[go: up one dir, main page]

TWI870263B - Method for assessing length of stay in patient with dengue fever and system thereof - Google Patents

Method for assessing length of stay in patient with dengue fever and system thereof Download PDF

Info

Publication number
TWI870263B
TWI870263B TW113109835A TW113109835A TWI870263B TW I870263 B TWI870263 B TW I870263B TW 113109835 A TW113109835 A TW 113109835A TW 113109835 A TW113109835 A TW 113109835A TW I870263 B TWI870263 B TW I870263B
Authority
TW
Taiwan
Prior art keywords
data
hospitalization
dengue fever
patient
cytokine
Prior art date
Application number
TW113109835A
Other languages
Chinese (zh)
Other versions
TW202538762A (en
Inventor
林秋烽
何宗憲
王筠婷
賴君豪
美悅 林
Original Assignee
臺北醫學大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺北醫學大學 filed Critical 臺北醫學大學
Priority to TW113109835A priority Critical patent/TWI870263B/en
Application granted granted Critical
Publication of TWI870263B publication Critical patent/TWI870263B/en
Publication of TW202538762A publication Critical patent/TW202538762A/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a method for assessing length of stay in patient with dengue fever and system thereof. The method for assessing length of stay in patient with dengue fever comprises the following steps: inputting a plurality of cytokine data and a plurality of blood biomarker data obtained from dengue patients through an input device, and storing the plurality of cytokine data and the plurality of blood biomarker data in a storage device; performs biostatistical analysis on the plurality of cytokine data and the plurality of blood biomarker data, finds out cytokine data and blood biomarker data with significant differences, then applies the cytokine data and the blood biomarker data with significant differences to establish a dengue fever patient length of stay assessment model with principal component analysis(PCA) algorithm; obtain cytokine data and blood biomarker data to be discriminated through the input device, and use the processor to perform an interpretation program to obtain a interpretation result of length of stay in patient with dengue fever; the interpretation result of the length of stay in patient with dengue fever is output through a output device. The system includes an input device, a storage device, a processor, and an output device.

Description

登革熱患者住院時間評估方法及其系統Method and system for evaluating hospitalization time of dengue fever patients

本發明是關於一種登革熱患者住院時間評估方法及其系統,特別是關於一種利用生物統計分析結合主成分分析(principal component analysis, PCA)演算法,對細胞激素數據及血液標記物數據進行分析,進而可正確預測登革熱患者住院時間之評估方法及其系統。The present invention relates to a method and system for evaluating the hospitalization time of dengue fever patients, and in particular to an evaluation method and system for accurately predicting the hospitalization time of dengue fever patients by analyzing cytokine data and blood marker data using biostatistical analysis combined with principal component analysis (PCA) algorithm.

登革熱(dengue fever)是一種由登革病毒(dengue virus, DENV)引起的急性病毒性感染疾病,其係藉由帶有登革病毒之蚊蟲叮咬而傳播,該等蚊蟲主要包括埃及斑蚊(Aedes aegypti)及白線斑蚊(Aedes albopictus);此種疾病通常在熱帶和亞熱帶地區流行,並且在這些區域是一個公共衛生上的重要議題。登革熱的症狀範圍從輕微的發燒和關節痛到嚴重的出血和休克,嚴重的情況可能導致死亡。Dengue fever is an acute viral infection caused by dengue virus (DENV). It is transmitted by the bites of mosquitoes carrying the dengue virus, mainly Aedes aegypti and Aedes albopictus. The disease is common in tropical and subtropical regions and is a major public health issue in these regions. Symptoms of dengue fever range from mild fever and joint pain to severe bleeding and shock, and severe cases may lead to death.

登革熱的症狀通常在感染後4~10天內出現,表現為突然的高燒、頭痛、肌肉和關節痛、皮疹和出血傾向等;在一些病例中,登革熱可能進展為嚴重的出血性熱帶病,在此種情況下,患者可能出現血小板減少、器官衰竭和休克等危及生命的併發症。Symptoms of dengue fever usually appear within 4 to 10 days after infection, and include sudden high fever, headache, muscle and joint pain, rash and bleeding tendency. In some cases, dengue fever may progress to severe hemorrhagic tropical disease, in which case patients may experience life-threatening complications such as thrombocytopenia, organ failure and shock.

登革熱以嚴重程度進行分級,通常分為輕症、中重症和極重症,這些分級是根據患者的症狀和臨床表現而定。輕症的表現為無症狀,抑或是發燒、頭痛、肌肉和關節痛,可能伴隨著皮疹,但患者通常保持清醒,沒有器官功能受損的跡象;中重症的表現為嚴重的頭痛和疲勞、血小板減少及器官功能受損,如再稍微嚴重一點則可能出現出血傾向、血壓下降及器官功能衰竭,需要住院治療;而極重症的患者可能有休克、器官功能嚴重衰竭,於住院時需要以輸血抑或其他支持性療法進一步治療。Dengue fever is graded according to severity, usually mild, moderate, and severe, based on the patient's symptoms and clinical manifestations. Mild cases may present with no symptoms or fever, headache, muscle and joint pain, which may be accompanied by a rash, but the patient usually remains awake and has no signs of organ damage; moderate to severe cases present with severe headache and fatigue, thrombocytopenia, and organ damage. If the disease is a little more severe, there may be bleeding tendency, low blood pressure, and organ failure, requiring hospitalization; and patients with severe cases may have shock and severe organ failure, requiring further treatment with blood transfusions or other supportive therapies while in hospital.

目前對於登革熱的嚴重程度進行分級的檢測方法,主要包括臨床症狀和實驗室檢驗,醫生會評估患者的症狀,並通過檢測凝血酶原時間(prothrombin time, PT,單位為秒)、部份凝血活酶時間(activated partial thromboplastin time, aPTT,單位為秒)、白血球細胞數量(white blood cells, WBC,單位為10 6/L)、血紅蛋白濃度(hemoglobin, Hb,單位為g/dL)、血比容(hematocrit, Hct,單位為%)、血小板數量(platelet,單位為10 9/L)、天門冬胺酸轉胺酶濃度(AST,單位為U/L)、丙胺酸轉胺酶濃度(GPT,單位為U/L)、血液尿素氮濃度(BUN,單位為mg/dL)以及血清肌酸酐濃度(creatinine,單位為mg/dL)等血液標記物指標來評估病情的嚴重程度。 The current detection methods for grading the severity of dengue fever mainly include clinical symptoms and laboratory tests. The doctor will evaluate the patient's symptoms and test the patient's condition by testing prothrombin time (PT, in seconds), activated partial thromboplastin time (aPTT, in seconds), white blood cell count (WBC, in 10 6 /L), hemoglobin concentration (Hb, in g/dL), hematocrit (Hct, in %), platelet count (platelet, in 10 9 The severity of the disease is assessed by blood markers such as serum creatinine (creatinine, mg/dL), aspartate aminotransferase (AST, U/L), alanine aminotransferase (GPT, U/L), blood urea nitrogen (BUN, mg/dL), and

然而,即便檢測出患者確實有感染登革熱,但並無法得知該名患者是否會進一步發展為中重症或極重症,故檢測出患者感染登革熱時,基本上均建議患者住院觀察或進一步進行治療,進而導致醫療系統負擔加重;如住院後患者並未發展為中重症或極重症,抑或是後續住院後幾天內康復況狀良好但仍繼續住院之患者,該等患者除需耗費醫療人力及資源外,更會使得中重症或極重症之患者無法得到有效的照護及治療。However, even if a patient is found to be infected with dengue fever, it is impossible to know whether the patient will further develop into moderate, severe or extremely severe illness. Therefore, when a patient is found to be infected with dengue fever, it is generally recommended that the patient be hospitalized for observation or further treatment, which in turn increases the burden on the medical system. If the patient does not develop into moderate, severe or extremely severe illness after hospitalization, or if the patient recovers well within a few days after subsequent hospitalization but continues to be hospitalized, such patients will not only consume medical manpower and resources, but will also prevent patients with moderate, severe or extremely severe illness from receiving effective care and treatment.

綜上所述,對於登革熱疾病的臨床實務上迫切需要有效的住院時間評估方式介入,提供醫師額外的患者細胞激素相關數據輔以血液標記物數據作為參考,以加速判斷登革病患是否需要接受住院治療、抑或是需短期住院及長期住院,進而可使醫療人力及資源可妥善運用以減輕醫療系統負擔。In summary, there is an urgent need for effective hospitalization time assessment methods in the clinical practice of dengue fever, providing doctors with additional patient cytokine-related data supplemented by blood marker data as a reference to accelerate the judgment of whether dengue patients need to be hospitalized for treatment, or whether they need short-term or long-term hospitalization, so that medical manpower and resources can be properly utilized to reduce the burden on the medical system.

有鑑於上述習知登革熱患者住院時間之評估問題,本發明之目的在於提供一種患者住院時間評估方法及其系統,以利醫護人員可對登革熱患者是否需住院以及住院時間長短進行快速的醫療決策,提升醫療體系之工作效率並減輕醫療人力之負擔,並使病患可獲得即時及妥善之治療。In view of the above-mentioned problem of evaluating the hospitalization time of dengue fever patients, the purpose of the present invention is to provide a method and system for evaluating the hospitalization time of patients, so that medical staff can make quick medical decisions on whether dengue fever patients need to be hospitalized and the length of hospitalization time, improve the work efficiency of the medical system and reduce the burden of medical manpower, and enable patients to receive timely and appropriate treatment.

根據本發明之一目的,提出一種登革病患住院時間評估方法,其包含下列步驟:通過輸入裝置輸入複數個細胞激素數據及複數個血液標記物數據,儲存於儲存裝置;藉由處理器存取儲存裝置,對複數個細胞激素數據及複數個血液標記物數據進行生物統計分析,找出具有顯著差異之細胞激素數據及血液標記物數據,接著將具有顯著差異之細胞激素數據及血液標記物數據以主成分分析(PCA)演算法建立登革熱患者住院時間評估模型;通過輸入裝置取得待評估之細胞激素數據及血液標記物數據,以處理器進行判讀程序獲得登革熱患者住院時間判讀結果;藉由輸出裝置存取儲存裝置,將登革熱患者住院時間判讀結果輸出。According to one purpose of the present invention, a method for evaluating the hospitalization time of dengue patients is proposed, which comprises the following steps: inputting a plurality of cytokine data and a plurality of blood marker data through an input device and storing them in a storage device; accessing the storage device through a processor, performing biostatistical analysis on the plurality of cytokine data and the plurality of blood marker data, and finding out the cytokine data and blood marker data with significant differences. Then, the cytokine data and blood marker data with significant differences are used to establish a dengue fever patient hospitalization time evaluation model using a principal component analysis (PCA) algorithm; the cytokine data and blood marker data to be evaluated are obtained through an input device, and a processor is used to perform a judgment program to obtain a dengue fever patient hospitalization time judgment result; the storage device is accessed through an output device to output the dengue fever patient hospitalization time judgment result.

其中,所述複數個細胞激素數據係為各類細胞激素之表達量(pg/ml),而所述複數個血液標記物數據係包含凝血酶原時間、部份凝血活酶時間、白血球細胞數量、血紅蛋白濃度、血比容、血小板數量、天門冬胺酸轉胺酶濃度、丙胺酸轉胺酶濃度、血液尿素氮濃度以及血清肌酸酐濃度;所述複數個細胞激素數據以及所述複數個血液標記物數據均係由患者之血液檢體中取得。Among them, the multiple cytokine data are the expression levels (pg/ml) of various cytokines, and the multiple blood marker data include prothrombin time, partial thromboplastin time, white blood cell count, hemoglobin concentration, hematocrit, platelet count, aspartate transaminase concentration, alanine transaminase concentration, blood urea nitrogen concentration and serum creatinine concentration; the multiple cytokine data and the multiple blood marker data are all obtained from the patient's blood sample.

所述細胞激素具體為24個,其種類如表1所示:There are 24 cytokines, and their types are shown in Table 1:

表1 細胞激素 中文名稱 IL-10 介白素-10 IFN-γ 干擾素-γ IL-6 介白素-6 TNF-α 組織壞死因子α IL-8 介白素-8 IP-10 干擾素伽瑪誘導的10千道爾頓蛋白 MCP-1 單核細胞趨化因子蛋白1 IL-4 介白素-4 MIP-1β 巨噬細胞發炎蛋白-1β IFN-α 干擾素-α RANTES 趨化因子配體5 GM-CSF 顆粒單核球群落刺激生長因子 IL-15 介白素-15 VEGF 血管內皮生長因子 IL-13 介白素-13 IL-18 介白素-18 IL-1Rα 介白素-1Rα IL-12 介白素-12 MIP-1α 巨噬細胞發炎蛋白-1α MIG 干擾素伽瑪誘導的單核球因子 IL-17 介白素-17 IL-1β 介白素-1β IL-7 介白素-7 IL-2 介白素-2 Table 1 Cytokines Chinese name IL-10 Interleukin-10 IFN-γ Interferon-γ IL-6 Interleukin-6 TNF-α Tissue necrosis factor alpha IL-8 Interleukin-8 IP-10 Interferon gamma-induced 10-kilodalton protein MCP-1 Monocyte tropism factor protein 1 IL-4 Interleukin-4 MIP-1β Macrophage inflammatory protein-1β IFN-α Interferon-α RANTES TNF-L5 GM-CSF Granular mononuclear cell colony stimulating growth factor IL-15 Interleukin-15 VEGF Vascular endothelial growth factor IL-13 Interleukin-13 IL-18 Interleukin-18 IL-1Rα IL-1Rα IL-12 Interleukin-12 MIP-1α Macrophage inflammatory protein-1α MIG Interferon gamma-induced mononuclear factor IL-17 Interleukin-17 IL-1β Interleukin-1β IL-7 Interleukin-7 IL-2 Interleukin-2

由於細胞激素以及血液標記物之數量較多,直接以機器學習之方式對大量的細胞激素數據及血液標記物數據進行訓練之效率及準確度較低,因此先將大量的細胞激素數據及血液標記物數據進行生物統計分析,找出具有顯著差異之細胞激素及血液標記物進行機器學習,可大幅提升機器學習的訓練效率以及準確度。Since there are a large number of cytokines and blood markers, the efficiency and accuracy of directly training a large amount of cytokine data and blood marker data by machine learning are low. Therefore, a large amount of cytokine data and blood marker data are first subjected to biostatistical analysis to find out cytokines and blood markers with significant differences for machine learning, which can greatly improve the training efficiency and accuracy of machine learning.

所述生物統計分析係依據是否需住院、住院≦7天以及住院>7天進行分類,在大量的細胞激素數據及血液標記物數據中找出具有顯著差異的細胞激素數據及血液標記物數據。The biostatistical analysis is classified according to whether hospitalization is required, hospitalization ≤ 7 days, and hospitalization > 7 days, and cytokine data and blood marker data with significant differences are found out from a large amount of cytokine data and blood marker data.

接著,將具有顯著差異之細胞激素數據及血液標記物數據,以主成分分析(PCA)演算法訓練模型,以獲得登革熱患者住院時間評估模型;所述主成分分析能找出數值加權平均後的最大變異數,能從許多相關性較高的變數轉化為彼此獨立的變數,並由其中選取較少且能解釋資料中大部分變異的新變數,也就是所謂的主成分,進而藉由所選之主成分用以解釋分析原始資料的綜合性指標。Then, the cytokine data and blood marker data with significant differences were trained using the principal component analysis (PCA) algorithm to obtain a dengue fever patient hospitalization time assessment model; the principal component analysis can find the maximum variance after weighted averaging of the values, and can transform many highly correlated variables into independent variables, and select fewer new variables that can explain most of the variance in the data, which are the so-called principal components, and then use the selected principal components to explain the comprehensive indicators of the original data.

最後,將待評估之細胞激素數據及血液標記物數據,利用登革熱患者住院時間評估模型進行評估,獲得登革熱患者住院時間判讀結果;由登革熱患者住院時間判讀結果,可得知待評估之登革熱患者是否需住院,抑或是需短期住院及長期住院,藉此提供醫護人員該等待評估之登革熱患者的治療及處理方式,以有效減輕醫療系統負擔,進一步使患者獲得即時及妥善之治療。Finally, the cytokine data and blood marker data to be evaluated are evaluated using the dengue fever patient hospitalization time evaluation model to obtain the dengue fever patient hospitalization time judgment result; from the dengue fever patient hospitalization time judgment result, it can be known whether the dengue fever patient to be evaluated needs hospitalization, or whether short-term or long-term hospitalization is required, thereby providing medical staff with treatment and handling methods for the dengue fever patients waiting for evaluation, so as to effectively reduce the burden on the medical system and further enable patients to receive timely and appropriate treatment.

根據本發明之另一目的,提出一種登革熱患者住院時間評估系統,其包含輸入裝置、儲存裝置、處理器及輸出裝置。其中,輸入裝置用以輸入登革病患之複數個細胞激素數據及複數個血液標記物數據,以及待評估之細胞激素數據及血液標記物數據;儲存裝置連接於輸入裝置,用以儲存複數個細胞激素數據及複數個血液標記物數據,以及待評估之細胞激素數據及血液標記物數據;輸出裝置連接於儲存裝置,用以輸出登革熱患者住院時間判讀結果;處理器連接於儲存裝置,執行複數個指令以施行下列步驟:對複數個細胞激素數據及複數個血液標記物數據進行生物統計分析,找出具有顯著差異之細胞激素數據及血液標記物數據;將具有顯著差異之細胞激素數據及血液標記物數據以主成分分析(PCA)演算法進行運算,以建立登革熱患者住院時間評估模型;依據登革熱患者住院時間評估模型,對待評估之細胞激素數據及血液標記物數據進行判讀程序以獲得登革熱患者住院時間判讀結果;藉由輸出裝置存取儲存裝置,將登革熱患者住院時間判讀結果輸出。According to another object of the present invention, a dengue fever patient hospitalization time evaluation system is provided, which includes an input device, a storage device, a processor and an output device. The input device is used to input a plurality of cytokine data and a plurality of blood marker data of dengue patients, as well as the cytokine data and blood marker data to be evaluated; the storage device is connected to the input device, and is used to store a plurality of cytokine data and a plurality of blood marker data, as well as the cytokine data and blood marker data to be evaluated; the output device is connected to the storage device, and is used to output the dengue fever patient hospitalization time evaluation result; the processor is connected to the storage device, and executes a plurality of instructions to perform the following steps: a plurality of cytokine data and a plurality of blood marker data are evaluated; The blood marker data is subjected to biostatistical analysis to find out the cytokine data and blood marker data with significant differences; the cytokine data and blood marker data with significant differences are calculated using the principal component analysis (PCA) algorithm to establish a dengue fever patient hospitalization time evaluation model; based on the dengue fever patient hospitalization time evaluation model, the cytokine data and blood marker data to be evaluated are subjected to a judgment procedure to obtain a dengue fever patient hospitalization time judgment result; the dengue fever patient hospitalization time judgment result is output by accessing the storage device through the output device.

承上所述,使用本發明之登革熱患者住院時間評估方法及其系統,藉由細胞激素數據搭配習知用於檢測登革熱之血液標記物,可快速且準確地判斷登革熱患者是否需住院,抑或是需短期住院及長期住院,以利後續醫護人員對該名患者盡快選擇相應之醫療決策,除了提高醫療資源之運用外,並可有效地對登革熱患者進行相應之治療,增加患者之存活率。As mentioned above, the dengue fever patient hospitalization time assessment method and system of the present invention can quickly and accurately determine whether the dengue fever patient needs to be hospitalized, or whether short-term or long-term hospitalization is required, by combining cytokine data with blood markers known to detect dengue fever, so that subsequent medical staff can quickly choose the corresponding medical decision for the patient. In addition to improving the use of medical resources, it can also effectively treat dengue fever patients and increase the survival rate of patients.

為利貴審查委員瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。In order to help the review committee understand the technical features, contents and advantages of the present invention and the effects that can be achieved, the present invention is described in detail as follows with the accompanying drawings and in the form of embodiments. The drawings used therein are only for illustration and auxiliary description, and may not be the true proportions and precise configurations after the implementation of the present invention. Therefore, it should not be interpreted based on the proportions and configurations of the attached drawings to limit the scope of rights of the present invention in actual implementation.

除非另有定義,本文所使用的所有術語(包括技術和科學術語)具有與本發明所屬技術領域的通常知識者通常理解的含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的含義,並且將不被解釋為理想化的或過度正式的意義,除非本文中明確地如此定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the meanings commonly understood by those of ordinary skill in the art to which the present invention belongs. It will be further understood that those terms as defined in commonly used dictionaries should be interpreted as having a meaning consistent with their meanings in the context of the relevant art and the present invention, and will not be interpreted as idealized or overly formal meanings unless expressly so defined herein.

請參閱第1圖,其係為本發明實施例之登革熱患者住院時間評估方法的流程圖。如第1圖所示,登革熱進展評估方法包含以下步驟(S1~S4):Please refer to FIG. 1, which is a flow chart of the method for assessing the hospitalization time of a dengue fever patient according to an embodiment of the present invention. As shown in FIG. 1, the method for assessing the progress of dengue fever comprises the following steps (S1-S4):

步驟S1:通過輸入裝置輸入登革病患之複數個細胞激素數據及複數個血液標記物數據,儲存於儲存裝置。Step S1: Input a plurality of cytokine data and a plurality of blood marker data of a dengue patient through an input device and store them in a storage device.

通過輸入裝置將能蒐集到的登革病患之細胞激素數據及複數個血液標記物數據輸入至系統的儲存裝置當中,這裡所述的輸入裝置並不侷限於取得細胞激素數據的流式細胞儀以及取得血液標記物數據的血液學分析儀,在醫療院所的資料庫中儲存的細胞激素數據及血液標記物數據,也可通過實體線路、儲存裝置的檔案傳送,或者通過有線或無線網路傳輸將細胞激素數據及血液標記物數據的檔案輸入至系統資料庫當中,作為模型建構的訓練資料。The cytokine data and multiple blood marker data of dengue patients that can be collected are input into the storage device of the system through the input device. The input device described here is not limited to a flow cytometer for obtaining cytokine data and a hematology analyzer for obtaining blood marker data. The cytokine data and blood marker data stored in the database of a medical institution can also be input into the system database through physical lines, files in a storage device, or files of cytokine data and blood marker data can be transmitted through a wired or wireless network to serve as training data for model construction.

其中,所述複數個細胞激素數據以及所述複數個血液標記物數據均係由患者之血液檢體中取得,且該等數據均係於該名患者具有輕症臨床表現時(即患者至醫院就醫時採檢),於7天內所取得之血液檢體中檢測而得;因此,每一位登革熱患者的血液檢體均有複數個細胞激素數據以及複數個血液標記物數據,複數個細胞激素數據具體為24個細胞激素數據(如前述表1所示),而複數個血液標記物數據則分別為凝血酶原時間、部份凝血活酶時間、白血球細胞數量、血紅蛋白濃度、血比容、血小板數量、天門冬胺酸轉胺酶濃度、丙胺酸轉胺酶濃度、血液尿素氮濃度以及血清肌酸酐濃度。The multiple cytokine data and the multiple blood marker data are all obtained from the patient's blood sample, and the data are all obtained from the blood sample obtained within 7 days when the patient has mild clinical manifestations (i.e., when the patient goes to the hospital for medical treatment); therefore, the blood sample of each dengue fever patient has multiple cytokine data and multiple blood marker data. The marker data, the multiple cytokine data are specifically 24 cytokine data (as shown in the aforementioned Table 1), and the multiple blood marker data are prothrombin time, partial thromboplastin time, white blood cell count, hemoglobin concentration, hematocrit, platelet count, aspartate aminotransferase concentration, alanine aminotransferase concentration, blood urea nitrogen concentration and serum creatinine concentration.

步驟S2:藉由處理器存取儲存裝置,對複數個細胞激素數據及複數個血液標記物數據進行生物統計分析,找出具有顯著差異之細胞激素數據及血液標記物數據,接著將具有顯著差異之細胞激素數據及血液標記物數據以主成分分析(PCA)演算法建立登革熱患者住院時間評估模型。Step S2: The processor accesses the storage device to perform biostatistical analysis on a plurality of cytokine data and a plurality of blood marker data to find out the cytokine data and blood marker data with significant differences, and then uses the principal component analysis (PCA) algorithm to establish a dengue fever patient hospitalization time evaluation model.

由於細胞激素以及血液標記物之數量較多,直接以機器學習之方式對大量的細胞激素數據及血液標記物數據進行訓練之效率及準確度較低;因此,先將大量的細胞激素數據及血液標記物數據進行生物統計分析,找出具有顯著差異之細胞激素及血液標記物進行機器學習,可大幅提升機器學習的訓練效率以及準確度。登革熱患者是否需住院,抑或是需短期住院及長期住院Due to the large number of cytokines and blood markers, the efficiency and accuracy of directly training a large amount of cytokine data and blood marker data by machine learning are low; therefore, a large amount of cytokine data and blood marker data are first subjected to biostatistical analysis to find out cytokines and blood markers with significant differences for machine learning, which can greatly improve the training efficiency and accuracy of machine learning. Whether dengue fever patients need to be hospitalized, or whether they need short-term or long-term hospitalization

請參閱表2,表2係為依據登革熱患者是否需住院,抑或是需短期住院(≦7天)及長期住院(>7天),其患者之24個細胞激素表達量(濃度,單位為pg/ml)的變化。該等數據係採用平均值±標準差進行計算,採用Spearman相關法進行數據分析,且有效p值為≦0.05;其中,表2中粗體部分之細胞激素及其數值,代表該等細胞激素與是否需住院以及住院時間長短之間存在顯著關係。Please refer to Table 2, which shows the changes in the expression of 24 cytokines (concentration, unit is pg/ml) of dengue fever patients according to whether they need hospitalization, short-term hospitalization (≤7 days) or long-term hospitalization (>7 days). The data are calculated using mean ± standard deviation, and the Spearman correlation method is used for data analysis, and the effective p value is ≤0.05; among them, the cytokines and their values in bold in Table 2 represent that there is a significant relationship between these cytokines and whether hospitalization is required and the length of hospitalization.

表2 細胞激素 (平均值 ± 標準差) 住院治療 住院時間 無需住院(NO) ≦7天 >7天 P值 相關係數 GM-CSF 11.58 ± 41.15 12.2 ± 31.59 154.72 ± 923.62 0.353 0.098 IFN- 469.1 ± 1140.41 155.92 ± 204.81 201.36 ± 397.75 0.010 -0.266 IFN-γ 170.04 ± 195.82 104.04 ± 104.95 107.18 ± 201.01 0.002 -0.312 IL-1β 29.61 ± 93.43 5.5 ± 5.16 15.95 ± 75.09 0.052 -0.203 IL-1R⍺ 55.2 ± 93.93 229.25 ± 868.71 295.97 ± 873.66 0.390 0.091 IL-2 2.4 ± 6.9 0.5 ± 0.33 3.92 ± 18.78 0.149 -0.151 IL-4 0.95 ± 2.1 1 ± 1.45 1.15 ± 4.79 0.208 -0.132 IL-6 23.88 ± 33.97 67.69 ± 167 409.04 ± 1592.78 0.000 0.488 IL-7 67.15 ± 303.71 3.53 ± 5.22 4.64 ± 8.23 0.061 -0.196 IL-8 82.62 ± 148.62 114.69 ± 301.9 218.47 ± 424.41 0.011 0.265 IL-10 51.34 ± 100.03 223.47 ± 616.01 150.53 ± 321.49 0.184 0.14 IL-12 14.03 ± 39.17 2.12 ± 2.03 8.16 ± 43.22 0.025 -0.234 IL-13 20.74 ± 54.94 18.73 ± 19.77 53.57 ± 234.37 0.209 -0.132 IL-15 34.15 ± 19.6 32.58 ± 26.08 54.16 ± 59.68 0.017 0.248 IL-17 8.28 ± 27.03 2.39 ± 2.36 12.26 ± 68.18 0.015 -0.252 IL-18 53.86 ± 65.56 207.59 ± 215.09 154.8 ± 163.13 0.004 0.298 IP-10 182895 ± 478065 52472 ± 58699 51760 ± 55731 0.521 -0.068 MCP-1 6019 ± 15290 2194 ± 3010 2749 ± 2561 0.929 -0.009 MIG 8236 ± 5231 8642 ± 6122 19068 ± 21733 0.000 0.389 MIP-1⍺ 27.2 ± 19.93 39.98 ± 59.48 87.83 ± 283.17 0.742 0.035 MIP-1β 47.67 ± 33.31 69.35 ± 97.17 90.7 ± 117.49 0.183 0.14 RANTES 12405 ± 7554 8007 ± 6458 6687 ± 6234 0.001 -0.35 TNF- 28.23 ± 18.93 45.6 ± 62.54 52.71 ± 48.6 0.032 0.223 VEGF 21.69 ± 20.36 46.96 ± 58.9 65.9 ± 122.94 0.310 0.107 Table 2 Cytokine (mean ± SD) Hospitalization Length of hospital stay No hospitalization required (NO) ≦7 days >7 days P-value Correlation coefficient GM-CSF 11.58 ± 41.15 12.2 ± 31.59 154.72 ± 923.62 0.353 0.098 IFN- 469.1 ± 1140.41 155.92 ± 204.81 201.36 ± 397.75 0.010 -0.266 IFN-γ 170.04 ± 195.82 104.04 ± 104.95 107.18 ± 201.01 0.002 -0.312 IL-1β 29.61 ± 93.43 5.5 ± 5.16 15.95 ± 75.09 0.052 -0.203 IL-1R⍺ 55.2 ± 93.93 229.25 ± 868.71 295.97 ± 873.66 0.390 0.091 IL-2 2.4 ± 6.9 0.5 ± 0.33 3.92 ± 18.78 0.149 -0.151 IL-4 0.95 ± 2.1 1 ± 1.45 1.15 ± 4.79 0.208 -0.132 IL-6 23.88 ± 33.97 67.69 ± 167 409.04 ± 1592.78 0.000 0.488 IL-7 67.15 ± 303.71 3.53 ± 5.22 4.64 ± 8.23 0.061 -0.196 IL-8 82.62 ± 148.62 114.69 ± 301.9 218.47 ± 424.41 0.011 0.265 IL-10 51.34 ± 100.03 223.47 ± 616.01 150.53 ± 321.49 0.184 0.14 IL-12 14.03 ± 39.17 2.12 ± 2.03 8.16 ± 43.22 0.025 -0.234 IL-13 20.74 ± 54.94 18.73 ± 19.77 53.57 ± 234.37 0.209 -0.132 IL-15 34.15 ± 19.6 32.58 ± 26.08 54.16 ± 59.68 0.017 0.248 IL-17 8.28 ± 27.03 2.39 ± 2.36 12.26 ± 68.18 0.015 -0.252 IL-18 53.86 ± 65.56 207.59 ± 215.09 154.8 ± 163.13 0.004 0.298 IP-10 182895 ± 478065 52472 ± 58699 51760 ± 55731 0.521 -0.068 MCP-1 6019 ± 15290 2194 ± 3010 2749 ± 2561 0.929 -0.009 MIG 8236 ± 5231 8642 ± 6122 19068 ± 21733 0.000 0.389 MIP-1⍺ 27.2 ± 19.93 39.98 ± 59.48 87.83 ± 283.17 0.742 0.035 MIP-1β 47.67 ± 33.31 69.35 ± 97.17 90.7 ± 117.49 0.183 0.14 RANTES 12405 ± 7554 8007 ± 6458 6687 ± 6234 0.001 -0.35 TNF- 28.23 ± 18.93 45.6 ± 62.54 52.71 ± 48.6 0.032 0.223 VEGF 21.69 ± 20.36 46.96 ± 58.9 65.9 ± 122.94 0.310 0.107

由表2中可看出,不同細胞激素之表達量,於是否需住院以及住院時間長短均有所不同,且依據是否需住院以及住院時間長短,部分細胞激素表達量明顯上調抑或是下調。As can be seen from Table 2, the expression levels of different cytokines vary depending on whether hospitalization is required and the length of hospitalization. In addition, depending on whether hospitalization is required and the length of hospitalization, the expression levels of some cytokines are significantly upregulated or downregulated.

另再參閱表3,表3係為依據登革熱患者是否需住院,抑或是需短期住院(≦7天)及長期住院(>7天),其患者之血液標記物的變化。該等數據係採用平均值±標準差進行計算,採用Spearman相關法進行數據分析,且有效p值為≦0.05;其中,表3中粗體部分之血液標記物及其數值,代表該等血液標記物與是否需住院以及住院時間長短之間存在顯著關係。Please refer to Table 3, which shows the changes in blood markers of dengue patients according to whether they need hospitalization, short-term hospitalization (≤7 days) or long-term hospitalization (>7 days). The data are calculated using mean ± standard deviation, and the Spearman correlation method is used for data analysis, and the effective p value is ≤0.05; among them, the blood markers and their values in bold in Table 3 represent that there is a significant relationship between these blood markers and whether hospitalization is required and the length of hospitalization.

表3 血液標記物 (平均值 ± 標準差) 正常參考值 住院治療 住院時間 無需住院(NO) ≦7天 >7天 P值 相關係數 凝血試驗 凝血酶原時間 (seconds) 11.5~14.5 13 ± 1.6 12.1 ± 1.4 63.1 ± 196.8 0.002 0.477 部份凝血活酶時間(seconds) 28.6~38.2 41.6 ± 2.1 48.1 ± 8.6 47.7 ± 11.4 0.166 0.226 全血細胞計數 白血球細胞數量 (10 6/L) 3800~10400 4700 ± 1818 5661 ± 4548 6798 ± 3986 0.005 0.291 血紅蛋白濃度(g/dL) 男:13.6~16.9 女:11.9~14.8 13.7 ± 1.6 13.6 ± 1.6 12.8 ± 3.0 0.169 -0.149 血比容(%) 男:40~50 女:35~43 41.4 ± 5.9 41.1 ± 4.9 42.6 ± 24.9 0.345 -0.118 血小板數量 (10 9/L) 男:152~324 女:153~361 139 ± 49 91 ± 70 83 ± 98 0.001 -0.342 肝腎功能 天門冬胺酸轉胺酶濃度 (U/L) 10~40 45 ± 17 155 ± 157 841 ± 2190 0.000 0.581 丙胺酸轉胺酶濃度 (U/L) 10~40 25 ± 24 79 ± 106 224 ± 563 0.000 0.454 血液尿素氮濃度(mg/dL) 8~20 21 ± 10 43 ± 44 29 ± 21 0.528 0.116 血清肌酸酐濃度(mg/dL) 男:0.5~1.1 女:0.7~1.3 1.0 ± 0.4 1.6 ± 2.4 1.5 ± 1.2 0.102 0.192 Table 3 Blood markers (mean ± SD) Normal reference value Hospitalization Length of hospital stay No hospitalization required (NO) ≦7 days >7 days P-value Correlation coefficient Coagulation test Prothrombin time (seconds) 11.5~14.5 13 ± 1.6 12.1 ± 1.4 63.1 ± 196.8 0.002 0.477 Partial thromboplastin time (seconds) 28.6~38.2 41.6 ± 2.1 48.1 ± 8.6 47.7 ± 11.4 0.166 0.226 Complete blood count White blood cell count (10 6 /L) 3800~10400 4700 ± 1818 5661 ± 4548 6798 ± 3986 0.005 0.291 Hemoglobin concentration (g/dL) Male: 13.6~16.9 Female: 11.9~14.8 13.7 ± 1.6 13.6 ± 1.6 12.8 ± 3.0 0.169 -0.149 Hematocrit (%) Male: 40~50 Female: 35~43 41.4 ± 5.9 41.1 ± 4.9 42.6 ± 24.9 0.345 -0.118 Platelet count (10 9 /L) Male: 152~324 Female: 153~361 139 ± 49 91 ± 70 83 ± 98 0.001 -0.342 Liver and kidney function Aspartate aminotransferase concentration (U/L) 10~40 45 ± 17 155 ± 157 841 ± 2190 0.000 0.581 Alanine transaminase concentration (U/L) 10~40 25 ± 24 79 ± 106 224 ± 563 0.000 0.454 Blood urea nitrogen concentration (mg/dL) 8~20 21 ± 10 43 ± 44 29 ± 21 0.528 0.116 Serum creatinine concentration (mg/dL) Male: 0.5~1.1 Female: 0.7~1.3 1.0 ± 0.4 1.6 ± 2.4 1.5 ± 1.2 0.102 0.192

接著,一併參閱第2A圖及第2B圖,其依序為本發明實施例之不同細胞激素表達量及不同血液標記物表達量,於是否需住院抑或是需短期住院(≦7天)及長期住院(>7天)之熱圖(hot map)。由圖中可看出,不同細胞激素表達量及不同血液標記物表達量,於是否需住院、短期住院及長期住院下均有所不同;舉例而言,IP-10於無需住院之患者上,其表達量相較於未感染登革熱之健康受試者有上調的傾向(紅色部分),而IP-10於需住院之患者上,其表達量相較於未感染登革熱之健康受試者有下調的傾向(藍色部分)。Next, refer to Figure 2A and Figure 2B, which are heat maps of the expression of different cytokines and different blood markers in accordance with the embodiments of the present invention, in terms of whether hospitalization is required, short-term hospitalization (≤7 days), or long-term hospitalization (>7 days). As can be seen from the figure, the expression of different cytokines and different blood markers are different depending on whether hospitalization is required, short-term hospitalization, or long-term hospitalization; for example, the expression of IP-10 in patients who do not need hospitalization tends to be upregulated compared to healthy subjects who are not infected with dengue fever (red part), while the expression of IP-10 in patients who need hospitalization tends to be downregulated compared to healthy subjects who are not infected with dengue fever (blue part).

由上述細胞激素以及血液標記物之表達量變化可知,不同細胞激素以及不同血液標記物之變化於是否需住院、短期住院及長期住院下均有所差異。接著,再進一步以ROC分析法對細胞激素及血液標記物進行分析,依序如表4及表5所示;在表4及表5中,粗體之數值表示經ROC分析後,其所得之曲線下面積(AUC)具有臨床意義(p≦0.05),即表達量具有顯著變化,而帶有上箭頭之數值表示其值越高陽性率越高,反之帶有下箭頭之數值表示其值越低陽性率越高。此外,表中所述無需住院對比需住院之部分,其需住院係包含短期住院及長期住院;而短期住院對比長期住院之部分,其短期住院係包含無需住院及住院≦7天。From the above changes in the expression of cytokines and blood markers, it can be seen that the changes of different cytokines and different blood markers are different when hospitalization is required, short-term hospitalization, and long-term hospitalization. Then, the cytokines and blood markers were further analyzed by ROC analysis, as shown in Table 4 and Table 5. In Table 4 and Table 5, the values in bold indicate that after ROC analysis, the area under the curve (AUC) obtained has clinical significance (p≦0.05), that is, the expression has a significant change, and the value with an upward arrow indicates that the higher the value, the higher the positive rate, and conversely, the value with a downward arrow indicates that the lower the value, the higher the positive rate. In addition, in the table, the comparison between no hospitalization and hospitalization required includes short-term hospitalization and long-term hospitalization; and in the comparison between short-term hospitalization and long-term hospitalization, short-term hospitalization includes no hospitalization and hospitalization ≤ 7 days.

表4 細胞激素 無需住院 vs 需住院 短期住院(≦7天) vs 長期住院(>7天) GM-CSF 0.562 0.484 IFN-⍺ 0.689 0.543 IFN-γ 0.656 0.589 IL-1β 0.441 0.623 IL-1R⍺ 0.564 0.474 IL-2 0.432 0.522 IL-4 0.524 0.688 IL-6 0.703 0.746 IL-7 0.653 0.488 IL-8 0.608 0.398 IL-10 0.656 0.553 IL-12 0.414 0.594 IL-13 0.496 0.606 IL-15 0.559 0.663 IL-17 0.621 0.589 IL-18 0.793 0.586 IP-10 0.48 0.518 MCP-1 0.427 0.39 MIG 0.66 0.716 MIP-1⍺ 0.524 0.477 MIP-1β 0.563 0.43 RANTES 0.731 0.581 TNF-⍺ 0.638 0.404 VEGF 0.564 0.506 Table 4 Cytokines No hospitalization required vs. hospitalization required Short-term hospitalization (≤7 days) vs long-term hospitalization (>7 days) GM-CSF 0.562 0.484 IFN-⍺ 0.689 0.543 IFN-γ 0.656 0.589 IL-1β 0.441 0.623 IL-1R⍺ 0.564 0.474 IL-2 0.432 0.522 IL-4 0.524 0.688 IL-6 0.703 0.746 IL-7 0.653 0.488 IL-8 0.608 0.398 IL-10 0.656 0.553 IL-12 0.414 0.594 IL-13 0.496 0.606 IL-15 0.559 0.663 IL-17 0.621 0.589 IL-18 0.793 0.586 IP-10 0.48 0.518 MCP-1 0.427 0.39 MIG 0.66 0.716 MIP-1⍺ 0.524 0.477 MIP-1β 0.563 0.43 RANTES 0.731 0.581 TNF-⍺ 0.638 0.404 VEGF 0.564 0.506

表5 血液標記物 無需住院 vs 需住院 短期住院(≦7天) vs 長期住院(>7天) 白血球細胞數量(WBC) 0.59 0.606 血紅蛋白濃度(Hb) 0.384↓ 0.423 血比容(Hct) 0.562 0.481 血小板數量(Platelet) 0.767 0.426 天門冬胺酸轉胺酶濃度(AST) 0.59 0.565 丙胺酸轉胺酶濃度(GPT) 0.709 0.658 血液尿素氮濃度(BUN) 0.642 0.579 血清肌酸酐濃度(Cr) 0.623 0.645 凝血酶原時間(PT) 0.628 0.546 部份凝血活酶時間(aPTT) 0.586 0.508 Table 5 Blood markers No hospitalization required vs. hospitalization required Short-term hospitalization (≤7 days) vs long-term hospitalization (>7 days) White blood cell count (WBC) 0.59 0.606 Hemoglobin concentration (Hb) 0.384↓ 0.423 Hematocrit (Hct) 0.562 0.481 Platelet count 0.767 0.426 Aspartate transaminase concentration (AST) 0.59 0.565 Alanine transaminase concentration (GPT) 0.709 0.658 Blood urea nitrogen concentration (BUN) 0.642 0.579 Serum creatinine concentration (Cr) 0.623 0.645 Prothrombin time (PT) 0.628 0.546 Partial thromboplastin time (aPTT) 0.586 0.508

由表4及表5中可看出,經ROC分析後,該等細胞激素中,IL-6及MIG在是否需住院、短期住院及長期住院下之表達量均有顯著差異;而該等血液標記物中,丙胺酸轉胺酶及血清肌酸酐除在是否需住院、短期住院及長期住院下之表達量較具有顯著差異外,其曲線下面積(AUC)值也相較於其他血液標記物高;因此,將該等較具有顯著差異之2個細胞激素及2個血液標記物之數據,作為後續主成分分析(PCA)演算法之參數,用以建立登革熱患者住院時間評估模型。As can be seen from Tables 4 and 5, after ROC analysis, among the cytokines, the expression levels of IL-6 and MIG were significantly different under the conditions of hospitalization, short-term hospitalization, and long-term hospitalization; and among the blood markers, in addition to the significant differences in the expression levels of alanine aminotransferase and serum creatinine under the conditions of hospitalization, short-term hospitalization, and long-term hospitalization, their area under the curve (AUC) values were also higher than those of other blood markers; therefore, the data of the two cytokines and two blood markers with significant differences were used as parameters of the subsequent principal component analysis (PCA) algorithm to establish a dengue fever patient hospitalization time evaluation model.

接著,由上述較具有顯著差異之2個細胞激素(IL-6及MIG)及2個血液標記物(丙胺酸轉胺酶及血清肌酸酐)之數據中,以該兩者細胞激素或該兩者血液標記物作為主成分分析演算法之參數,抑或是該兩者細胞激素搭配該兩者血液標記物作為主成分分析演算法之參數,分別建立登革熱患者住院時間評估模型;該等登革熱患者住院時間評估模型所用之參數組合如表6所示。Next, from the data of the two cytokines (IL-6 and MIG) and two blood markers (alanine transaminase and serum creatinine) with significant differences, the two cytokines or the two blood markers were used as parameters of the principal component analysis algorithm, or the two cytokines combined with the two blood markers were used as parameters of the principal component analysis algorithm to establish dengue fever patient hospitalization time evaluation models respectively; the parameter combinations used in the dengue fever patient hospitalization time evaluation models are shown in Table 6.

表6 PCA演算法 參數種類 2個參數 IL-6, MIG 2個參數 creatinine, GPT 4個參數 creatinine, GPT, IL-6, MIG Table 6 PCA algorithm Parameter Type 2 parameters IL-6, MIG 2 parameters creatinine, GPT 4 parameters creatinine, GPT, IL-6, MIG

步驟S3:通過輸入裝置取得待評估之細胞激素數據及血液標記物數據,以處理器進行判讀程序獲得登革熱患者住院時間判讀結果。Step S3: Obtain the cytokine data and blood marker data to be evaluated through the input device, and use the processor to perform an interpretation process to obtain the dengue fever patient's hospitalization time interpretation result.

藉由上述步驟S2,依據不同具有顯著差異表達之細胞激素或血液標記物作為參數,抑或是該等具有顯著差異表達之細胞激素及血液標記物作為參數(請參閱表6),經主成分分析演算法所建立之登革熱患者住院時間評估模型,將待評估之細胞激素數據及血液標記物數據利用該模型進行評估,獲得登革熱進展判讀結果,其結果如表7所示;此外,表中所述無需住院對比需住院之部分,其需住院係包含短期住院及長期住院;而短期住院對比長期住院之部分,其短期住院係包含無需住院及住院≦7天。Through the above step S2, according to different cytokines or blood markers with significant differential expression as parameters, or the cytokines and blood markers with significant differential expression as parameters (see Table 6), the dengue fever patient hospitalization time evaluation model established by the principal component analysis algorithm is used to evaluate the cytokine data and blood marker data to be evaluated using the model to obtain the dengue fever progression interpretation results, and the results are shown in Table 7; in addition, in the table, the part of no need for hospitalization versus need for hospitalization, the need for hospitalization includes short-term hospitalization and long-term hospitalization; and in the part of short-term hospitalization versus long-term hospitalization, the short-term hospitalization includes no need for hospitalization and hospitalization ≤ 7 days.

表7 預測準確率 評估模型 無需住院 vs 需住院 短期住院(≦7天) vs 長期住院(>7天) 2個參數 (IL-6, MIG) 71% 71% 2個參數 (creatinine, GPT) 66% 59% 4個參數 (creatinine, GPT, IL-6, MIG) 96% 94% Table 7 Prediction Accuracy Evaluation Model No hospitalization required vs. hospitalization required Short-term hospitalization (≤7 days) vs long-term hospitalization (>7 days) 2 parameters (IL-6, MIG) 71% 71% 2 parameters (creatinine, GPT) 66% 59% 4 parameters (creatinine, GPT, IL-6, MIG) 96% 94%

由表7中可看出,使用IL-6及MIG作為參數建立之登革熱患者住院時間評估模型,於是否需住院、短期住院及長期住院之預測準確率均為71%;而使用丙胺酸轉胺酶(GPT)及血清肌酸酐(creatinine)作為參數建立之登革熱患者住院時間評估模型,其於是否需住院、短期住院及長期住院之預測準確率依序為66%及59%;另當將IL-6、MIG、丙胺酸轉胺酶及血清肌酸酐四者作為參數建立登革熱患者住院時間評估模型時,於是否需住院、短期住院及長期住院之預測準確率依序為94%及94%,均相較於單獨使用2個細胞激素或單獨使用2個血液標記物作為參數之預測準確率有顯著提升。As can be seen from Table 7, the dengue fever patient hospitalization time assessment model established using IL-6 and MIG as parameters has a prediction accuracy of 71% for whether hospitalization is required, short-term hospitalization, and long-term hospitalization; and the dengue fever patient hospitalization time assessment model established using alanine aminotransferase (GPT) and serum creatinine (creatinine) as parameters has a prediction accuracy of 66% and 59% for whether hospitalization is required, short-term hospitalization, and long-term hospitalization, respectively; and when IL-6, MIG, alanine aminotransferase, and serum creatinine are used as parameters to establish the dengue fever patient hospitalization time assessment model, the prediction accuracy for whether hospitalization is required, short-term hospitalization, and long-term hospitalization is 94% and 94%, respectively, which are significantly improved compared to the prediction accuracy of using only two cytokines or only two blood markers as parameters.

因此,使用IL-6、MIG、丙胺酸轉胺酶及血清肌酸酐等四者作為參數建立登革熱患者住院時間評估模型時,具有極高的預測準確率,其準確率均高達九成以上。Therefore, when IL-6, MIG, alanine transaminase and serum creatinine are used as parameters to establish a dengue fever patient hospitalization time assessment model, it has an extremely high prediction accuracy of more than 90%.

步驟S4:藉由輸出裝置存取儲存裝置,將登革熱患者住院時間判讀結果輸出。Step S4: The output device accesses the storage device to output the dengue fever patient's hospitalization time interpretation result.

經過上述步驟S3獲得之登革熱患者住院時間判讀結果,可進一步通過輸出裝置將其輸出。本實施例所揭露的輸出裝置可包含各種顯示介面,例如電腦螢幕、顯示器或手持裝置顯示器等。The dengue fever patient hospitalization time interpretation result obtained in the above step S3 can be further outputted through an output device. The output device disclosed in this embodiment can include various display interfaces, such as a computer screen, a display, or a handheld device display.

最後,請參閱第3圖,其係為本發明實施例之登革熱患者住院時間評估系統的示意圖。如第3圖所示,登革熱患者住院時間評估系統20可包含輸入裝置21、儲存裝置22、處理器23及輸出裝置24。Finally, please refer to FIG. 3, which is a schematic diagram of a dengue fever patient hospitalization time evaluation system according to an embodiment of the present invention. As shown in FIG. 3, the dengue fever patient hospitalization time evaluation system 20 may include an input device 21, a storage device 22, a processor 23, and an output device 24.

在本實施例中,輸入裝置21可為取得細胞激素數據的流式細胞儀以及取得血液標記物數據的血液學分析儀,該等數據均係由患者之血液檢體中取得。在另一實施例中,輸入裝置21不限於流式細胞儀及血液學分析儀,輸入裝置21可包含個人電腦、智慧型手機、伺服器等電子裝置的輸入界面,包含觸控螢幕、鍵盤、滑鼠等,透過檔案方式傳送細胞激素數據及血液標記物數據;抑或是將歷史資料透過無線網路傳輸、無線通訊傳輸或一般有線網際網路上傳到儲存裝置22當中的記憶體儲存,記憶體可包含唯讀記憶體、快閃記憶體、磁碟或是雲端資料庫等。In this embodiment, the input device 21 can be a flow cytometer for obtaining cytokine data and a hematology analyzer for obtaining blood marker data, both of which are obtained from a patient's blood sample. In another embodiment, the input device 21 is not limited to flow cytometers and hematology analyzers. The input device 21 may include input interfaces of electronic devices such as personal computers, smart phones, servers, etc., including touch screens, keyboards, mice, etc., to transmit cytokine data and blood marker data in file form; or upload historical data to the memory storage in the storage device 22 via wireless network transmission, wireless communication transmission or general wired Internet. The memory may include read-only memory, flash memory, disk or cloud database, etc.

其次,登革熱進展評估系統20通過處理器23來存取儲存裝置22,處理器23可包含電腦或伺服器當中的中央處理器、圖像處理器、微處理器等,其可包含多核心的處理單元或者是多個處理單元的組合。處理器23執行指令來存取儲存裝置22中的登革病患之複數個細胞激素數據及複數個血液標記物數據進行訓練程序,並存取待評估之細胞激素數據及血液標記物數據來進行判讀程序。詳細來說,訓練程序是將原本儲存裝置22當中的登革病患之複數個細胞激素數據及複數個血液標記物數據,對該等數據進行生物統計分析,找出具有顯著差異之細胞激素數據及血液標記物數據,將具有顯著差異之細胞激素數據及血液標記物數據,以主成分分析(PCA)演算法進行運算,以建立登革熱患者住院時間評估模型。Secondly, the dengue fever progress assessment system 20 accesses the storage device 22 through the processor 23. The processor 23 may include a central processing unit, an image processor, a microprocessor, etc. in a computer or server, and may include a multi-core processing unit or a combination of multiple processing units. The processor 23 executes instructions to access multiple cytokine data and multiple blood marker data of dengue patients in the storage device 22 for training procedures, and accesses the cytokine data and blood marker data to be evaluated for interpretation procedures. Specifically, the training procedure is to perform biostatistical analysis on a plurality of cytokine data and a plurality of blood marker data of dengue patients originally stored in the storage device 22, find out the cytokine data and blood marker data with significant differences, and calculate the cytokine data and blood marker data with significant differences using the principal component analysis (PCA) algorithm to establish a dengue patient hospitalization time assessment model.

接著,待評估之細胞激素數據及血液標記物數據藉由判讀程序,通過所建立之登革熱患者住院時間模型進行演算後,依據是否需住院、短期住院(≦7天)及長期住院(>7)進行分類,獲得登革熱患者住院時間判讀結果;輸出裝置24存取儲存裝置22將登革熱患者住院時間判讀結果輸出,輸出裝置24可包含各種顯示介面,例如電腦螢幕、顯示器或手持裝置顯示器等。Next, the cytokine data and blood marker data to be evaluated are calculated through the established dengue fever patient hospitalization time model through the interpretation program, and are classified according to whether hospitalization is required, short-term hospitalization (≤7 days) and long-term hospitalization (>7), to obtain the dengue fever patient hospitalization time interpretation result; the output device 24 accesses the storage device 22 to output the dengue fever patient hospitalization time interpretation result, and the output device 24 can include various display interfaces, such as a computer screen, a display or a handheld device display.

經由上述登革熱患者住院時間評估方法及其系統,藉由細胞激素數據搭配習知用於檢測登革熱之血液標記物,可快速且準確地判斷登革熱患者是否需住院,抑或是需短期住院及長期住院,其評估準確率可達九成以上,以利後續醫護人員對該名患者盡快選擇相應之醫療決策,除了提高醫療資源之運用外,並可有效地對登革熱患者進行相應之治療,增加患者之存活率。Through the above-mentioned dengue fever patient hospitalization time assessment method and system, by combining cytokine data with blood markers known to detect dengue fever, it is possible to quickly and accurately determine whether a dengue fever patient needs hospitalization, or whether short-term or long-term hospitalization is required. The assessment accuracy rate can reach more than 90%, so that subsequent medical staff can choose the corresponding medical decision for the patient as soon as possible. In addition to improving the use of medical resources, it can also effectively provide corresponding treatment for dengue fever patients and increase the survival rate of patients.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。The above description is for illustrative purposes only and is not intended to be limiting. Any equivalent modifications or changes made to the invention without departing from the spirit and scope of the invention shall be included in the scope of the attached patent application.

20:登革熱患者住院時間評估系統 21:輸入裝置 22:儲存裝置 23:處理器 24:輸出裝置 S1~S4:步驟 20: Dengue fever patient hospitalization time assessment system 21: Input device 22: Storage device 23: Processor 24: Output device S1~S4: Steps

為使本發明之技術特徵、內容與優點及其所能達成之功效更為顯而易見,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下:In order to make the technical features, contents and advantages of the present invention and the effects that can be achieved more obvious, the present invention is described in detail as follows with reference to the accompanying drawings and in the form of embodiments:

第1圖係為本發明實施例之登革熱患者住院時間評估方法的流程圖; 第2A圖、第2B圖係依序為本發明實施例之不同細胞激素表達量及不同血液標記物表達量,於是否需住院抑或是需短期住院(≦7天)及長期住院(>7天)之熱圖(hot map); 第3圖係為本發明實施例之登革熱患者住院時間評估系統的示意圖。 Figure 1 is a flow chart of the dengue fever patient hospitalization time assessment method of the present invention; Figure 2A and Figure 2B are heat maps of different cytokine expression levels and different blood marker expression levels of the present invention, respectively, for whether hospitalization is required or short-term hospitalization (≦7 days) and long-term hospitalization (>7 days); Figure 3 is a schematic diagram of the dengue fever patient hospitalization time assessment system of the present invention.

S1~S4:步驟 S1~S4: Steps

Claims (7)

一種登革熱患者住院時間評估方法,其包含下列步驟:步驟S1:通過一輸入裝置輸入登革病患之複數個細胞激素數據及複數個血液標記物數據,儲存於一儲存裝置;步驟S2:藉由一處理器存取該儲存裝置,對該複數個細胞激素數據及該複數個血液標記物數據進行一生物統計分析,找出具有顯著差異之細胞激素數據及血液標記物數據,接著將該具有顯著差異之細胞激素數據及血液標記物數據以一主成分分析(PCA)演算法建立一登革熱患者住院時間評估模型;步驟S3:通過該輸入裝置取得待評估之細胞激素數據及血液標記物數據,以該處理器進行一判讀程序獲得一登革熱患者住院時間判讀結果;以及步驟S4:藉由一輸出裝置存取該儲存裝置,將該登革熱患者住院時間判讀結果輸出,其中該複數個細胞激素數據選自IL-10、IFN-γ、IL-6、TNF-α、IL-8、IP-10、MCP-1、IL-4、MIP-1β、IFN-α、RANTES、GM-CSF、IL-15、VEGF、IL-13、IL-18、IL-1Rα、IL-12、MIP-1α、MIG、IL-17、IL-1β、IL-7以及IL-2;該複數個血液標記物數據選自凝血酶原時間、部份凝血活酶時間、白血球細胞數量、血紅蛋白濃度、血比容、血小板數量、天門冬胺酸轉胺酶濃度、丙胺酸轉胺酶濃度、血液尿素氮濃度以及血清肌酸酐濃度;該登革熱患者住院時間係以是否需住院、短期住院(≦7天)及長期住院(>7)進行分類;以及 步驟S1至步驟S4均係由電腦軟體所完成。 A method for evaluating the hospitalization time of a dengue patient comprises the following steps: Step S1: inputting a plurality of cytokine data and a plurality of blood marker data of a dengue patient through an input device and storing them in a storage device; Step S2: accessing the storage device through a processor, performing a biostatistical analysis on the plurality of cytokine data and the plurality of blood marker data, finding out the cytokine data and the blood marker data with significant differences, and then storing the cytokine data and the blood marker data with significant differences in the storage device; A dengue fever patient hospitalization time evaluation model is established using a principal component analysis (PCA) algorithm for the cytokine data and blood marker data with significant differences; step S3: obtaining the cytokine data and blood marker data to be evaluated through the input device, and performing a judgment process with the processor to obtain a dengue fever patient hospitalization time judgment result; and step S4: accessing the storage device through an output device, and outputting the dengue fever patient hospitalization time judgment result, wherein The plurality of cytokine data are selected from IL-10, IFN-γ, IL-6, TNF-α, IL-8, IP-10, MCP-1, IL-4, MIP-1β, IFN-α, RANTES, GM-CSF, IL-15, VEGF, IL-13, IL-18, IL-1Rα, IL-12, MIP-1α, MIG, IL-17, IL-1β, IL-7 and IL-2; The plurality of blood marker data are selected from prothrombin time, partial thromboplastin time, white blood cell count, hemoglobin concentration, hematocrit, platelet count, aspartate aminotransferase concentration, alanine aminotransferase concentration, blood urea nitrogen concentration and serum creatinine concentration; the hospitalization time of the dengue fever patient is classified according to whether hospitalization is required, short-term hospitalization (≤7 days) and long-term hospitalization (>7); and steps S1 to S4 are all completed by computer software. 如請求項1所述之登革熱患者住院時間評估方法,其中該輸入裝置包含流式細胞儀及血液學分析儀。 A method for assessing hospitalization time of dengue fever patients as described in claim 1, wherein the input device comprises a flow cytometer and a hematology analyzer. 如請求項1所述之登革熱患者住院時間評估方法,其中該生物統計分析係利用Spearman相關法進行分析。 The method for evaluating the hospitalization time of dengue fever patients as described in claim 1, wherein the biostatistical analysis is performed using the Spearman correlation method. 如請求項1所述之登革熱患者住院時間評估方法,其中該具有顯著差異之細胞激素數據選自IL-6及MIG;以及該具有顯著差異之血液標記物數據選自丙胺酸轉胺酶以及血清肌酸酐。 The method for evaluating the hospitalization time of dengue fever patients as described in claim 1, wherein the cytokine data with significant differences are selected from IL-6 and MIG; and the blood marker data with significant differences are selected from alanine aminotransferase and serum creatinine. 一種登革熱患者住院時間評估系統,其包含:一輸入裝置,係用以輸入登革病患之複數個細胞激素數據及複數個血液標記物數據,以及待評估之細胞激素數據及血液標記物數據;一儲存裝置,連接於該輸入裝置,係用以儲存該複數個細胞激素數據及該複數個血液標記物數據,以及該待評估之細胞激素數據及血液標記物數據;一輸出裝置,連接於該儲存裝置,係用以輸出一登革熱患者住院時間判讀結果;以及一處理器,連接於該儲存裝置,執行複數個指令以施行下列步驟:對登革病患之複數個細胞激素數據及複數個血液標記物數據進行一生物統計分析,找出具有顯著差異之細胞激素數據及血液標記物數據; 將該具有顯著差異之細胞激素數據及血液標記物數據以一主成分分析(PCA)演算法進行運算,以建立一登革熱患者住院時間評估模型;依據該登革熱患者住院時間評估模型,對該待評估之細胞激素數據及血液標記物數據進行一判讀程序以獲得一登革熱患者住院時間判讀結果;以及藉由該輸出裝置存取該儲存裝置,將該登革熱患者住院時間判讀結果輸出,其中該複數個細胞激素數據選自IL-10、IFN-γ、IL-6、TNF-α、IL-8、IP-10、MCP-1、IL-4、MIP-1β、IFN-α、RANTES、GM-CSF、IL-15、VEGF、IL-13、IL-18、IL-1Rα、IL-12、MIP-1α、MIG、IL-17、IL-1β、IL-7以及IL-2;該複數個血液標記物數據選自凝血酶原時間、部份凝血活酶時間、白血球細胞數量、血紅蛋白濃度、血比容、血小板數量、天門冬胺酸轉胺酶濃度、丙胺酸轉胺酶濃度、血液尿素氮濃度以及血清肌酸酐濃度;以及該登革熱患者住院時間係以是否需住院、短期住院(≦7天)及長期住院(>7)進行分類。 A dengue fever patient hospitalization time evaluation system comprises: an input device for inputting a plurality of cytokine data and a plurality of blood marker data of a dengue patient, as well as the cytokine data and blood marker data to be evaluated; a storage device connected to the input device for storing the plurality of cytokine data and the plurality of blood marker data, as well as the cytokine data and blood marker data to be evaluated; an output device connected to the storage device for outputting a dengue fever patient hospitalization time evaluation result; and a processor connected to the storage device, executing a plurality of instructions to perform the following steps: performing a biostatistical analysis on a plurality of cytokine data and a plurality of blood marker data of dengue patients to find out cytokine data and blood marker data with significant differences; performing a principal component analysis (PCA) algorithm on the cytokine data and blood marker data with significant differences to establish a dengue patient hospitalization time evaluation model; based on the dengue patient hospitalization time evaluation model, the cytokine data to be evaluated The invention relates to a method for performing an interpretation process on the dengue fever patient's hospitalization time interpretation result by using the blood marker data and the blood marker data; and accessing the storage device through the output device to output the dengue fever patient's hospitalization time interpretation result, wherein the plurality of cytokine data are selected from IL-10, IFN-γ, IL-6, TNF-α, IL-8, IP-10, MCP-1, IL-4, MIP-1β, IFN-α, RANTES, GM-CSF, IL-15, VEGF, IL-13, IL-18, IL -1Rα, IL-12, MIP-1α, MIG, IL-17, IL-1β, IL-7 and IL-2; the plurality of blood marker data are selected from prothrombin time, partial thromboplastin time, white blood cell count, hemoglobin concentration, hematocrit, platelet count, aspartate aminotransferase concentration, alanine aminotransferase concentration, blood urea nitrogen concentration and serum creatinine concentration; and the dengue fever patient's hospitalization time is classified according to whether hospitalization is required, short-term hospitalization (≤7 days) and long-term hospitalization (>7). 如請求項5所述之登革熱患者住院時間評估系統,其中該輸入裝置包含流式細胞儀及血液學分析儀。 A dengue fever patient hospitalization time assessment system as described in claim 5, wherein the input device includes a flow cytometer and a hematology analyzer. 如請求項5所述之登革熱患者住院時間評估系統,其中該輸出裝置包含電腦螢幕、顯示器或手持裝置顯示器。 A dengue fever patient hospitalization time assessment system as described in claim 5, wherein the output device comprises a computer screen, a display or a handheld device display.
TW113109835A 2024-03-15 2024-03-15 Method for assessing length of stay in patient with dengue fever and system thereof TWI870263B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113109835A TWI870263B (en) 2024-03-15 2024-03-15 Method for assessing length of stay in patient with dengue fever and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113109835A TWI870263B (en) 2024-03-15 2024-03-15 Method for assessing length of stay in patient with dengue fever and system thereof

Publications (2)

Publication Number Publication Date
TWI870263B true TWI870263B (en) 2025-01-11
TW202538762A TW202538762A (en) 2025-10-01

Family

ID=95151853

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113109835A TWI870263B (en) 2024-03-15 2024-03-15 Method for assessing length of stay in patient with dengue fever and system thereof

Country Status (1)

Country Link
TW (1) TWI870263B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104126191A (en) * 2011-07-13 2014-10-29 多发性骨髓瘤研究基金会公司 Methods for data collection and distribution
US20210327540A1 (en) * 2018-08-17 2021-10-21 Henry M. Jackson Foundation For The Advancement Of Military Medicine Use of machine learning models for prediction of clinical outcomes
TWI750590B (en) * 2020-02-17 2021-12-21 輔英科技大學 Emergency nursing information decision making and learning assistance system
CN117648613A (en) * 2024-01-30 2024-03-05 北京神州龙芯科技有限公司 Diabetes foot ulcer prediction method and system based on artificial intelligence

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104126191A (en) * 2011-07-13 2014-10-29 多发性骨髓瘤研究基金会公司 Methods for data collection and distribution
US20210327540A1 (en) * 2018-08-17 2021-10-21 Henry M. Jackson Foundation For The Advancement Of Military Medicine Use of machine learning models for prediction of clinical outcomes
TWI750590B (en) * 2020-02-17 2021-12-21 輔英科技大學 Emergency nursing information decision making and learning assistance system
CN117648613A (en) * 2024-01-30 2024-03-05 北京神州龙芯科技有限公司 Diabetes foot ulcer prediction method and system based on artificial intelligence

Also Published As

Publication number Publication date
TW202538762A (en) 2025-10-01

Similar Documents

Publication Publication Date Title
US11521706B2 (en) Testing and representing suspicion of sepsis
Shen et al. The association between cardiovascular health and depression: results from the 2007–2020 NHANES
Gan et al. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis
US20100185399A1 (en) Method for Analyzing Clinical Trial Results for Efficacy of a Therapy
Radakovich et al. Clinically healthy overweight and obese dogs differ from lean controls in select CBC and serum biochemistry values
JP2009535644A (en) Method and apparatus for identifying disease status using biomarkers
Chen et al. Laboratory abnormalities and risk factors associated with in‐hospital death in patients with severe COVID‐19
Białas et al. Platelet distribution width as a prognostic factor in patients with COPD–pilot study
Pei et al. Lymphocyte trajectories are associated with prognosis in critically ill patients: a convenient way to monitor immune status
Moriarity et al. A physiometric investigation of inflammatory composites: Comparison of “a priori” aggregates, empirically-identified factors, and individual proteins
CN111989752A (en) Test panel for detecting sepsis
Wang et al. Inflammation‐associated factors for predicting in‐hospital mortality in patients with COVID‐19
US20230005566A1 (en) Testing and representing suspicion of sepsis
Holingue et al. Sleep duration and C-reactive protein: associations among pregnant and non-pregnant women
Strampe et al. Factors associated with progression to death in patients with Lassa fever in Nigeria: an observational study
TWI870263B (en) Method for assessing length of stay in patient with dengue fever and system thereof
De et al. Airway inflammation and lung function in sickle cell disease
TWI888054B (en) Dengue fever progression assessment method and system thereof
Ou et al. Association of estimated glomerular filtration rate with all‐cause and cardiovascular mortality: the role of malnutrition–inflammation–cachexia syndrome
Grunwell et al. Pathobiology, severity, and risk stratification of pediatric acute respiratory distress syndrome: from the second pediatric acute lung injury consensus conference
Li et al. Elevated D-dimer and adverse in-hospital outcomes in COVID-19 patients and synergism with hyperglycemia
Aldakheel et al. Clinical Assessment of Cytokine Profiles and Haematological Parameters in Patients with Systemic Lupus Erythematosus: A Cross-Sectional Study from Saudi Arabia
Zhao et al. D-DI/PLT can be a prognostic indicator for sepsis
DeCato et al. Variability in cardiopulmonary exercise testing biologic controls
Yang et al. An early prediction model for gestational diabetes mellitus created using machine learning algorithms