TWI728535B - Monitor system and method thereof - Google Patents
Monitor system and method thereof Download PDFInfo
- Publication number
- TWI728535B TWI728535B TW108139559A TW108139559A TWI728535B TW I728535 B TWI728535 B TW I728535B TW 108139559 A TW108139559 A TW 108139559A TW 108139559 A TW108139559 A TW 108139559A TW I728535 B TWI728535 B TW I728535B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- transmission mechanism
- value
- linear transmission
- characteristic value
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 17
- 230000007246 mechanism Effects 0.000 claims description 55
- 230000005540 biological transmission Effects 0.000 claims description 54
- 238000012544 monitoring process Methods 0.000 claims description 53
- 230000036316 preload Effects 0.000 claims description 39
- 238000003062 neural network model Methods 0.000 claims description 16
- 210000002364 input neuron Anatomy 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 210000002569 neuron Anatomy 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 4
- 230000002349 favourable effect Effects 0.000 abstract 1
- 230000001737 promoting effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 14
- 238000005096 rolling process Methods 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
本揭示內容係關於一種監控系統與其方法,且特別是一種應用在線性傳動機構上的監控系統與其方法。 The present disclosure relates to a monitoring system and method thereof, and in particular to a monitoring system and method applied to a linear transmission mechanism.
線性傳動機構為一種藉由鋼珠於滑塊與線性滑軌間滾動循環的機構,而鋼珠與線性滑軌之間形成一滾動介面。一般來說,滾動介面被認為是影響進給系統結構動靜態特性的關鍵位置。詳細來說,接觸介面的負載剛性與阻尼性質和鋼珠預壓等級有直接關係,接觸介面的剛性與阻尼性質將直接地影響線性傳動機構的靜態負載力與動態剛性的狀況。 The linear transmission mechanism is a mechanism in which steel balls roll and circulate between the slider and the linear slide rail, and a rolling interface is formed between the steel balls and the linear slide rail. Generally speaking, the rolling interface is considered to be the key position that affects the dynamic and static characteristics of the feed system structure. In detail, the load rigidity of the contact interface is directly related to the damping properties and the steel ball preload level. The rigidity and damping properties of the contact interface will directly affect the static load force and dynamic rigidity of the linear transmission mechanism.
然而,線性傳動機構內部滾動體或珠槽於長期運轉過程中易產生磨損現象,進而減少滾珠與線性滑軌間的干涉量而降低滾珠預壓量,影響線性傳動機構的剛性與阻尼性質。因此,可即時監控線性傳動機構的裝置是必要存在的,使用者可進而利用即時監控線性傳動機構的裝置達到即刻改善並維持線性傳動機構的效能。 However, the rolling elements or ball grooves in the linear transmission mechanism are prone to wear during long-term operation, which reduces the amount of interference between the balls and the linear slide rail and reduces the preload of the balls, which affects the rigidity and damping properties of the linear transmission mechanism. Therefore, a device that can monitor the linear transmission mechanism in real time is necessary, and the user can further use the device for real-time monitoring of the linear transmission mechanism to instantly improve and maintain the performance of the linear transmission mechanism.
本揭示內容提供一種監控系統與其方法,其係應用於線性傳動機構。藉此,可精確地監控線性傳動機構的效能,並即時提醒使用者解決線性傳動機構的異常。 The present disclosure provides a monitoring system and method thereof, which are applied to a linear transmission mechanism. Thereby, the performance of the linear transmission mechanism can be accurately monitored, and the user is immediately reminded to solve the abnormality of the linear transmission mechanism.
依據本揭示內容一實施方式提供一種監控系統,係應用於一線性傳動機構,其包含一感測元件、一監控分析模組、一動態特徵資料庫及一比對元件。感測元件用以感測線性傳動機構產生之至少一信號。監控分析模組與感測元件連接,並用以接收信號,透過一演算軟體將信號轉換為至少一特徵值。動態特徵資料庫包含至少一預設特徵值。比對元件連接監控分析模組與動態特徵資料庫,並用以將特徵值與預設特徵值進行比對,且於特徵值與預設特徵值匹配時,提供一警示信號。 According to an embodiment of the present disclosure, a monitoring system is provided, which is applied to a linear transmission mechanism, and includes a sensing element, a monitoring analysis module, a dynamic feature database, and a comparison element. The sensing element is used for sensing at least one signal generated by the linear transmission mechanism. The monitoring analysis module is connected with the sensing element and used to receive a signal, and convert the signal into at least one characteristic value through a calculation software. The dynamic feature database includes at least one preset feature value. The comparison component is connected to the monitoring analysis module and the dynamic feature database, and is used to compare the feature value with the preset feature value, and provide a warning signal when the feature value matches the preset feature value.
依據前段所述實施方式的監控系統,可更包含一電腦,其用以搭載監控分析模組、動態特徵資料庫及比對元件。 The monitoring system according to the embodiment described in the preceding paragraph may further include a computer for carrying the monitoring analysis module, the dynamic feature database, and the comparison component.
依據前段所述實施方式的監控系統,其中感測元件可為一麥克風,且信號可為一聲紋。 According to the monitoring system of the embodiment described in the preceding paragraph, the sensing element can be a microphone, and the signal can be a voiceprint.
依據前段所述實施方式的監控系統,其中感測元件可包含一三軸向加速規或三單軸向加速規,且信號可為一振動。 According to the monitoring system of the embodiment described in the preceding paragraph, the sensing element may include a three-axis accelerometer or a three-uniaxial accelerometer, and the signal may be a vibration.
依據前段所述實施方式的監控系統,其中演算軟體可為一類神經網路模型,並包含一輸入層、一隱藏層及一輸出層。信號輸入至輸入層,並產生至少一輸入神經元。隱藏層連接於輸入層,且其包含複數隱藏神經元,隱藏神經 元用以統計與傳遞輸入層之輸入神經元。輸出層連接於隱藏層,輸入神經元透過隱藏神經元進行轉換後得到特徵值。輸入神經元可為一振動均方根值或一聲壓均方根值。特徵值可為線性傳動機構的一預壓剛性變化量或一預壓失效值。 According to the monitoring system of the embodiment described in the preceding paragraph, the calculation software can be a type of neural network model, and includes an input layer, a hidden layer, and an output layer. The signal is input to the input layer, and at least one input neuron is generated. The hidden layer is connected to the input layer, and it contains a plurality of hidden neurons, hidden neurons The element is used to count and transmit the input neurons of the input layer. The output layer is connected to the hidden layer, and the input neuron obtains the feature value after conversion through the hidden neuron. The input neuron can be a vibration root mean square value or a sound pressure root mean square value. The characteristic value can be a preload rigidity change or a preload failure value of the linear transmission mechanism.
依據前段所述實施方式的監控系統,可更包含一警示元件,其係為一警示燈,其用以接收警示信號後產生一亮光。 The monitoring system according to the embodiment described in the preceding paragraph may further include a warning element, which is a warning light, which is used to generate a bright light after receiving the warning signal.
依據前段所述實施方式的監控系統,可更包含一警示元件,其係為一蜂鳴器,其用以接收警示信號後產生一聲響。 The monitoring system according to the embodiment described in the preceding paragraph may further include a warning element, which is a buzzer, which is used to generate a sound after receiving the warning signal.
本揭示內容提供一種監控方法,係應用於一線性傳動機構,其包含一建立動態特徵資料庫步驟、一感測線性傳動機構步驟、一信號轉換步驟及一輸出比對步驟。建立動態特徵資料庫步驟係透過線性傳動機構中複數滑塊之複數負載剛性值得到至少一預設特徵值。感測線性傳動機構步驟係感測線性傳動機構之一定位平台之三軸向分別之至少一信號。信號轉換步驟係透過一類神經網路模型轉換感測線性傳動機構步驟中接收之信號為至少一特徵值。輸出比對步驟係將建立動態特徵資料庫步驟中的預設特徵值與信號轉換步驟中的特徵值進行比對。 The present disclosure provides a monitoring method applied to a linear transmission mechanism, which includes a step of establishing a dynamic characteristic database, a step of sensing the linear transmission mechanism, a step of signal conversion, and a step of output comparison. The step of establishing a dynamic characteristic database is to obtain at least one preset characteristic value through the complex load rigidity values of the plurality of sliders in the linear transmission mechanism. The step of sensing the linear transmission mechanism is to sense at least one signal in each of the three axial directions of a positioning platform of the linear transmission mechanism. In the signal conversion step, the signal received in the step of sensing the linear transmission mechanism is converted into at least one characteristic value through a neural network model. The output comparison step compares the preset feature value in the step of establishing the dynamic feature database with the feature value in the signal conversion step.
10‧‧‧監控系統 10‧‧‧Monitoring system
110‧‧‧感測元件 110‧‧‧Sensing components
111‧‧‧單軸向加速規 111‧‧‧Single Axial Accelerometer
120‧‧‧監控分析模組 120‧‧‧Monitoring and Analysis Module
121‧‧‧類神經網路模型 121‧‧‧like neural network model
121a‧‧‧輸入層 121a‧‧‧Input layer
121b‧‧‧隱藏層 121b‧‧‧Hidden layer
121c‧‧‧輸出層 121c‧‧‧Output layer
130‧‧‧動態特徵資料庫 130‧‧‧Dynamic feature database
140‧‧‧比對元件 140‧‧‧Comparison components
150‧‧‧警示元件 150‧‧‧Warning element
20‧‧‧線性傳動機構 20‧‧‧Linear transmission mechanism
210‧‧‧底座 210‧‧‧Base
220‧‧‧線性滑軌 220‧‧‧Linear slide
221‧‧‧滑塊 221‧‧‧Slider
230‧‧‧定位平台 230‧‧‧Positioning platform
30‧‧‧監控方法 30‧‧‧Monitoring method
S301‧‧‧建立動態特徵資料庫步驟 S301‧‧‧Steps to create dynamic feature database
S302‧‧‧感測線性傳動機構步驟 S302‧‧‧Sensing the steps of linear transmission mechanism
S303‧‧‧信號轉換步驟 S303‧‧‧Signal conversion steps
S304‧‧‧輸出比對步驟 S304‧‧‧Output comparison step
X‧‧‧輸入神經元 X‧‧‧Input neuron
W‧‧‧隱藏神經元 W‧‧‧Hidden Neuron
Y‧‧‧特徵值 Y‧‧‧Eigenvalue
第1圖繪示依照本揭示內容一實施方式之監控系統的方 塊示意圖; Figure 1 shows the method of the monitoring system according to an embodiment of the present disclosure Block diagram
第2圖繪示依照第1圖實施方式之類神經網路模型的示意圖; Fig. 2 is a schematic diagram of a neural network model according to the embodiment in Fig. 1;
第3圖繪示依照第1圖實施方式之線性傳動機構的示意圖; Fig. 3 shows a schematic diagram of the linear transmission mechanism according to the embodiment in Fig. 1;
第4圖繪示依照第1圖實施方式之監控系統進行監控方法的流程示意圖; Figure 4 shows a schematic flow diagram of a monitoring method performed by the monitoring system according to the embodiment shown in Figure 1;
第5圖繪示依照第4圖實施方式之監控方式的定位平台時域振動響應示意圖; Fig. 5 is a schematic diagram of the time-domain vibration response of the positioning platform according to the monitoring method of the embodiment in Fig. 4;
第6圖繪示依照第4圖實施方式之監控方式的定位平台振動與滑塊預壓程度的關係示意圖;以及 Fig. 6 is a schematic diagram showing the relationship between the vibration of the positioning platform and the preloading degree of the slider according to the monitoring method of the embodiment in Fig. 4; and
第7圖繪示依照第4圖實施方式之監控方式中定位平台負載剛性實際值與類神經網路模型負載剛性預測值的散佈圖。 Fig. 7 shows the scatter diagram of the actual value of the load rigidity of the positioning platform and the predicted value of the load rigidity of the neural network-like model in the monitoring method according to the embodiment of Fig. 4.
請參照第1圖,第1圖繪示依照本揭示內容一實施方式之監控系統10的方塊示意圖。本揭示內容提供一種監控系統10,係應用於一線性傳動機構20,其包含一感測元件110、一監控分析模組120、一動態特徵資料庫130、一比對元件140及一警示元件150,其中一電腦(圖未標示)搭載監控分析模組120、動態特徵資料庫130及比對元件140。
Please refer to FIG. 1. FIG. 1 is a block diagram of a
詳細來說,感測元件110用以感測線性傳動機構20產生之至少一信號。監控分析模組120與感測元件110連接,並用以接收信號,透過一演算軟體將信號轉換為至少一特徵值Y(如第2圖所示)。
In detail, the
動態特徵資料庫130包含至少一預設特徵值。比對元件140連接監控分析模組120與動態特徵資料庫130,並用以將特徵值Y與預設特徵值進行比對,且於特徵值Y與預設特徵值匹配時,提供一警示信號。藉此,可即時監控線性傳動機構20的動態特性,透過特徵值Y的運算、分析及比對,預知線性傳動機構20的變化,或可即時監控線性傳動機構20的狀態,作為檢修的依據,維持其效能。
The
進一步來說,感測元件110可為一麥克風。當感測元件110為一麥克風時,感測元件110接收到的信號為一聲紋。感測元件110可包含一三軸向加速規或三單軸向加速規。當感測元件110包含為三軸向加速規或三單軸向加速規時,感測元件110接收到的信號為一振動,但並不以此為限。藉此,感測元件110可即時擷取線性傳動機構20的信號,且提升收集的效果,可更為精確地監控線性傳動機構20的狀態。
Furthermore, the
詳細來說,演算軟體可為一類神經網路模型121。請參照第2圖,第2圖繪示依照第1圖實施方式之類神經網路模型121的示意圖。類神經網路模型121包含一輸入層121a、一隱藏層121b及一輸出層121c。具體來說,信號輸入至輸入層121a,並產生至少一輸入神經元X。隱藏層
121b連接於輸入層121a,且包含複數隱藏神經元W,而隱藏神經元W用以統計與傳遞輸入層121a之輸入神經元X。輸出層121c連接於隱藏層121b,且輸入神經元X透過隱藏神經元W進行轉換後得到特徵值Y。輸入神經元X可為一振動均方根值或聲壓均方根值,而特徵值Y可為線性傳動機構20的一預壓剛性變化量或一預壓失效值。藉此,提供監控系統10更為準確的判斷依據,降低預測誤差值。
In detail, the calculation software can be a type of
警示元件150可為一警示燈或一蜂鳴器,警示燈用以接收警示信號後產生一亮光,而蜂鳴器用以接收警示信號後產生一聲響。藉此,明確提醒使用者線性傳動機構20有異常的狀況,讓使用者可即時排除異常。
The
請參照第3圖,第3圖繪示依照第1圖實施方式之線性傳動機構20的示意圖。線性傳動機構20包含一底座210、複數線性滑軌220及一定位平台230,其中線性滑軌220設置於底座210上方,定位平台230設置於線性滑軌220的上方。定位平台230的三軸分別設置至少一單軸向加速規111。詳細來說,線性滑軌220包含複數滑塊221,滑塊221設置於線性滑軌220與定位平台230之間,線性傳動機構20為碳鋼材質,且線性滑軌220的總行經長度為1000mm,但並不以此為限。
Please refer to FIG. 3. FIG. 3 is a schematic diagram of the
請參照第4圖,繪示依照第1圖實施方式之監控系統10進行監控方法30的流程示意圖。監控方法30包含一建立動態特徵資料庫步驟S301、一感測線性傳動機構步驟S302、一信號轉換步驟S303及一輸出比對步驟S304。
Please refer to FIG. 4, which shows a schematic flow diagram of a
建立動態特徵資料庫步驟S301中,係透過線性傳動機構20中滑塊221之複數負載剛性值得到預設特徵值。
In step S301 of establishing a dynamic characteristic database, a preset characteristic value is obtained through the complex load rigidity value of the
進一步來說,先根據赫茲理論取得三種不同預壓等級滑塊221的負載剛性,再以三種不同預壓等級的滑塊221獲得定位平台230的負載剛性,進而得到預設特徵值,其中單軸向加速規111為針對X、Y及Z三方向進行量測,而本發明之監控系統10的單軸向加速規111的數量分別於X、Y及Z三方向為一,且信號為振動,但並不以此為限。
Furthermore, first obtain the load rigidity of the sliding
詳細來說,滑塊221以負載剛性分成高預壓滑塊(505N/μm)、中預壓滑塊(424N/μm)及低預壓滑塊(294N/μm)。定位平台230搭載四滑塊221,並根據滑塊221組合分成高預壓平台(2020N/μm)、中預壓平台(1696N/μm)及低預壓平台(1176N/μm),而滑塊221的負載剛性、數量及組合並不以此為限。並且,以不同的測量定位平台230方式分成不同的模態,分別為滾動模態(Rolling)、搖擺模態(Yawing)及傾斜模態(Pitching),但並不以此為限。
In detail, the
表一為感測元件110感測到高預壓滑塊、中預壓滑塊及低預壓滑塊於滾動模態、搖擺模態及傾斜模態的模態頻率。
Table 1 shows the modal frequencies of the high preload slider, the medium preload slider, and the low preload slider in the rolling mode, the rocking mode, and the tilt mode detected by the
由表一可知,高預壓滑塊在三種模態下皆具有較高的模態頻率,由高預壓滑塊更換為中預壓滑塊則下降
7.7%至11.5%的模態頻率,由中預壓滑塊更換為低預壓滑塊則下降21至23%的模態頻率。當滾動體或滑槽磨損時,因干涉量下降,故定位平台230的負載剛性進而降低。因此,由高負載剛性數值的滑塊221更換為較低負載剛性數值的滑塊221可用以模擬滾動體或滑槽磨損的情況。
It can be seen from Table 1 that the high preload slider has a higher modal frequency in the three modes, and the change from the high preload slider to the medium preload slider will decrease.
7.7% to 11.5% of the modal frequency, changing from a medium preload slider to a low preload slider reduces the modal frequency by 21 to 23%. When the rolling elements or the chute are worn, the amount of interference decreases, so the load rigidity of the
接著,進行五種負載剛性的定位平台230預壓的狀況與調整線性傳動機構20的馬達進給速率。五種定位平台230預壓的狀況分別為模式1至模式5,其中模式1為四滑塊221皆為低預壓滑塊,定位平台230之負載剛性為1176N/μm;模式2為四滑塊221皆為中預壓滑塊,定位平台230之負載剛性為1696N/μm;模式3為四滑塊221皆為高預壓滑塊,定位平台230之負載剛性為2020N/μm;模式4為三滑塊221為高預壓滑塊與一滑塊221為低預壓滑塊,定位平台230之負載剛性為1809N/μm;模式5為二滑塊221為高預壓滑塊與二滑塊221為低預壓滑塊,定位平台230之負載剛性為1598N/μm。馬達的進給速率分別為500轉/min、1000轉/min、1500轉/min、2000轉/min、3000轉/min、4000轉/min、6000轉/min及8000轉/min。
Next, perform five preload conditions of the
請參照第5圖與第6圖,第5圖繪示依照第4圖實施方式之監控方式30的定位平台230時域振動響應示意圖,其中(a)為模式1,(b)為模式2,(c)為模式3,(d)為模式4,(e)為模式5。第6圖繪示依照第4圖實施方式之監控方式30的定位平台230振動與滑塊221預壓程度的關係示意圖。從第5圖與第6圖可得知,滑塊221的移動過程中產生的
振動量隨馬達的進給速率增大而增加,故模式3相較於模式1所引發的振動量越趨顯著,且模式1產生的振動能量低於模式3。進一步來說,模式4與模式5為混合高預壓滑塊與低預壓滑塊,故產生的振動量介於模式1與模式3之間。藉此,可獲得不同滑塊221預壓情況的預設特徵值,並藉由預設特徵值進行比對線性傳動機構20實際預壓情況的變化。
Please refer to Figures 5 and 6. Figure 5 shows a schematic diagram of the time-domain vibration response of the
感測線性傳動機構步驟S302中,係感測線性傳動機構20之三軸向之至少一信號。詳細來說,線性傳動機構20透過單軸向加速規111各別進行X、Y及Z三方向進行感測,且偵測的信號為振動,但並不以此為限。
In step S302 of sensing the linear transmission mechanism, at least one signal of the three axial directions of the
信號轉換步驟S303中,係透過類神經網路模型121轉換感測線性傳動機構步驟S302中接收之信號為特徵值Y。
In the signal conversion step S303, the signal received in the step S302 of the sensing linear transmission mechanism is converted into the characteristic value Y through the
詳細來說,類神經網路模型121中的隱藏層121b使用Tan-Sigmoid作為活化函數(Activation function),類神經網路模型121中的輸出層121c則使用Linear作為活化函數,但並不以此為限。
In detail, the hidden
具體來說,輸入層121a所輸入的信號為滑塊221初始預壓等級類別(Initial preload level)、平台初始負載剛性(Initial rigidity)、X軸振動量、Y軸振動量、Z軸振動量及旋轉軸向(滾動模態、搖擺模態及傾斜模態)振動量。
Specifically, the signals input by the
表二為五種定位平台230模式的滑塊221初始預壓等級與定位平台230預壓失效狀態。
Table 2 shows the initial preload level of the
由表二可得知,定位平台230模式為模式I至模式V,其中模式I為預壓減少42%,屬於重度磨耗;模式II為預壓減少15%,屬於中度磨耗;模式III的預壓無減少,屬於正常狀態;模式IV為預壓減少10%,其為其中一滑塊221為嚴重失效,屬於中度異常狀態;模式V為預壓減少21%,其為其中二滑塊221為嚴重失效,屬於重度異常狀態。
It can be seen from Table 2 that the
接著,將此五種定位平台230模式套入至本發明中監控系統10之類神經網路模型121進行分析,得到六種MLP模式,而表三為六種MLP模式之敏感度等級。
Then, the five
表三中的MLP為多層函數連結倒傳遞神經網路,數字代表的意義以MLP 11-4-1為例,11代表輸入層121a有11個輸入神經元X,4代表隱藏層121b有4個隱藏神經元W,1代表輸出層121c有1個特徵值Y。表三中敏感度數值越大,代表其影響較無重要性,反之數值越小,影響程度就越高。接著,透過敏感度分析(Sensitivity Analysis),將所有特徵值Y皆逐一視為遺失值(Missing Data)。具體來說,當重要性較高的特徵值Y被選為遺失值時,類神經網路模型121的誤差值將大幅增加;當重要性較低的特徵值Y被選為遺失值時,類神經網路模型121的誤差值增加的幅度則十分有限。藉此,可獲得類神經網路模型121的預測誤差值,進而較為準確地預測線性傳動機構20是否有異常的狀況。
The MLP in Table 3 is a multi-layer function connection reverse transfer neural network. The meaning of the number is MLP 11-4-1 as an example. 11 means that the
完成信號轉換步驟S303後,進行輸出比對步驟S304。輸出比對步驟S304中,將建立動態特徵資料庫步驟S301中的數據與信號轉換步驟S303中的數據進行比對分析。 After the signal conversion step S303 is completed, an output comparison step S304 is performed. In the output comparison step S304, the data in the step S301 of establishing a dynamic feature database and the data in the signal conversion step S303 are compared and analyzed.
表四為六種MLP模式之相關係數與誤差均方根。 Table 4 shows the correlation coefficients and root mean square errors of the six MLP modes.
本發明藉由表四評估五種定位平台230模式套入類神經網路模型121之六種MLP模式的精準度,而表四中相關性係數(Coefficient of Correlation)與誤差均方根(Root Mean Square Error)皆包含訓練、測試及驗證三項參數,由五種定位平台230模式中共有35筆數據,在以隨機的方式抽取其中70%數據為訓練,15%數據為測試,15%數據為驗證,但上述數據比例並不以此為限。透過誤差值的計算,六種MLP模式的誤差值為小於3%,其中誤差值的公式為[(負載剛性預測值-負載剛性實際值)/負載剛性實際值]*100%。請參照第7圖,第7圖繪示依照第4圖實施方式之監控方式30中定位平台230負載剛性實際值與類神經網路模型121負載剛性預測值的散佈圖。從第7圖可知,六種MLP模式與實際值之間的線性相關性達0.97以上,以此得知,藉由本發明的監控系統10與類神經網路模型121可達到準確預測線性傳動機構20的失效狀況。
The present invention uses Table 4 to evaluate the accuracy of the five
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.
10‧‧‧監控系統 10‧‧‧Monitoring system
110‧‧‧感測元件 110‧‧‧Sensing components
120‧‧‧監控分析模組 120‧‧‧Monitoring and Analysis Module
130‧‧‧動態特徵資料庫 130‧‧‧Dynamic feature database
140‧‧‧比對元件 140‧‧‧Comparison components
150‧‧‧警示元件 150‧‧‧Warning element
20‧‧‧線性傳動機構 20‧‧‧Linear transmission mechanism
210‧‧‧底座 210‧‧‧Base
220‧‧‧線性滑軌 220‧‧‧Linear slide
230‧‧‧定位平台 230‧‧‧Positioning platform
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108139559A TWI728535B (en) | 2019-10-31 | 2019-10-31 | Monitor system and method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108139559A TWI728535B (en) | 2019-10-31 | 2019-10-31 | Monitor system and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202119147A TW202119147A (en) | 2021-05-16 |
| TWI728535B true TWI728535B (en) | 2021-05-21 |
Family
ID=77020482
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108139559A TWI728535B (en) | 2019-10-31 | 2019-10-31 | Monitor system and method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI728535B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI870713B (en) * | 2021-12-27 | 2025-01-21 | 日商電裝股份有限公司 | Fault sign detection system, fault sign detection method and fault sign detection program |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI833251B (en) * | 2022-06-21 | 2024-02-21 | 南亞科技股份有限公司 | Failure mode analysis system and failure mode analysis method |
| CN114937028B (en) * | 2022-06-21 | 2023-12-08 | 苏州上舜精密工业科技有限公司 | Intelligent identification and recognition linear sliding table module quality detection method and system |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200400347A (en) * | 2002-05-31 | 2004-01-01 | Chugoku Electric Power | Method and apparatus for diagnosing residual life of rolling element bearing |
| TW200731105A (en) * | 2005-12-13 | 2007-08-16 | Omron Tateisi Electronics Co | Model manufacturing device, model manufacturing system and abnormal detector |
| TW201120310A (en) * | 2009-12-09 | 2011-06-16 | Nat Univ Chin Yi Technology | The state telemetry technology and fault diagnosing system in large-scale wind power farms |
| TW201510688A (en) * | 2013-06-07 | 2015-03-16 | 科學設計股份有限公司 | Program monitoring system and method |
| TW201641216A (en) * | 2015-03-05 | 2016-12-01 | 應用材料股份有限公司 | Acoustic emission monitoring and endpoint for chemical mechanical polishing |
| TW201842428A (en) * | 2017-04-05 | 2018-12-01 | 日商荏原製作所股份有限公司 | Semiconductor manufacturing device, method for predicting failure of semiconductor manufacturing device, and failure prediction program for semiconductor manufacturing |
| TW201908991A (en) * | 2017-04-26 | 2019-03-01 | 美商谷歌有限責任公司 | Integrate machine learning into the control system |
-
2019
- 2019-10-31 TW TW108139559A patent/TWI728535B/en active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200400347A (en) * | 2002-05-31 | 2004-01-01 | Chugoku Electric Power | Method and apparatus for diagnosing residual life of rolling element bearing |
| TW200731105A (en) * | 2005-12-13 | 2007-08-16 | Omron Tateisi Electronics Co | Model manufacturing device, model manufacturing system and abnormal detector |
| TW201120310A (en) * | 2009-12-09 | 2011-06-16 | Nat Univ Chin Yi Technology | The state telemetry technology and fault diagnosing system in large-scale wind power farms |
| TW201510688A (en) * | 2013-06-07 | 2015-03-16 | 科學設計股份有限公司 | Program monitoring system and method |
| TW201641216A (en) * | 2015-03-05 | 2016-12-01 | 應用材料股份有限公司 | Acoustic emission monitoring and endpoint for chemical mechanical polishing |
| TW201842428A (en) * | 2017-04-05 | 2018-12-01 | 日商荏原製作所股份有限公司 | Semiconductor manufacturing device, method for predicting failure of semiconductor manufacturing device, and failure prediction program for semiconductor manufacturing |
| TW201908991A (en) * | 2017-04-26 | 2019-03-01 | 美商谷歌有限責任公司 | Integrate machine learning into the control system |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI870713B (en) * | 2021-12-27 | 2025-01-21 | 日商電裝股份有限公司 | Fault sign detection system, fault sign detection method and fault sign detection program |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202119147A (en) | 2021-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI728535B (en) | Monitor system and method thereof | |
| Hung | Load effect on the vibration characteristics of a stage with rolling guides | |
| US8146433B2 (en) | Failure detect device and failure detect method | |
| CN103384817A (en) | System and method for detecting fault conditions in a drivetrain using torque oscillation data | |
| CN101387600A (en) | Health monitoring method of cable system in cable structure based on hybrid monitoring | |
| TWI721238B (en) | Life assessment device, method, program and system for motion guide device | |
| CN114418383B (en) | A health risk assessment method, device, medium and equipment for an industrial robot | |
| CN101804932A (en) | Abnormality diagnosis device and abnormality diagnosis method | |
| CN118722988A (en) | A kayak hull posture monitoring method and monitoring system | |
| CN104102726A (en) | Modified K-means clustering algorithm based on hierarchical clustering | |
| CN114705429A (en) | Method and device for monitoring main bearing of shield machine | |
| CN119691914B (en) | A system-oriented bearing fault prediction method using noise reduction autoencoder | |
| CN117168802A (en) | Method for detecting performance life of harmonic speed reducer | |
| CN113705721B (en) | Joint probability density function difference diagnosis method for beam bridge support group void diseases | |
| Ma et al. | A prediction method based on stepwise regression analysis for train axle temperature | |
| Karpat et al. | A novel AI-based method for spur gear early fault diagnosis in railway gearboxes | |
| CN102289568B (en) | Large emergent equipment fault prediction method based on offline time sequence data | |
| CN103712794B (en) | Gear train assembly impact shock energy slippages rate detection system and method | |
| CN119321885B (en) | Parameter analysis method and system for automobile suspension spring | |
| CN103471870A (en) | Method for researching sensibility and clustering performance for recognizing states of coal mine equipment based on two-dimensional projection characteristic indexes | |
| CN119197957A (en) | A seismic performance detection system and method for integrated electromechanical platform | |
| CN116256000A (en) | A detection method and system for an inertial instrument that automatically sets a threshold in redundant judgment | |
| CN112660957B (en) | Early warning method and early warning system for elevator operation risk | |
| Hung et al. | Fault detection of linear guide preload of a positioning stage with vibration–acoustic analysis | |
| CN103033257A (en) | Measuring method for vibration state of antifriction bearing |