因此,電壓差△V可解讀為:因電池放電效能的劣化影響,理想放電電壓VOCV(n)與實際的放電電壓VBAT(n)的差距。並且,第2圖的開路電壓曲線CBAT為實際的量測值,其取樣電壓數值將小於理想開路電壓曲線COCV的取樣電壓數值。
FIG. 2 is a schematic diagram of obtaining the nth ideal discharge voltage V OCV (n) and the nth discharge voltage V BAT (n) in the battery
第3圖係為第1圖之電池電量計算系統中,取得第n個內電阻R(n)的示意圖。在取得第n個理想放電電壓VOCV(n)以及第n個放電電壓VBAT(n)後,處理器14可計算出第n個內電阻R(n),表示為:
其中I為放電電流,可預先設定並由電流偵測電路11偵測。應當理解的是,第n個內電阻R(n)可由移動平均(Moving Average)機制逼近而得,以增加第n個內電阻R(n)的準確度。然而,本發明並不以此為限制。在第n個內電阻R(n)求得後,處理器14可以在第n個放電深度DOD(n)下,標示出電池電阻曲線CR上第n個內電阻取樣點RS(n)。應當理解的是,如前述提及,考慮N個內電阻取樣點RS(1)至RS(N)。電池電量計算系統100的目的在於將電池電阻曲線CR上N個內電阻取樣點RS(1)至RS(N)的分佈最佳化,以使N個內電阻取樣點RS(1)至RS(N)擬合
電池電阻曲線CR。因此當內電阻取樣點RS(1)至RS(N)被更新時,可以產生出非常準確的電池電阻曲線CR以利於計算電池電量。如何調整N個內電阻取樣點RS(1)至RS(N)在電池電阻曲線CR上的分佈,其細節將於後文詳述。
Where I is the discharge current, which can be preset and detected by the
第4圖係為電池電量計算系統100中,在第一種模式下,依據兩鄰近斜率調整電池電阻曲線CR上之至少一個內電阻取樣點的分佈的示意圖。在第4圖中,處理器14可以取得N個內電阻中之第(n-1)個內電阻、第n個內電阻及第(n+1)個內電阻分別在電池電阻曲線CR上對應的第(n-1)個內電阻取樣點RS(n-1)、第n個內電阻取樣點RS(n)及第(n+1)個內電阻取樣點RS(n+1)。第(n-1)個內電阻取樣點RS(n-1)、第n個內電阻取樣點RS(n)及第(n+1)個內電阻取樣點RS(n+1)為在電池電阻曲線CR上三個連續的取樣點。接著,處理器14可以取得第(n-1)個內電阻取樣點RS(n-1)與第n個內電阻取樣點RS(n)的第一斜率S1。第一斜率S1可表示為:
其中第(n-1)個內電阻取樣點RS(n-1)對應第(n-1)個放電深度DOD(n-1),且第(n)個內電阻取樣點RS(n)對應第(n)個放電深度DOD(n)。類似地,處理器14可以取得第(n)個內電阻取樣點RS(n)與第(n+1)個內電阻取樣點RS(n+1)的第二斜率S2。第二斜率S2可表示為:
其中第(n+1)個內電阻取樣點RS(n+1)對應第(n+1)個放電深度DOD(n+1)。接著,處理器14可以比較第一斜率S1與第二斜率S2,以調整電池電阻曲線CR上之至少一個內電阻取樣點的分佈。舉例而言,處理器14可以設定一個門檻值STH,且門檻值STH為0至1之間的正數。並且,處理器14可以比較第一斜率S1與第二斜率S2,以產生第一斜率S1與第二斜率S2的差異值。在第4圖中,若第一斜率S1與第二斜率S2的差異值小於門檻值STH,表示三個連續的取樣點 RS(n-1)、RS(n)、RS(n+1)的變化不大。因此,電池電阻曲線CR可以利用線性逼近。處理器14可以減少第(n-1)個內電阻取樣點RS(n-1)與第(n+1)個內電阻取樣點RS(n+1)之間的取樣數目,表示如下:<S TH The (n+1)th internal resistance sampling point RS(n+1) corresponds to the (n+1)th discharge depth DOD(n+1). Then, the processor 14 can compare the first slope S1 and the second slope S2 to adjust the distribution of at least one internal resistance sampling point on the battery resistance curve CR . For example, the processor 14 can set a threshold value S TH , and the threshold value S TH is a positive number between 0 and 1. In addition, the processor 14 can compare the first slope S1 and the second slope S2 to generate a difference value between the first slope S1 and the second slope S2. In FIG. 4, if the difference between the first slope S1 and the second slope S2 is less than the threshold value S TH , it means that the three consecutive sampling points RS(n-1), RS(n), and RS(n+1) do not change much. Therefore, the battery resistance curve CR can be linearly approximated. The processor 14 can reduce the number of samples between the (n-1)th internal resistance sampling point RS(n-1) and the (n+1)th internal resistance sampling point RS(n+1), as shown below: < S TH
第5圖係為電池電量計算系統100中,在第二種模式下,依據兩鄰近斜率調整電池電阻曲線CR上之至少一個內電阻取樣點的分佈的示意圖。在第5圖中,處理器14可以取得N個內電阻中之第(m-1)個內電阻、第m個內電阻及第(m+1)個內電阻分別在電池電阻曲線CR上對應的第(m-1)個內電阻取樣點RS’(m-1)、第m個內電阻取樣點RS’(m)及第(m+1)個內電阻取樣點RS’(m+1)。第(m-1)個內電阻取樣點RS’(m-1)、第m個內電阻取樣點RS’(m)及第(m+1)個內電阻取樣點RS’(m+1)為在電池電阻曲線CR上三個連續的取樣點。接著,處理器14可以取得第(m-1)個內電阻取樣點RS’(m-1)與第m個內電阻取樣點RS’(m)的第一斜率S1’。第一斜率S1’可表示為:
其中第(m-1)個內電阻取樣點RS’(m-1)對應第(m-1)個放電深度DOD’(m-1),且第(m)個內電阻取樣點RS’(m)對應第(m)個放電深度DOD’(m)。類似地,處理器14可以取得第(m)個內電阻取樣點RS’(m)與第(m+1)個內電阻取樣點RS’(m+1)的第二斜率S2’。第二斜率S2’可表示為:
其中第(m+1)個內電阻取樣點RS’(m+1)對應第(m+1)個放電深度DOD’(m+1)。接著,處理器14可以比較第一斜率S1’與第二斜率S2’,以調整電池電阻曲線CR上之至少一個內電阻取樣點的分佈。舉例而言,處理器14可以比較第一斜率S1’與第二斜率S2’,以產生第一斜率S1’與第二斜率S2’的差異值。在第 5圖中,若第一斜率S1’與第二斜率S2’的差異值大於或等於門檻值STH,表示三個連續的取樣點RS’(m-1)、RS’(m)、RS’(m+1)的變化劇烈。因此,電池電阻曲線CR可能在取樣點RS’(m)之處出現轉折。處理器14可以增加第(m-1)個內電阻取樣點RS’(m-1)與第(m+1)個內電阻取樣點RS’(m+1)之間的取樣數目,表示如下: S TH The (m+1)th internal resistance sampling point RS'(m+1) corresponds to the (m+1)th discharge depth DOD'(m+1). Then, the processor 14 can compare the first slope S1' and the second slope S2' to adjust the distribution of at least one internal resistance sampling point on the battery resistance curve CR . For example, the processor 14 can compare the first slope S1' and the second slope S2' to generate a difference value between the first slope S1' and the second slope S2'. In FIG. 5, if the difference value between the first slope S1' and the second slope S2' is greater than or equal to the threshold value S TH , it means that the three consecutive sampling points RS'(m-1), RS'(m), and RS'(m+1) change dramatically. Therefore, the battery resistance curve CR may be inflected at the sampling point RS'(m). The processor 14 may increase the number of samples between the (m-1)th internal resistance sampling point RS'(m-1) and the (m+1)th internal resistance sampling point RS'(m+1), as shown below: S T
第6圖係為電池電量計算系統100中,在電池電阻曲線CR上之N個內電阻取樣點的分佈被調整完成的示意圖。如前述提及,處理器14可以將N個內電阻取樣點在電池電阻曲線CR所對應的(N-1)個斜率兩兩比較,以調整N個內電阻取樣點的分佈。如第6圖所示,在N個內電阻取樣點的分佈被調整後,在電池電阻曲線CR上的(N-1)個斜率中,鄰近兩斜率的差異值將小於門檻值STH。換句話說,電池電量計算系統100可以用動態距離(Dynamic distance)的方式調整N個內電阻取樣點的分佈。因此,電池電阻曲線CR可用有限的N個內電阻取樣點精準地擬合。也由於電池電阻曲線CR可用有限的N個內電阻取樣點精準地擬合,故當電池電阻曲線CR結合開路電壓法(Open Circuit Voltage,OCV)或是庫倫計數法(Coulomb Counting)等技術時,將會有更精準的電池電量估計結果。例如,當電池電阻曲線CR被產生後,在y%的放電深度下,可以將電壓偵測電路12量測到的放電電壓疊加至由放電電流以及內電阻導出的電壓差上。因此,可以判斷電池10的放電效率或其他應用。
FIG. 6 is a schematic diagram showing that the distribution of N internal resistance sampling points on the battery resistance curve CR in the battery
第7圖係為電池電量計算系統100執行電池電量計算方法的流程圖。電池電量計算方法的流程包含步驟S701至步驟S706。步驟S701至步驟S706描述如下:步驟S701:取得電池10的理想開路電壓曲線COCV;步驟S702:利用放電電流I將電池10放電;
步驟S703:在電池10被放電時,偵測N個放電深度對應的N個放電電壓;步驟S704:依據理想開路電壓曲線COCV、放電電流I以及N個放電電壓,產生N個放電深度對應的N個內電阻;步驟S705:依據N個內電阻在電池電阻曲線CR上對應之N個內電阻取樣點的(N-1)個斜率,調整電池電阻曲線CR上之至少一個內電阻取樣點的分佈,以使N個內電阻取樣點擬合電池電阻曲線CR;步驟S706:於N個內電阻取樣點的分佈被調整後,更新N個內電阻。
FIG. 7 is a flow chart of the battery power calculation method executed by the battery
步驟S701至步驟S706的細節已於前文詳述,故於此將不再贅述。電池電量計算系統100由於可以偵測內電阻,並可最佳化有限的內電阻的分佈,以擬合出失真最小的電池電阻曲線。由於內電阻的數目(N)可以自定義,因此後續在更新內電阻時的複雜度也可以調整。因此,本發明的電池電量計算系統可實現一種可調整複雜度以及高計算準確率的電池電量計算方法。
The details of step S701 to step S706 have been described in detail above, so they will not be repeated here. The battery
綜上所述,本發明描述一種電池電量計算方法以及電池電量計算系統。電池電量計算系統可利用理想開路電壓曲線、放電電流以及放電電壓,得出有限個內電阻。並且,電池電量計算系統還可以利用有限個內電阻在電池電阻曲線上之鄰近兩斜率的差異值,判斷是否要調整有限個內電阻的分佈。最終,當在電池電阻曲線上之所有成對鄰近兩斜率的差異值均小於門檻值時,有限個內電阻的分佈可被最佳化。因此,電池電量計算系統可利用有限個內電阻擬合出失真最小的電池電阻曲線。在電池電量計算系統中,由於內電阻的數目可以自定義,因此後續在更新內電阻時的複雜度也可以調整。因此,本發明的電池電量計算系統可實現一種可調整複雜度以及高計算準確率的電池電量計算方法。 In summary, the present invention describes a battery capacity calculation method and a battery capacity calculation system. The battery capacity calculation system can use the ideal open-circuit voltage curve, discharge current and discharge voltage to obtain a finite number of internal resistors. In addition, the battery capacity calculation system can also use the difference between two adjacent slopes of the finite number of internal resistors on the battery resistance curve to determine whether to adjust the distribution of the finite number of internal resistors. Finally, when the difference between all pairs of adjacent slopes on the battery resistance curve is less than a threshold value, the distribution of the finite number of internal resistors can be optimized. Therefore, the battery capacity calculation system can use the finite number of internal resistors to fit a battery resistance curve with minimal distortion. In the battery capacity calculation system, since the number of internal resistors can be customized, the complexity of updating the internal resistors can also be adjusted. Therefore, the battery capacity calculation system of the present invention can realize a battery capacity calculation method with adjustable complexity and high calculation accuracy.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made within the scope of the patent application of the present invention shall fall within the scope of the present invention.
100:電池電量計算系統 100:Battery power calculation system
10:電池 10:Battery
11:電流偵測電路 11: Current detection circuit
12:電壓偵測電路 12: Voltage detection circuit
13:記憶體 13: Memory
14:處理器 14: Processor
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113121446A TWI880775B (en) | 2024-06-11 | 2024-06-11 | Battery capacity calculation method and battery capacity calculation system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113121446A TWI880775B (en) | 2024-06-11 | 2024-06-11 | Battery capacity calculation method and battery capacity calculation system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI880775B true TWI880775B (en) | 2025-04-11 |
| TW202548282A TW202548282A (en) | 2025-12-16 |
Family
ID=96141785
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113121446A TWI880775B (en) | 2024-06-11 | 2024-06-11 | Battery capacity calculation method and battery capacity calculation system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI880775B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1549385A (en) * | 2002-10-11 | 2004-11-24 | ������������ʽ���� | Detecting method and detecting apparatus for detecting internal resistance of a rechargeable battery and rechargeable battery pack having said detecting apparatus therein |
| TW202244525A (en) * | 2021-05-10 | 2022-11-16 | 加百裕工業股份有限公司 | Method of detecting state of charge of battery |
| US20220373601A1 (en) * | 2019-11-07 | 2022-11-24 | Basf Se | Battery Performance Prediction |
| CN116718921A (en) * | 2023-05-29 | 2023-09-08 | 万帮数字能源股份有限公司 | Battery state-of-charge prediction method and device based on multi-model |
| US20240053402A1 (en) * | 2022-08-10 | 2024-02-15 | Shanghai Makesens Energy Storage Technology Co., Ltd. | Method for analyzing battery life degradation, storage medium, and electronic device |
-
2024
- 2024-06-11 TW TW113121446A patent/TWI880775B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1549385A (en) * | 2002-10-11 | 2004-11-24 | ������������ʽ���� | Detecting method and detecting apparatus for detecting internal resistance of a rechargeable battery and rechargeable battery pack having said detecting apparatus therein |
| US20220373601A1 (en) * | 2019-11-07 | 2022-11-24 | Basf Se | Battery Performance Prediction |
| TW202244525A (en) * | 2021-05-10 | 2022-11-16 | 加百裕工業股份有限公司 | Method of detecting state of charge of battery |
| US20240053402A1 (en) * | 2022-08-10 | 2024-02-15 | Shanghai Makesens Energy Storage Technology Co., Ltd. | Method for analyzing battery life degradation, storage medium, and electronic device |
| CN116718921A (en) * | 2023-05-29 | 2023-09-08 | 万帮数字能源股份有限公司 | Battery state-of-charge prediction method and device based on multi-model |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7289113B2 (en) | Management device and power supply system | |
| CN111164437B (en) | Apparatus and method for diagnosing battery | |
| CN101116003B (en) | Method and device for estimating charge/discharge capacity, polarization voltage and SOC of secondary battery | |
| KR102572652B1 (en) | Method for estimating state of charge of battery | |
| JP4130425B2 (en) | Secondary battery charge / discharge quantity estimation method and apparatus, secondary battery polarization voltage estimation method and apparatus, and secondary battery remaining capacity estimation method and apparatus | |
| CN113748352B (en) | Battery management system, battery pack, electric vehicle and battery management method | |
| CN112189143B (en) | Device for estimating the state of charge of a battery | |
| CN114207457B (en) | Device for determining degree of deterioration of secondary battery and battery pack | |
| US20070096697A1 (en) | Battery fuel gauge circuit | |
| CN110678765A (en) | Apparatus and method for testing the performance of battery cells | |
| CN112470017B (en) | Battery management device, battery management method and battery pack | |
| CN112213659B (en) | Battery capacity correction method and test system | |
| KR20220168920A (en) | Apparatus and method for estimating state of health of battery | |
| CN103138026A (en) | Battery pack control device | |
| CN111065933A (en) | Charging capacity calculation device and method for energy storage system | |
| CN112470018B (en) | SOC estimation device and method | |
| KR20180080633A (en) | Battery module and electronic device including the same | |
| CN104237792B (en) | Battery capacity prediction method | |
| KR20190075623A (en) | Method and apparatus for calibrating state of charge of a battery | |
| CN115113050A (en) | State estimation device of secondary battery | |
| Goh et al. | Successive-approximation algorithm for estimating capacity of Li-ion batteries | |
| CN116324443B (en) | Discharge voltage curve prediction method and battery system using the same | |
| KR102859090B1 (en) | Battery state of health estimation method and battery pack using the same | |
| TW202401030A (en) | Estimation method of battery capacity, battery module and electrical product thereof | |
| CN115136017B (en) | Method for monitoring a battery system by determining impedance and battery management system |