[go: up one dir, main page]

TWI782085B - 用於半導體製造設備之使使用者互動自動化的系統及方法 - Google Patents

用於半導體製造設備之使使用者互動自動化的系統及方法 Download PDF

Info

Publication number
TWI782085B
TWI782085B TW107131668A TW107131668A TWI782085B TW I782085 B TWI782085 B TW I782085B TW 107131668 A TW107131668 A TW 107131668A TW 107131668 A TW107131668 A TW 107131668A TW I782085 B TWI782085 B TW I782085B
Authority
TW
Taiwan
Prior art keywords
substrate processing
processing tool
user interaction
semiconductor manufacturing
manufacturing equipment
Prior art date
Application number
TW107131668A
Other languages
English (en)
Other versions
TW201921241A (zh
Inventor
瑞尼 恩德古根伯格
樹華 陳
忠河 黃
文生 翁
大衛 韓克爾
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW201921241A publication Critical patent/TW201921241A/zh
Application granted granted Critical
Publication of TWI782085B publication Critical patent/TWI782085B/zh

Links

Images

Classifications

    • H10P72/0454
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • H10P72/0604
    • H10P72/0612
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25236Detail, detect presence of operator to wake up system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2602Wafer processing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32128Gui graphical user interface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36039Learning task dynamics, process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36297Machining plan, indicate order of machining as function of presence of operator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • User Interface Of Digital Computer (AREA)
  • General Factory Administration (AREA)

Abstract

本發明係提供一種系統,其包含一介面及一控制器。該介面係用以接 收一基板處理工具之狀態,該基板處理工具包含複數個用來處理基板的處理模組。該控制器係用以使該狀態與該基板處理工具先前自該介面所接收到之基於該狀態之輸入相關聯,並產生一輸出以基於該關聯來控制該基板處理工具。

Description

用於半導體製造設備之使使用者互動自動化的系統及方法
本申請案係基於2017年9月11日所提出之美國臨時專利申請案第62/556,733號並主張其優先權,上述之完整內容乃併入以供參照。
本發明揭露係大致關於半導體製造設備,尤其是關於利用人工智慧而在半導體製造設備中讓使用者互動自動化。
此處之發明背景說明乃為了大體呈現本揭露之內容而提供。在此發明內容所描述的程度中,目前所列之發明人的貢獻以及在提出申請時並未具有先前技術資格之本發明說明之態樣,均未明示或暗示承認視為對本發明揭露之先前技術。
基板處理系統典型上包括複數個處理室(也稱為處理模組),以在例如半導體晶圓的基板進行沉積、蝕刻和其他處理。在處理期間,基板係放置於基板處理系統之處理室中的基板支架上。在沉積期間,將包括一或多種前驅物之氣體混合物導入處理室,並撞擊電漿以啟動化學反應。在蝕刻期間,導入包括蝕刻氣體的氣體混合物,並撞擊電漿以啟動化學反應。電腦控制之機器人典型上係依欲處理之半導體基板的順序將半導體基板從一處理室移到另一處理室。
一系統包含一介面及一控制器。該介面係用以接收基板處理工具之狀態,該基板處理工具包含複數個用來處理基板的處理模組。該控制器係用以使該狀態與該基板處理工具先前自該介面所接收到之基於該狀態的輸入相關聯,並產生一輸出以基於該關聯來控制該基板處理工具。
在其他特徵中,該控制器之構造係用以將該基板處理工具之複數狀態以及該基板處理工具基於該複數狀態所接收到之相應輸入儲存在一資料庫,並利用該資料庫來執行該關聯。
在其他特徵中,該控制器之構造係用以基於與該基板處理工具及額外之基板處理工具中之一或多個相關連之歷史資料來更新該資料庫,並且利用該更新後之資料庫來執行該關聯。
在其他特徵中,該控制器之構造係用以將與額外基板處理工具相關連之資料儲存在該資料庫中,該資料包含該額外基板處理工具之複數狀態以及該額外基板處理工具基於該等狀態所接收到之相應輸入,並利用該資料來執行該關聯。
在其他特徵中,該基板處理工具之該狀態包含指出與該基板處理工具相關連之錯誤的資料,且該輸入包含指出對該錯誤之回應的資料。
在其他特徵中,該基板處理工具之該狀態包含指出與該基板處理工具相關連之即將發生之錯誤的資料,且該輸入包含指出預防該錯誤之回應的資料。
在其他特徵中,該控制器之構造係用以偵測該基板處理工具之操作者的出現,並根據該操作者基於該輸出所接收到之回應來控制該基板處理工具。
在其他特徵中,該控制器之構造係用以偵測該基板處理工具之操作者的缺席,並在該操作者不在的情況下基於該輸出來控制該基板處理工具。
在其他特徵中,該控制器之構造係用以偵測該基板處理工具之操作者的缺席,並通知該操作者關於該輸出。
在其他特徵中,該控制器之構造係用以基於該輸出來控制該基板處理工具,以確保該基板之處理完成、防止對該基板的損害並且防止該處理模組閒置。
在其他特徵中,該控制器之構造係用以基於該輸出來控制該基板處理工具,以最佳化該處理模組對該基板之處理的排程。
在更其他的特徵中,一種方法的步驟包含接收基板處理工具之狀態,該基板處理工具包含複數個用來處理基板的處理模組。該方法步驟更包含使該狀態與該基板處理工具先前自該介面所接收到之基於該狀態的輸入相關聯。該方法步驟更包含產生一輸出以基於該關聯來控制該基板處理工具。
在其他特徵中,該方法步驟更包含將該基板處理工具之複數狀態以及該基板處理工具基於該複數狀態所接收到之相應輸入儲存在資料庫。該方法步驟更包含利用該資料庫來執行該關聯。
在其他特徵中,該方法步驟更包含基於與該基板處理工具及額外之基板處理工具中之一或多個相關連之歷史資料來更新該資料庫。該方法步驟更包含利用該更新後之資料庫來執行該關聯。
在其他特徵中,該方法步驟更包含將與額外基板處理工具相關連之資料儲存在該資料庫中,該資料包含該額外基板處理工具之複數狀態以及該額外基板處理工具基於該等狀態所接收到之相應輸入。該方法步驟更包含利用該資料來執行該關聯。
在其他特徵中,該基板處理工具之該狀態包含指出與該基板處理工具相關連之錯誤的資料,且該輸入包含指出對該錯誤之回應的資料。
在其他特徵中,該基板處理工具之該狀態包含指出與該基板處理工具相關連之即將發生之錯誤的資料,且該輸入包含指出預防該錯誤之回應的資料。
在其他特徵中,該方法步驟更包含偵測該基板處理工具之操作者的出現。該方法步驟更包含根據該操作者基於該輸出所接收到之回應來控制該基板處理工具。
在其他特徵中,該方法步驟更包含偵測該基板處理工具之操作者的缺席。該方法步驟更包含在該操作者不在場的情況下基於該輸出來控制該基板處理工具。
在其他特徵中,該方法步驟更包含偵測該基板處理工具之操作者的缺席。該方法步驟更包含通知該操作者關於該輸出。
在其他特徵中,該方法步驟更包含基於該輸出來控制該基板處理工具,以確保該基板之處理完成、防止對該基板的損害並且防止該處理模組閒置。
在其他特徵中,該方法步驟更包含基於該輸出來控制該基板處理工具,以最佳化該處理模組對該基板之處理的排程。
在更其他的特徵中,一系統包含處理器以及儲存於一實體機器可讀媒體上之機器可讀指令。當該處理器執行該機器可讀指令時,該機器可讀指令係將該處理器配置成接收基板處理工具之狀態,該基板處理工具包含複數個用來處理基板的處理模組。該機器可讀指令係將該處理器配置成使該狀態與該基板處理工具先前所接收到之基於該狀態的輸入相關聯。該機器可讀指令係將該處理器配置成產生輸出以基於該關聯來控制該基板處理工具。
在其他特徵中,該機器可讀指令係將該處理器配置成將該基板處理工具之複數狀態以及該基板處理工具基於該複數狀態所接收到之相應輸入儲存在資料庫。該機器可讀指令係將該處理器配置成利用該資料庫來執行該關聯。
在其他特徵中,該機器可讀指令係將該處理器配置成基於與該基板處理工具及額外之基板處理工具中之一或多個相關連之歷史資料來更新該資料庫。該機器可讀指令係將該處理器配置成利用該更新後之資料庫來執行該關聯。
在其他特徵中,該機器可讀指令係將該處理器配置成將與額外基板處理工具相關連之資料儲存在該資料庫中,該資料包含該額外基板處理工具之複數狀態以及該額外基板處理工具基於該等狀態所接收到之相應輸入。該機器可讀指令係將該處理器配置成利用該資料來執行該關聯。
在其他特徵中,該基板處理工具之該狀態包含指出與該基板處理工具相關連之錯誤的資料,且該輸入包含指出對該錯誤之回應的資料。
在其他特徵中,該基板處理工具之該狀態包含指出與該基板處理工具相關連之即將發生之錯誤的資料,且該輸入包含指出預防該錯誤之回應的資料。
在其他特徵中,該機器可讀指令係將該處理器配置成進行偵測該基板處理工具之操作者的出現。該機器可讀指令係將該處理器配置成根據該操作者基於該輸出所接收到之回應來控制該基板處理工具。
在其他特徵中,該機器可讀指令係將該處理器配置成進行偵測該基板處理工具之操作者的缺席。該機器可讀指令係將該處理器配置成在該操作者不在場的情況下基於該輸出來控制該基板處理工具。
在其他特徵中,該機器可讀指令係將該處理器配置成進行偵測該基板處理工具之操作者的缺席。該機器可讀指令係將該處理器配置成進行通知該操作者關於該輸出。
在其他特徵中,該機器可讀指令係將該處理器配置成基於該輸出來控制該基板處理工具,以確保該基板之處理完成、防止對該基板的損害並且防止該處理模組閒置。
在其他特徵中,該機器可讀指令係將該處理器配置成基於該輸出來控制該基板處理工具,以最佳化該處理模組對該基板之處理的排程。
本揭露內容之更進一步的應用領域將在參閱該詳細說明、申請專利範圍以及附圖而變得明顯。該詳細說明及特定範例係意欲僅供說明之目的而非欲限制本揭露內容之範圍。
1,1-1,1-2,1-3,1-N:基板處理系統
2:基板處理工具
4:處理模組
6:設備前端模組
8:機器人
10:控制器
12:分散式網路系統
20:系統
22:處理室
24:上部電極
26:靜電卡盤
28:基板
29:氣體分配裝置
30:底板
32:加熱板
34:熱阻層
36:通道
40:RF產生系統
42:RF產生器
44:匹配及分配網路
50:氣體輸送系統
52-1,52-2,52-N:氣體源
54-1,54-N:閥
56-1,56-N:質量流量控制器
60:歧管
61:蒸汽輸送系統
63:溫度控制器
64:熱控制元件
66:冷卻劑組件
70:閥
72:泵
80:系統控制器
100:處理室
102:下腔室區域
104:上腔室區域
108:腔室側壁表面
110:腔室底部表面
114:氣體分配裝置
118:圓頂
121:第一環形支撐件
122:基板支撐件
123:孔
125:第二環形支撐件
126:基板
127:孔
128:板
129:氣體流動通道
131:孔
134:氣體流動通道
140:感應線圈
142:氣體注入器
150-1,150-2:氣體輸送系統
152:氣體源
154:閥
156:質量流量控制器
158:混合歧管
170:電漿產生器
172:RF產生器
174:匹配網路
176:控制器
178:閥
180:泵
184:RF偏壓產生器
186:RF產生器
188:匹配網路
190:電漿
200:CPU或處理器
202:輸入設備
204:顯示子系統
206:顯示器
208:網路介面
210:記憶體
212:大容量儲存器
214:操作系統
216:應用程式
218:資料庫
220:介面
250-1:系統A
250-2:系統B
260:量測系統
270:主機
300,400,450:方法
302,304,306,308,310,312,314,316,318,320:步驟
402,404,406,452,454,456,458,460:步驟
從該詳細說明及附圖可更瞭解本揭露內容,其中:圖1為一功能性方塊圖,說明根據本揭露內容之基板處理系統之一例;圖2為一功能性方塊圖,說明根據本揭露內容中圖1所示之基板處理系統的處理模組之一例;圖3為一功能性方塊圖,說明根據本揭露內容中圖1所示之基板處理系統的處理模組之另一例;圖4為一功能性方塊圖,說明根據本揭露內容中,控制圖1所示之基板處理系統的基板處理工具之一控制器; 圖5為一功能性方塊圖,說明根據本揭露內容中之一分散式網路系統,該分散式網路系統包含圖1之基板處理系統、該基板處理系統之上下游的複數個系統、量測系統以及一主機;圖6為圖5之分散式網路系統的功能性方塊圖,根據本揭露內容,該分散式網路系統更包含複數個圖1之基板處理系統;圖7為一流程圖,說明根據本揭露內容之圖1中使用人工智慧之用於基板處理系統之使用者互動自動化的方法;圖8為一流程圖,說明根據本揭露內容而建立下列兩者之資料庫的方法:基板處理工具之工具狀態以及基於對複數基板處理工具所接收到之資料的回應;圖9為一流程圖,說明根據本揭露內容,藉由重放接收自複數基板處理工具的資料以及使用模擬來建立下列兩者之資料庫的方法:基板處理工具之工具狀態以及回應;在圖示中,參照號碼可以重複使用以指稱類似及/或相同元件。
本揭露內容係關於利用人工智慧之用於半導體處理工具之使使用者互動自動化的系統及方法。半導體處理工具在特徵上、選擇及製程上均具有高度的可變化性。當前自動化客戶互動的方法涉及將客戶請求轉換為需求並隨後在客戶的半導體處理工具的控制系統上實施該特徵。目前的方法面臨到許多挑戰。例如,某些客戶要求非常獨特且臨時。對於這些請求,傳統開發週期(包括客製化程式設計)的整備時間長且昂貴。
取代用於控制每個半導體處理工具的製程及順序的硬編碼,本揭露內容提出了一種控制系統,以使半導體處理工具能夠基於使用者與基板處理 工具的互動來學習和訓練。學習和訓練可用於使使用者與基板處理工具的互動自動化。例如,學習和訓練可用於執行複雜的維護任務、自動化晶圓產出分析、以及將排程最佳化以減少處理模組的閒置時間。學習和訓練可用於偵測錯誤並建議錯誤復原程序。學習和訓練亦可用於自動執行錯誤復原處理,以防止損壞晶圓和/或基板處理工具。
例如,控制系統可以即時從工具操作/錯誤復原期間所執行之使用者動作/干預學習。一旦控制系統被訓練並準備好自動執行任務,使用者就可以選擇自動模式以使控制系統在生產期間接管。當自動模式啟動時,如果沒有使用者在場介入,當可能發生對晶圓/工具的損害時,控制系統便會進行干預。如果使用者在場,則控制系統可以提供對使用者的協助。使用者可以讓控制系統接管並自動回應,或使用者可以控制對控制系統的操作。因此,控制系統可以獨立於使用者操作,或者可以建議動作並透過使用者互動來執行任務。
控制系統乃即時分析來自各種感應器的資料以及與基板處理工具之各種狀態相關聯的資料。工具狀態的範例包括但不限於工具閒置中、維護中、處於節能模式等。廣義而言,工具(即基板處理工具)的狀態是在給定時刻下,工具之操作參數或條件的快照。控制系統可以學習到使用者如何對工具狀態做出反應或作出回應。
例如,在使用者對於一工具狀態做出類似反應(例如在使用者回應於一工具狀態而執行一系列操作或命令之後)預定次數(例如3~5次)之後,控制系統便可以學習到使用者對於回應該工具狀態所執行的操作順序。隨後,基於該學習,在遇到該工具狀態時,控制系統便將該工具狀態與所學習到之使用者對於該工具狀態所做出之動作或回應相關聯。控制系統便可以在沒有任何使用者介入的情況下執行所學習到之操作順序或者可以提議執行該順序。
控制系統還可以從各種基板處理工具獲得的歷史資料(例如事件日誌、警報日誌等)中學習。例如可在模擬器中重放歷史資料,並且可產生或編譯工具狀態以及使用者對工具狀態之回應的資料庫。接著,透過即時存取工具資訊,控制系統便可將學到的知識應用於生產期間可能發生的任何情況。使用從其他工具獲得的知識所構建的資料庫可以客製化為特定基板處理工具的控制系統所用。從其他工具獲得的知識也可用於更新基板處理工具之控制系統的使用中資料庫。下面將詳細描述本揭露內容之系統及方法的這些及其他特徵。
本揭露內容係安排如下。參考圖1,描述包括基板處理工具的基板處理系統。參考圖2和圖3,描述基板處理工具之處理模組(處理室)的範例。參照圖4,描述控制基板處理工具的控制器。參考圖5,描述包括基板處理系統、複數個上游及下游系統、量測系統以及主機的網路系統。參考圖6,描述了進一步包括複數個基板處理系統的網路系統。隨後參考圖7-9,描述用於使用控制器來控制基板處理工具的各種方法。
圖1顯示基板處理系統1之範例的俯視圖。基板處理系統1包括基板處理工具2及控制器10。基板處理工具2(在整篇本揭露內容中也稱為工具)包含複數個處理模組4。例如,每個處理模組4可以被配置為在基板上執行一或多個各別處理。待處理的基板通過設備前端模組(EFEM)6之裝載站的埠裝載到基板處理工具2中。機器人8依照欲被處理模組4處理的順序將基板傳送到一或多個處理模組4中。控制器10控制基板處理工具2,如下面參考圖1所述。控制器10可包括一伺服器或者可執行所述功能的任何其他合適的計算裝置。
圖2顯示作為處理模組4之範例的系統20。雖然前述範例會在電漿增強化學氣相沉積(PECVD)的背景下描述,但是本揭露內容之教示可以應用於其他基板處理系統,例如原子層沉積(ALD)、PEALD、CVD或其他製程。系統20包括處理室22,處理室22包圍系統20的其他部件並包含RF電漿(若有使 用的話)。系統20包括上部電極24以及靜電卡盤(ESC)26或其他基板支撐件。在操作期間,基板28係配置在ESC 26上。
例如,上部電極24可以包括氣體分配裝置29,例如導入和分配處理氣體的噴淋頭。氣體分配裝置29可包括一桿部,桿部的一端係連接到處理室的頂表面。基部通常是圓柱形的,並且在與處理室的頂表面隔開的位置處從桿部之相對端徑向向外延伸。噴淋頭基部之面向基板的表面或面板包括複數個孔而可讓汽化之前驅物、處理氣體或吹掃氣體流過。交替地,上部電極24可以包括導電板,且可以以另一種方式導入處理氣體。
ESC 26包括作為下部電極的底板30。底板30係支撐加熱板32,而加熱板32可以對應於陶瓷多區加熱板。熱阻層34可以配置在加熱板32和底板30之間。底板30可以包括一或多個通道36,用於使冷卻劑流過底板30。
如果使用電漿,則RF產生系統40便產生RF電壓並將其輸出到上部電極24和下部電極(例如ESC 26之底板30)中的一個。上部電極24和底板30中的另一個可以是DC接地、AC接地、或浮動的。僅作為範例,RF產生系統40可以包括產生RF功率之RF產生器42,該RF功率係藉由匹配及分配網路44而饋送到上部電極24或底板30。在其他範例中,電漿可以感應地產生或者遠端產生。
氣體輸送系統50包括一或多個氣體源52-1、52-2、......和52-N(統稱為氣體源52),其中N是大於零的整數。氣體源52通過閥54-1、54-2、......和54-N(統稱為閥54)和質量流量控制器56-1、56-2、......和56-N(統稱為質量流量控制器56)連接。蒸汽輸送系統61將蒸發的前驅物供應到歧管60或連接到處理室22的另一歧管(未顯示)。歧管60的輸出被供給到處理室22。
溫度控制器63可以連接到配置在加熱板32中的多個熱控制元件(TCE)64。溫度控制器63可以用於控制複數個TCE 64以控制ESC 26及基板28的溫度。溫度控制器63可以與冷卻劑組件66連通以控制冷卻劑流過通道36。例 如冷卻劑組件66可以包括冷卻劑泵、貯存器和一或多個溫度感應器。溫度控制器63操作冷卻劑組件66以選擇性地使冷卻劑流過通道36以冷卻ESC 26。
閥70和泵72可以用於從處理室22中排出反應物。系統控制器80可用於控制系統20的部件。
圖3顯示用於蝕刻基板之層的處理腔室100,作為處理模組4的範例。雖然顯示並描述特定腔室,但是本揭露內容之教示可以應用於其他基板處理設備。
處理室100包括下腔室區域102和上腔室區域104。下腔室區域102係由腔室側壁表面108、腔室底部表面110和氣體分配裝置114之的下表面所界定。
上腔室區域104係由氣體分配裝置114之上表面以及圓頂118之內表面所界定。在一些範例中,圓頂118係擱置在第一環形支撐件121上。在一些範例中,第一環形支撐件121包括一或多個相隔開的孔123,用於將製程氣體輸送到上腔室區域104。在一些範例中,處理氣體係由一或多個相隔開的孔123沿著向上的方向以相對於包含氣體分配裝置114之一平面的銳角傳送,儘管可以使用其他角度/方向。在一些範例中,第一環形支撐件121中的氣體流動通道134乃將氣體供應到一或多個相隔開的孔123。
第一環形支撐件121可擱置在第二環形支撐件125上,第二環形支撐件125界定了一或多個相隔開的孔127,孔127係用以將處理氣體從氣體流動通道129輸送到下腔室區域102。在一些範例中,氣體分配裝置114中的孔131係與孔127對齊。在其他範例中,氣體分配裝置114具有較小的直徑,並不需要孔131。在一些範例中,處理氣體通過一或多個相隔開的孔127在向下方向上相對於包括氣體分配裝置114的平面以銳角朝向基板126輸送,雖然可以使用其他角度/方向。
在其他範例中,上腔室區域104為圓柱形且具有平坦的頂表面,並且可以使用一或多個平坦的感應線圈。在更其他的範例中,單一個腔室可以與位於噴淋頭及基板支撐件之間的間隔件一起使用。
基板支撐件122係配置於下腔室區域104中。在一些範例中,基板支撐件122包括靜電卡盤(ESC),但是可使用其他類型的基板支撐件。在蝕刻期間,基板126係配置於基板支撐件122的上表面上。在一些範例中,基板126的溫度可以由加熱器板125、具有流體通道的可選冷卻板以及一或多個感應器(未顯示)來控制,但是可以使用任何其他合適的基板支撐件溫度控制系統。
在一些範例中,氣體分配裝置114包括噴淋頭(例如具有複數個相隔開之孔129的板128)。該複數個相隔開的孔129從板128之上表面延伸到板128的下表面。在一些範例中,相隔開的孔129的直徑在0.4”到0.75”的範圍內,且噴淋頭係由例如鋁的導電材料或例如陶瓷的非導電材料製成,並具有由導電材料製成的嵌入電極。
一或多個感應線圈140圍繞圓頂118的外部配置。當通電時,一或多個感應線圈140在圓頂118內部產生電磁場。在一些範例中,使用一上線圈及一下線圈。氣體注入器142從氣體輸送系統150-1注入一或多種氣體混合物。
在一些範例中,氣體輸送系統150-1包括一或多個氣體源152、一或多個閥154、一或多個質量流量控制器(MFC)156和混合歧管158,但是可以使用其他類型的氣體輸送系統。氣體分離器(未顯示)可用於改變氣體混合物的流速。另一氣體輸送系統150-2可用於將蝕刻氣體或蝕刻氣體混合物供應到氣體流動通道129和/或134(除了來自氣體注入器142的蝕刻氣體之外或取代來自氣體注入器142的蝕刻氣體)。
在一些範例中,氣體注入器142包括沿向下方向引導氣體的中心注入位置和相對於向下方向以一角度注入氣體之一或多個側注入位置。在一些 範例中,氣體輸送系統150-1以第一流速將第一部分之氣體混合物輸送到中心注入位置,並且以第二流速將第二部分之氣體混合物輸送到側注入位置。在其他範例中,係透過氣體注入器142輸送不同的氣體混合物。在一些範例中,氣體輸送系統150-1將調節氣體輸送到氣體流動通道129及134以及/或輸送到處理室中的其他位置,如下所述。
電漿產生器170可以用於產生RF功率而輸出到一或多個感應線圈140。電漿190係於上腔室區域104中產生。在一些範例中,電漿產生器170包括RF產生器172以及匹配網路174。匹配網路174乃將RF產生器172之阻抗與一或多個感應線圈140之阻抗相匹配。在一些範例中,氣體分配裝置114係連接到例如地面的參考電位。閥178和泵180可用於控制下腔室區域102和上腔室區域104內的壓力並抽空反應物。
控制器176與氣體輸送系統150-1和150-2、閥178、泵180和電漿產生器170連通,以控制處理氣體、吹掃氣體、RF電漿和腔室壓力的流動。在一些範例中,電漿係藉由一或多個感應線圈140而維持在圓頂118內。使用氣體注入器142(和/或孔123)從腔室的頂部引入一或多種氣體混合物,且電漿是利用氣體分配裝置114而將其限制在圓頂118內。
將電漿限制在圓頂118中允許電漿物質的體積重組並通過氣體分配裝置114流出所需的蝕刻劑物質。在一些範例中,並沒有施加RF偏壓到基板126上。因此,基板126上便沒有作用中的鞘,且離子不會以任何有限的能量撞擊基板。一些數量的離子將通過氣體分配裝置114而擴散出電漿區域。然而,擴散之電漿的量比位於圓頂118內部的電漿低一個數量級。電漿中的大多數離子在高壓下由於體積重組而損失。在氣體分配裝置114之上表面處的表面重組損失也降低了氣體分配裝置114下方的離子密度。
在其他範例中,提供RF偏壓產生器184,其包括RF產生器186和匹配網路188。RF偏壓可用於在氣體分配裝置114和基板支撐件之間產生電漿或者在基板126上產生自偏壓以吸引離子。控制器176可以用於控制RF偏壓。
圖4顯示控制器10之一簡化範例,該控制器10控制圖1所示之基板處理工具2。例如,控制器10可以包括伺服器或其他可以執行所述功能之任何合適的計算裝置。控制器10通常包括一或多個CPU或處理器200、一或多個輸入設備202(例如鍵盤、觸摸板、滑鼠等)、包括顯示器206的顯示子系統204、網路介面208、記憶體210以及大容量儲存器212。
網路介面208將控制器10連接到分散式網路系統12。分散式網路系統12可以包括區域網路(LAN)、例如網際網路的廣域網路(WAN)或其他類型的網路。例如,網路介面208可以包括有線介面(例如乙太網介面)和/或無線介面(例如Wi-Fi、藍牙、近距離無線通訊(NFC)或其他無線介面)。記憶體210可以包括揮發性或非揮發性記憶體、快取或其他類型的記憶體。大容量儲存器212可以包括閃存記憶體、一或多個硬碟機(HDD)或其他大容量儲存裝置。
控制器10的處理器200執行操作系統(OS)214和一或多個應用程式216。應用程式216係實施控制基板處理工具2的控制系統。應用程式216係實施下面參考圖7-9所描述的方法,以透過人工智慧讓用於基板處理工具2之使用者互動自動化。應用程式216乃實施人工智慧(AI)引擎,其係自動化基板處理工具2的使用者互動。大容量儲存器212可以儲存一或多個資料庫218,其係儲存由應用程式216所使用之資料結構以執行相應之功能。
控制器10包括介面220,其將控制器10連接到處理模組4和機器人8。控制器10透過介面220來控制基板處理工具2的機器人8和處理模組4。控制器10係透過介面220而與圖2及圖3中所示之處理模組4的控制器80和176通信。處理模組4的控制器80和176還可以包括伺服器以及其他可以執行所述功能的任何合 適的計算設備。控制器10經由介面220與基板處理工具2所採用的各種感應器通信。控制器10經由介面220而從與處理模組4和機器人8相關連的各種感應器接收資料。
控制器10通過介面220發送信號以控制基板處理工具2的各種部件。例如,信號可以控制處理模組4中的閥、泵等;信號可以控制各種處理參數,包括處理模組4中的壓力、溫度、功率、氣體等;信號可以控制機器人8;等等。
控制器10基於在任何給定時間從處理模組4以及由基板處理工具2採用的各種感應器所接收的資料來判定基板處理工具2的狀態。控制器10便基於基板處理工具2的狀態來控制基板處理工具2。
控制器10基於經由顯示子系統204和/或輸入裝置202(或經由遠端的網路介面208)所接收之操作者的輸入來控制(例如將信號發送到)基板處理工具2。控制器10在應用程式216和資料庫218的控制下將用於基板處理工具2的使用者互動自動化,資料庫218乃實現如下詳述之人工智慧(AI)引擎。控制器10可在有或沒有使用者互動的情況下使用AI引擎來控制基板處理工具2。
控制器10可以基於基板處理工具2的狀態產生警報。例如控制器10可以基於基板處理工具2中之事件、錯誤(已經發生的錯誤以及即將發生的錯誤)等等來產生警報。警報可透過顯示子系統204輸出,以警告基板處理工具2的使用者(即操作者)。警報也可以通過基板處理工具2的音頻子系統(未顯示)輸出。警報也可以透過網路介面208作為訊息傳送。
應用程式216從回應於基板處理工具2的特定狀態而執行之特定使用者動作中學習。例如,應用程式216從回應於警報而執行的使用者動作中學習(例如為了從錯誤中復原而執行的動作)。在監控使用者對基板處理工具2中所發生之事件的相同反應之後(例如在使用者對特定事件作出相同組的輸入反 應之後,例如3-5次),應用程式216便儲存基板處理工具的狀態以及操作者回應於資料庫218中之該狀態所執行之相應動作。
在一些實施方式中,資料庫218可以是已經儲存了與基板處理工具2之狀態以及操作者回應於該等狀態而執行之相應動作相關連的關係。在此等實施方式中,應用程式216可以基於對基板處理工具2的繼續操作中所學習到的資料來持續更新資料庫218。
在其他實施方式中,資料庫218可以是已經儲存了與各種基板處理工具之狀態以及操作者回應於該等狀態而執行的相應動作相關聯的關係。例如,可以透過重放歷史資料而自各種基板處理工具(例如包括事件日誌、警報日誌等)來導出關係。可以在模擬環境中執行重放(例如透過模擬類似於圖1-3中所示的基板處理系統)。模擬過程提供了額外的優點,除了重現從其他基板處理系統接收的生產資料(工具狀態和回應)之外,還可以模擬各種其他操作條件和回應以進一步改進學習過程。例如藉由改進模擬條件下的錯誤檢測來最小化或避免錯誤警報(例如因錯誤而不正確地觸發不必要的維護任務)。
在此等實施方式中,其中基於從各種基板處理系統接收的資料產生資料庫218,應用程式216可以根據基板處理工具2的實際結構來配置(例如調整或客製化)資料庫218。應用程式218可以基於對基板處理工具2之繼續操作的學習持續更新資料庫218。
基於該學習,控制器10可以提示使用者回應於基板處理工具2的狀態而執行動作。例如,控制器10可以將基板處理工具2的狀態與對資料庫218中所儲存之狀態的回應相關聯。基於該關聯,控制器10可以在檢測到基板處理工具2中的錯誤時,建議在資料庫218中找到的校正或復原動作。作為另一個例子,控制器10可以決定使用來自基板處理工具2中之一或多個感應器的資料而需 要執行預防性或校正性維護操作。控制器10可將工具狀態與儲存在資料庫218中的資料相關聯,並基於該關聯性而建議合適的動作。
控制器10可以提議(例如在顯示子系統204上之GUI上建議)在沒有使用者互動的情況下自動執行建議的動作。控制器10可判定操作者是否在場以與基板處理工具2互動。控制器10可以基於一天中的時間或基於使用者目前是否登錄到控制器10等方式來偵測操作者的在場或缺席(例如基於排班的時間或工時)。如果使用者不在場(即如果基板處理工具2無人看管),則控制器10可自動執行任務並透過訊息通知使用者關於基板處理工具2的狀態以及回應於該狀態所執行之動作。
取決於任務的類型和/或應用程式216的配置,使用者還可以遠端(即當使用者不在基板處理工具2附近時)授權控制器10執行動作而不需使用者進一步的輸入。交替地,使用者可以遠端(或在當地,即當使用者在基板處理工具2附近時)授權控制器10執行動作、監控控制器執行任務、並在必要時進行干預。
如上所述,應用程式216係從基板處理工具2的使用者(即操作者)之動作中學習如何從錯誤中復原、如何執行複雜的維護任務(如同錯誤糾正措施以及排程預防措施般被觸發)等。基於該學習,控制器10可以偵測錯誤、從錯誤中復原,並防止晶圓損壞或報廢。
吾人應注意,對於例如基板處理工具2的半導體處理設備,某些情況是特有的或獨特的,並且使得構建人工智慧(AI)引擎具有挑戰性。例如,基板處理工具2的處理模組4可針對各種處理來使用各種化學物質:各種氣體和液體(統稱為流體);各種壓力、溫度和功率;流體、壓力、溫度和功率的各種順序等等。對於涉及各種廣泛的電氣、機械和化學控制的基板處理工具來說,學習和使使用者互動自動化可具有挑戰性。
有時,快速回應(例如在幾秒或幾分之一秒內)對於防止晶圓在例如基板處理工具2的半導體處理設備中被損壞或報廢是至關重要的。根據本揭露內容的智慧(AI)引擎可以比人類操作者更快地回應這種情況。
例如基板處理工具2之半導體處理設備特有的另一個罕見或獨特的參數是排隊時間:使用一系列之製程來處理的晶圓需要在稱之為排隊時間的預定時間內從一處理模組傳送到另一處理模組。排隊時間可以根據在一處理模組中已經在晶圓上執行之處理的類型以及隨後將在另一處理模組中的晶圓上執行之處理的類型而變化。如果在排隊時間內沒有處理晶圓,則可能必須報廢晶圓。如果沒有使用者在場,則AI引擎會使用所學習到的排隊時間資料在排隊時間內(即在排隊時間到期之前)進行干預,並防止晶圓被廢棄。
AI引擎會檢測基板處理工具2中的錯誤。如果AI引擎基於學習(即基於工具狀態與儲存在資料庫218中之資料的關聯性)而辨識到工具狀態之先前復原處理,AI引擎便執行下列操作之一:若使用者正在操作該工具(例如若使用者在場),則AI引擎可以向使用者提供幫助。使用者可以讓AI引擎自動執行復原順序。若AI引擎自動執行復原順序是必要的話,使用者可以進行干預。交替地,如果使用者不在場且AI引擎偵測到晶圓報廢的可能性,則AI引擎可以自動干預並防止晶圓報廢。
AI引擎可從中學習且隨後可以行動的情況或場景的其他例子包括以下內容。例如,基板處理工具2可能遭受機器人夾持器錯誤。例如,由於機器人夾持器錯誤,工具在生產期間可能每天停止兩次。替換的部件可能已訂購,但可能需要數週才能交付,這可能導致工具停機和全年無休的技術人員支援。
復原機器人夾持器錯誤是複雜的並且需要熟練的干預。復原中的錯誤可能導致機器人當機並導致晶圓報廢。晶圓也受排隊時間限制。因此,必 須在給定時間內復原晶圓,否則晶圓就必須被廢棄了。這種情況可能導致工具停機並需要全年無休的技術人員支援。
替代地,AI引擎可以如下方式來回應。AI引擎可以即時訪問工具資訊。AI引擎將學習到使用者對錯誤和工具狀態的干預。在多次(例如3-5次)記錄使用者對上述情況的回應之後,AI引擎能夠執行儲存在資料庫218中的順序並從錯誤中復原。例如,在生產期間,AI引擎可以設定為自動復原模式。當此模式處於啟動狀態且發生上述錯誤時,如果排隊時間可能會使晶圓處於危險狀態,AI引擎將進行干預。依此方式,該工具可用來生產直到安裝替換部件。AI引擎可以基於接收自與機器人8相關連之感應器的資料來預測錯誤,並且可以在錯誤發生之前主動地訂購部件。這種主動的行動可以避免或最大限度地減少工具停機時間、全年無休技術人員支援的需要以及晶圓報廢的可能性。
圖5顯示包括基板處理系統1、系統A 250-1和B 250-2(統稱為其他系統250)、量測系統260和主機270的網路,主機270係經由分散式網路系統12彼此通信。例如系統A 250-1和系統B 250-2可以相對於基板處理系統1而分別位於其上游及下游。例如,位於基板處理系統1上游的系統A 250-1可以準備用於基板處理系統1所處理的基板。系統A 250-1可以提供關於基板的資料。根據從系統A 250-1接收的資料,基板處理系統1可以最佳化基板處理工具2之一或多個處理模組4及機器人8之設定及/或處理參數,以處理基板。因此,基板處理系統1可以使用來自系統A 250-1的資料來改善基板處理工具2的狀態。基板處理系統1可以學習並期望將來的類似資料。另外,基板處理系統1可以從位於下游的系統B 250-2接收資料並且可以從該資料中學習(即基於該資料最佳化一或多個處理模組4及機器人8之設定及/或處理參數)。
量測系統260可以使用一或多個光學量測及質量量測而在基板處理系統1處理基板之前、期間和/或之後執行對基板的多次測量。例如,質量量測 系統可用於在處理前及處理後測量質量以確定質量的變化。光學量測可用於建立表面的光譜模型以確定其厚度。質量變化和厚度可用作反饋。測量值可以指出基板的狀態以及在基板上執行的一或多個處理(例如沉積、蝕刻、清潔等)的成功。例如,取決於測量值,基板的狀態可以指出下列中之一或多者:基板是否準備好由基板處理系統1處理、基板是否被一或多個處理模組4正確地處理(例如,基板是否被適當地蝕刻;清潔;及/或是否正確地執行沉積等)、基板處理系統1對基板的處理是否成功完成等等。量測資料可用於最佳化基板處理工具2之一或多個處理模組4和機器人8的設定及/或處理參數。因此,量測資料可用於進一步改善基板處理工具2的狀態。雖然為了簡化說明僅顯示了一個量測系統,但是可以使用一個以上的量測系統。例如,可以在基板處理系統1處理基板之前使用一個量測系統,並且可以在基板處理系統1處理基板之後使用另一個量測系統。
主機270可以包含一或多個伺服器。每個伺服器可以包含圖1所示之控制器10的所有組件。主機270可能執行控制器10的一些或全部功能。主機270可能在有或沒有控制器10的情況下控制基板處理工具2。主機270可經由控制器10以及/或直接(即,不通過控制器10通信)與基板處理工具2通信。主機270可以直接與基板處理工具2的任何部件通信(例如與機器人8以及任一處理模組4)。作為處理模組4之範例的控制器80和176(參見圖3和4)可以類似於圖4中所示的控制器10。每一處理模組4可能直接經由網路介面208與主機270通信。每一處理模組4可以經由介面220而與其他處理模組4、機器人8和/或控制器10通信。機器人8亦可能包括類似於控制器10的控制器。機器人8可能直接通過網路介面208與主機270通信。機器人8可能透過介面220與處理模組4和/或控制器10通信。因此,處理模組4及機器人8可以直接與主機270通信,並且可以由主機270直接控制。主機270可以位於本地或雲端。主機270可以在有或沒有使用者互動 的情況下儲存與控制基板處理工具2相關連的額外資料。該額外資料可以包括但不限於來自其他系統250、量測系統260和其他基板處理系統的資料(參見圖6和下面的相應描述)。
圖6顯示多個基板處理系統1-1、1-2、1-3....1-N,其中N為大於1的整數(統稱為基板處理系統1),其可以透過分散式網路系統12彼此通信。基板處理系統1可能位於單一地點,或可能分散在多個地點。基板處理系統1可以彼此共享關於它們的狀態以及對該狀態的回應的資料。基於該共享資料(例如透過使用上述之模擬處理而重放共享資料),任一基板處理系統1可以產生、更新及/或客製化基板處理系統1內部或外部之一或多個基板處理系統的應用程式216和資料庫218。
使用上,AI引擎(即應用程式216和資料庫218)可以即時存取工具的所有狀態。AI引擎可以使工具狀態與儲存在資料庫218中的使用者動作產生關聯。AI引擎可以了解使用者對工具狀態的反應(例如AI引擎會學習使用者如何從特定警報中復原)。在使用者對一工具狀態有類似的反應3~5次之後,AI引擎便能夠為使用者執行該順序。
如果識別出順序(即如果當前工具狀態與資料庫中所學習到之回應的狀態相關聯),則AI引擎將檢測該工具當前是否由使用者操作(即如果使用者在場)。如果使用者在場,則AI引擎將對使用者提供幫助(例如藉由在GUI上顯示訊息或建議的回應(基於該關聯所找到者))。替換地,如果識別出順序,且若沒有使用者在場,則AI引擎可以接管控制,如果設定(即配置)為如此的話。
AI引擎還可以了解排隊時間。如果沒有使用者在場且晶圓可能被廢棄,AI引擎可以使用此資料進行干預。從客戶(即其他工具)和實驗室工具(例如重放、模擬等)所學習到的場景可以儲存、收集並編譯到主資料庫中, 然後可以用於安裝、客製化或更新其他工具上之個別資料庫。透過來自對安裝AI引擎的工具以及上述其他工具的學習,AI引擎的基本功能可以持續增長。不希望共享有關其學習到之AI引擎的資料的客戶仍然具有透過其工具隊(即他們的工具組)聚集AI學習的功能。
下面參考圖7~9描述用於半導體製造設備之使使用者互動自動化的方法。在下面的描述中,「控制」指的是上面參考圖1~6(其實現下面所描述的方法)所描述之一或多個應用程式216。換句話說,「控制」表示由圖1~6中所示的基板處理系統1之一或多個部件所執行的編碼或指令,以執行所描述的功能。例如,下面描述的方法可以由圖1和4中所示之控制器10以及/或圖5中所示的主機270所執行。
圖7顯示使用人工智慧而讓半導體製造設備(例如圖1的基板處理系統1)之使用者互動自動化的方法300。在302處,控制(例如應用程式216中的一或多個)監控基板處理工具(例如圖1的基板處理工具2)的狀態。在304處,控制監控操作者對該工具狀態的回應。在306,控制編譯(即產生或建立)工具狀態(例如一或多個資料庫218)以及操作者對工具狀態之回應的資料庫。例如,控制在資料庫中儲存工具狀態以及在操作者對該工具狀態使用相同的回應預定次數(例如3~5次)之後之對該工具狀態的該回應。
在308處,控制基於從基板處理工具即時接收到的資料判定基板處理工具的當前工具狀態,並判定對當前工具狀態的回應是否在資料庫中。例如,控制藉由將當前工具狀態與儲存在資料庫中之已知回應的工具狀態相關聯來進行該判定。如果該關聯無法找到與資料庫中當前工具狀態匹配的工具狀態,則控制返回302。
在310處,如果在資料庫中找到當前工具狀態的匹配,則控制判定是否操作者在場以回應當前工具狀態。例如,控制基於一天中的時間以及操 作者的班次安排、操作者是否已登錄系統(例如控制器10)等來檢測操作者在場或不在場。
在312處,如果操作者在場,則控制將在資料庫中找到之匹配工具狀態相對應之回應輸出至基板處理工具的顯示器上(例如在顯示器上的GUI上)。控制則根據該回應提供對基板處理工具的控制。
在314處,控制判定操作者是否允許其根據回應來自動控制基板處理工具而無需任何操作者輸入。在316處,如果操作者允許根據回應來自動控制基板處理工具而無需任何操作者輸入,則控制便會自動控制基板處理工具而無需操作者干預,且控制會返回到302。
在318處,如果操作者不允許根據回應來自動控制基板處理工具而無需任何操作者輸入,則控制便接收來自操作者的一輸入或複數輸入,並根據操作者的一輸入或複數輸入來控制基板處理工具,並且控制返回到302。
在320處,如果控制在310處判定操作者不在場,控制便會通知操作者關於當前工具狀態和對當前工具狀態的回應,並且控制接著到316。例如,控制發送訊息給操作者關於當前工具狀態和對當前工具狀態的回應。雖然未顯示,但是控制可以前進到314而不是到316。如果控制進行到314,則操作者可以遠端地允許控制根據回應來自動控制基板處理工具而無需任何操作者輸入,在這種情況下控制便前進到316。交替地,如果控制進行到314,且如果操作者不允許控制根據回應來自動控制基板處理工具而沒有任何操作者輸入,則控制便前進到318。
圖8顯示一方法400,其係用以基於從多個基板處理工具接收的資料來構建特定基板處理工具之工具狀態及回應的資料庫。在402處,控制基於從多個基板處理工具接收的資料建立工具狀態及工具狀態之相應操作者回應的主資料庫。在404,控制根據特定基板處理工具之結構而配置主資料庫(在402處 根據從多個基板處理工具接收的資料所產生)以客製化特定基板處理工具之資料庫。交替地,如果特定基板處理工具已經具有資料庫,則控制透過添加來自主資料庫的相關資訊(在402處從多個基板處理工具接收的資料所產生)來更新其資料庫。控制係基於該特定基板處理工具的結構來選擇相關資訊。在406,控制使用根據圖7所示之方法300的客製化/更新的資料庫來執行特定基板處理工具的控制操作。
圖9顯示一方法450,其用於透過在模擬環境中重放從多個基板處理工具接收之資料來為特定基板處理工具建立工具狀態及回應的資料庫。在452處,控制從多個基板處理工具收集資料(例如參見圖6)。在454處,控制在一模擬基板處理工具中重放該資料,其中可以模擬對工具狀態的回應。在456處,控制基於在模擬環境中重放接收自多個基板處理工具的資料來建立工具狀態以及對該工具狀態之相應回應的主資料庫。
在458處,控制根據特定基板處理工具的結構來配置主資料庫(在456處根據從多個基板處理工具接收的資料產生)來客製化特定基板處理工具的資料庫。交替地,如果特定基板處理工具已經具有資料庫,則控制藉由添加來自主資料庫的相關資訊(在456處從多個基板處理工具所接收之資料產生)來更新資料庫。控制係基於特定基板處理工具的結構來選擇相關資訊。在460處,控制係根據圖7所示之方法300而使用客製化/更新的資料庫來執行特定基板處理工具的控制操作。
在整篇本揭露內容中,對例如電腦(例如伺服器)、應用程式(例如電腦程式)等用語的引用僅用於說明性目的。例如電腦(例如伺服器)之類的用語應廣義地理解為表示包括一或多個處理器和用於執行機器可讀指令的記憶體的計算裝置。例如應用程式(例如電腦程式)之類的用語應廣義地理解為表示可由計算裝置執行的機器可讀指令。
在整個本揭露內容中,處理模組僅用於舉例。本揭露內容的教導適用於任何類型的處理設備(例如批次反應器、離子注入器等)。例如,本揭露內容的教示可以應用於任何設備處理範例,例如生物樣本、化學樣本、醫學樣本等。此外,在整個本揭露內容中,基板的使用僅供舉例。本揭露內容的教示可以應用於處理任何物體或工作件。例如,本揭露內容的教示可以應用於使用光學、熱學、化學、磁學以及機械製程來處理物體或工作件。換句話說,本揭露內容的教示可以應用於從使用多個製程處理物體之任何設備的操作中學習,並且基於該學習來控制設備和物體的處理,以最小化人類互動並減少物體損壞的風險。
前述之描述僅限於說明性質,並未意圖限制本揭露內容、應用以及使用。本揭露內容之廣泛教示可應用於各種不同形式。因此,雖然本揭露內容包含特定範例,本揭露內容之真實範圍並不受限於此,因在研究圖示、說明書以及接下來的申請專利範圍後,其他的修改變形便會變得明顯。吾人應瞭解,方法中的一或多個步驟可以不同的順序(或同時)進行而不需變更本揭露內容之原則。且,雖然上述的每一個實施例均具有特定特徵,針對本揭露內容之任意實施例中所描述的這些特徵的任一或多個均可與/或任意其他實施例之特徵合併而加以實施,即使該合併並未明確描述出。換句話說,所描述之實施例並非互斥,一或多個實施例與另一個的置換仍落在本揭露內容的範圍內。
元件(例如模組之間、電路元件之間、半導體層之間等)之間的空間與功能關係乃利用各種不同的術語來描述,其包含:「連接」、「接合」、「耦合」、「相鄰」、「隔壁」、「在其上方」、「上方」、「下方」以及「置於..之間」。除非當上述揭露內容中第一及第二元件的關係明確的描述為「直接」,該關係可以是沒有其他中間元件存在於該第一及第二元件之間的直接關係,但也可以是有一個以上的中間元件存在(空間上或功能上)於該第一及第 二元件之間的間接關係。如此處所使用之說法:A、B及C中至少其中之一,其應該被解釋為一邏輯用法(A或B或C)而使用非排他性邏輯OR,不應該被解釋為:A的至少其中之一、B的至少其中之一以及C的至少其中之一。
在某些實施中,控制器為系統的一部份,而系統可以是上述範例的一部份。此類系統可包含半導體處理設備,其包含單一處理工具或複數處理工具、單一處理室或複數處理室、單一處理平台或複數處理平台,以及/或特定處理元件(晶圓基座、氣體流動系統等)。這些系統可以與電子裝置整合以在半導體晶圓處理前、中、後控制它們的操作。這些電子裝置可以稱之為控制器,其控制這系統或這些系統的各種元件或子零件。視製程處理需求以及/或系統種類,該控制器可經程式化而控制上述揭露的任一處理,包含輸送處理氣體、溫度設定(例如加溫以及/或冷卻)、壓力設定、真空設定、功率設定、射頻(RF)產生器設定、RF匹配電路設定、頻率設定、流率設定、流體輸送設定、定位及操作設定、自工具以及其他傳送工具及/或連接至特定系統或與特定系統接合之裝載鎖的晶圓移入移出。
廣泛來說,該控制器可定義為具有各種不同積體電路、邏輯、記憶體以及/或軟體(接收指令、發出指令、控制操作、使清潔操作、使端點量測等類似者)的電子裝置。該等積體電路可包含以韌體形式呈現的晶片而儲存了程式指令、數位信號處理器(DSPs)、定義為特定應用積體電路(ASICs)的晶片以及/或一或多個微處理器或是執行程式指令的微控制器(例如軟體)。程式指令可以是以各種獨立設定(或程式檔案)的形式而與該控制器溝通的指令,界定操作參數以在一半導體晶圓上實現特定處理、或用於半導體晶圓、或提供至一系統。該等操作參數在某些實施例中可以是製程工程師所定義的配方的一部份,以在製造下列者的期間完成一或多個處理步驟:一或多層、材料、金屬、氧化物、矽、二氧化矽、表面、電路以及/或晶圓的晶粒。
在某些實施中,控制器可以是電腦的一部份或是耦合至一電腦,該電腦與該系統整合在一起、耦合至該系統或者是網路連接至該系統、或前述之各種組合。例如,該控制器可以位於「雲端」或者可以是工廠主電腦系統的整體或是一部份,而可讓晶圓處理遠端存取。該電腦可遠端存取至該系統,以監控製造操作的目前進度、檢視過去製造操作的歷史、檢視來自複數製造操作的趨勢或效能指標,進而變更目前製程處理的參數、設定處理步驟以接續目前處理、或開始一新的處理。在某些例子中,一遠端電腦(例如一伺服器)可以在網路上提供處理配方給系統,該網路可包含區域網路或網際網路。該遠端電腦可包含可輸入參數以及/或設定、或編寫參數以及/或設定的程式的使用者介面,之後再透過遠端電腦而與該系統溝通。在某些例子中,控制器接收資料形式的指令,其將一或多個操作期間欲執行的每一處理步驟之參數都界定出來。吾人應瞭解該等參數係特定用於欲執行的處理類型以及該控制器用以與其接合或控制的工具類型。因此如上所述,該控制器可以是分散的,例如藉由包含以網路連接在一起的一或多個分開的控制器而針對一共同目的工作,例如此處描述之處理及控制。用於此等目的之分散控制器的一例是在處理室上的一或多個積體電路與位於遠端(例如在平台階層或是遠端電腦的一部份)的一或多個積體電路相連通,而合併控制處理室上的處理。
非限制性的,系統的範例可以包含電漿蝕刻室或模組、沉積處理室或模組、旋轉沖洗室或模組、金屬電鍍室或模組、清洗室或模組、斜角邊緣蝕刻室或模組、物理氣相沉積(PVD)室或模組、化學氣相沉積(CVD)室或模組、原子層沉積(ALD)室或模組、原子層蝕刻(ALE)室或模組、離子植入室或模組、徑跡室或模組、以及其他半導體處理系統而與半導體晶圓相關連或用於製造以及/或大量生產半導體晶圓。
如上所述,依照工具欲執行的單一處理步驟或複數處理步驟,該控制器可以與下列一或多個相連通:其他工具電路或模組、其他工具元件、群組工具、其他工具介面、相鄰工具、附近工具、位於工廠各處的工具、主要電腦、另一控制器、或用於運送材料的工具而將晶圓容器運送來去半導體生產工廠內之工具所在地以及/或裝載埠。
300:方法
302、304、306、308、310、312、314、316、318、320:步驟

Claims (34)

  1. 一種用於半導體製造設備之使使用者互動自動化的系統,其包含:一介面,以接收一基板處理工具之狀態,該基板處理工具包含複數個用來處理一基板的處理模組,其中,基於自該基板處理工具之該等處理模組以及與該基板處理工具相關連之複數感應器接收的資料來判定該基板處理工具之該狀態;以及一控制器,耦合至該介面,以執行下列步驟:產生以下兩者之間的關聯:該介面所接收到之該基板處理工具之該狀態、與該基板處理工具先前自該介面所接收到之回應於先前該狀態之出現而控制該基板處理工具的輸入,其中該關聯係至少部分基於該基板處理工具先前所接收到之回應於先前該狀態之出現的該輸入之一預定次數;以及基於該介面所接收到之該基板處理工具之該狀態與該基板處理工具先前自該介面所接收到之回應於先前該狀態之出現的該輸入之間的該關聯,產生包括與先前所接收到之該輸入相似之回應的一輸出,以控制該基板處理工具。
  2. 根據申請專利範圍第1項之用於半導體製造設備之使使用者互動自動化的系統,其中該控制器之構造係用以將該基板處理工具之複數狀態以及該基板處理工具基於該複數狀態所接收到之相應輸入儲存在一資料庫,並利用該資料庫來執行該關聯。
  3. 根據申請專利範圍第2項之用於半導體製造設備之使使用者互動自動化的系統,其中該控制器之構造係用以基於與該基板處理工具及額外之基板處理工具中之一或多個相關連之歷史資料來更新該資料庫,並且利用該更新後之資料庫來執行該關聯。
  4. 根據申請專利範圍第2項之用於半導體製造設備之使使用者互動自動化的系統,其中該控制器之構造係用以將與一額外基板處理工具相關連之資料儲存在該資料庫中,該資料包含該額外基板處理工具之複數狀態以及該額外基板處理工具基於該等狀態所接收到之相應輸入,並利用該資料來執行該關聯。
  5. 根據申請專利範圍第1項之用於半導體製造設備之使使用者互動自動化的系統,其中該基板處理工具之該狀態包含指出與該基板處理工具相關連之錯誤的資料,且其中該輸入包含指出對該錯誤之回應的資料。
  6. 根據申請專利範圍第1項之用於半導體製造設備之使使用者互動自動化的系統,其中該基板處理工具之該狀態包含指出與該基板處理工具相關連之即將發生之錯誤的資料,且其中該輸入包含指出預防該即將發生之錯誤之回應的資料。
  7. 根據申請專利範圍第1項之用於半導體製造設備之使使用者互動自動化的系統,其中該控制器之構造係用以偵測該基板處理工具之操作者的出現,並根據該操作者基於該輸出所接收到之回應來控制該基板處理工具。
  8. 根據申請專利範圍第1項之用於半導體製造設備之使使用者互動自動化的系統,其中該控制器之構造係用以偵測該基板處理工具之操作者的缺席,並在該操作者缺席的情況下基於該輸出來控制該基板處理工具。
  9. 根據申請專利範圍第1項之用於半導體製造設備之使使用者互動自動化的系統,其中該控制器之構造係用以偵測該基板處理工具之操作者的缺席,並通知該操作者關於該輸出。
  10. 根據申請專利範圍第1項之用於半導體製造設備之使使用者互動自動化的系統,其中該控制器之構造係用以基於該輸出來控制該基板處理工具,以確保該基板之處理完成、防止對該基板的損害並且防止該處理模組閒置。
  11. 根據申請專利範圍第1項之用於半導體製造設備之使使用者互動自動化的系統,其中該控制器之構造係用以基於該輸出來控制該基板處理工具,以最佳化該處理模組對該基板之處理的排程。
  12. 根據申請專利範圍第1項之用於半導體製造設備之使使用者互動自動化的系統,其中該關聯係基於儲存在一資料庫中的狀態與輸入之間的關係而產生,該關係係藉由在模擬環境中重放來自多個基板處理工具之資料及模擬其他狀態及輸入所產生之資料而導出。
  13. 一種用於半導體製造設備之使使用者互動自動化的方法,其步驟包含:自一基板處理工具之複數處理模組以及與該基板處理工具相關連之複數感應器接收資料;基於自該等處理模組及該等感應器接收的該資料,判定該基板處理工具之狀態;產生以下兩者之間的關聯:該基板處理工具之該狀態、與該基板處理工具先前所接收到之回應於先前該狀態之出現而控制該基板處理工具的輸入,其中該關聯係至少部分基於該基板處理工具先前所接收到之回應於先前該狀態之出現的該輸入之一預定次數;以及基於該基板處理工具之該狀態與該基板處理工具先前所接收到之回應於先前該狀態之出現的該輸入之間的該關聯,產生包括與先前所接收到之該輸入相似之回應的一輸出,以控制該基板處理工具。
  14. 根據申請專利範圍第13項之用於半導體製造設備之使使用者互動自動化的方法,其步驟更包含:將該基板處理工具之複數狀態以及該基板處理工具基於該複數狀態所接收到之相應輸入儲存在一資料庫;以及 利用該資料庫來執行該關聯。
  15. 根據申請專利範圍第14項之用於半導體製造設備之使使用者互動自動化的方法,其步驟更包含:基於與該基板處理工具及額外之基板處理工具中之一或多個相關連之歷史資料來更新該資料庫;且利用該更新後之資料庫來執行該關聯。
  16. 根據申請專利範圍第14項之用於半導體製造設備之使使用者互動自動化的方法,其步驟更包含:將與一額外基板處理工具相關連之資料儲存在該資料庫中,該資料包含該額外基板處理工具之複數狀態以及該額外基板處理工具基於該等狀態所接收到之相應輸入;且利用該資料來執行該關聯。
  17. 根據申請專利範圍第13項之用於半導體製造設備之使使用者互動自動化的方法,其中該基板處理工具之該狀態包含指出與該基板處理工具相關連之錯誤的資料,且其中該輸入包含指出對該錯誤之回應的資料。
  18. 根據申請專利範圍第13項之用於半導體製造設備之使使用者互動自動化的方法,其中該基板處理工具之該狀態包含指出與該基板處理工具相關連之即將發生之錯誤的資料,且其中該輸入包含指出預防該即將發生之錯誤之回應的資料。
  19. 根據申請專利範圍第13項之用於半導體製造設備之使使用者互動自動化的方法,其步驟更包含:偵測該基板處理工具之操作者的出現;且根據該操作者基於該輸出所接收到之回應來控制該基板處理工具。
  20. 根據申請專利範圍第13項之用於半導體製造設備之使使用者互動自動化的方法,其步驟更包含:偵測該基板處理工具之操作者的缺席;且在該操作者缺席的情況下基於該輸出來控制該基板處理工具。
  21. 根據申請專利範圍第13項之用於半導體製造設備之使使用者互動自動化的方法,其步驟更包含:偵測該基板處理工具之操作者的缺席;且通知該操作者關於該輸出。
  22. 根據申請專利範圍第13項之用於半導體製造設備之使使用者互動自動化的方法,其步驟更包含基於該輸出來控制該基板處理工具,以確保該基板之處理完成、防止對該基板的損害並且防止該處理模組閒置。
  23. 根據申請專利範圍第13項之用於半導體製造設備之使使用者互動自動化的方法,其步驟更包含基於該輸出來控制該基板處理工具,以最佳化該處理模組對該基板之處理的排程。
  24. 一種用於半導體製造設備之使使用者互動自動化的系統,其包含:一處理器;以及機器可讀指令,儲存於一實體機器可讀媒體上,當該處理器執行該機器可讀指令時,該機器可讀指令係將該處理器配置成進行下列步驟:自一基板處理工具之複數處理模組以及與該基板處理工具相關連之複數感應器接收資料;基於自該等處理模組及該等感應器接收的該資料,判定該基板處理工具之狀態; 產生以下兩者之間的關聯:該基板處理工具之該狀態、與該基板處理工具先前所接收到之回應於先前該狀態之出現而控制該基板處理工具的輸入,其中該關聯係至少部分基於該基板處理工具先前所接收到之回應於先前該狀態之出現的該輸入之一預定次數;以及基於該基板處理工具之該狀態與該基板處理工具先前所接收到之回應於先前該狀態之出現的該輸入之間的該關聯,產生包括與先前所接收到之該輸入相似之回應的一輸出,以控制該基板處理工具。
  25. 根據申請專利範圍第24項之用於半導體製造設備之使使用者互動自動化的系統,其中該機器可讀指令係將該處理器配置成進行下列步驟:將該基板處理工具之複數狀態以及該基板處理工具基於該複數狀態所接收到之相應輸入儲存在一資料庫;以及利用該資料庫來執行該關聯。
  26. 根據申請專利範圍第25項之用於半導體製造設備之使使用者互動自動化的系統,其中該機器可讀指令係將該處理器配置成進行下列步驟:基於與該基板處理工具及額外之基板處理工具中之一或多個相關連之歷史資料來更新該資料庫;且利用該更新後之資料庫來執行該關聯。
  27. 根據申請專利範圍第25項之用於半導體製造設備之使使用者互動自動化的系統,其中該機器可讀指令係將該處理器配置成進行下列步驟:將與一額外基板處理工具相關連之資料儲存在該資料庫中,該資料包含該額外基板處理工具之複數狀態以及該額外基板處理工具基於該等狀態所接收到之相應輸入;且利用該資料來執行該關聯。
  28. 根據申請專利範圍第24項之用於半導體製造設備之使使用者互動自動化的系統,其中該基板處理工具之該狀態包含指出與該基板處理工具相關連之錯誤的資料,且其中該輸入包含指出對該錯誤之回應的資料。
  29. 根據申請專利範圍第24項之用於半導體製造設備之使使用者互動自動化的系統,其中該基板處理工具之該狀態包含指出與該基板處理工具相關連之即將發生之錯誤的資料,且其中該輸入包含指出預防該即將發生之錯誤之回應的資料。
  30. 根據申請專利範圍第24項之用於半導體製造設備之使使用者互動自動化的系統,其中該機器可讀指令係將該處理器配置成進行下列步驟:偵測該基板處理工具之操作者的出現;且根據該操作者基於該輸出所接收到之回應來控制該基板處理工具。
  31. 根據申請專利範圍第24項之用於半導體製造設備之使使用者互動自動化的系統,其中該機器可讀指令係將該處理器配置成進行下列步驟:偵測該基板處理工具之操作者的缺席;且在該操作者缺席的情況下基於該輸出來控制該基板處理工具。
  32. 根據申請專利範圍第24項之用於半導體製造設備之使使用者互動自動化的系統,其中該機器可讀指令係將該處理器配置成進行下列步驟:偵測該基板處理工具之操作者的缺席;且通知該操作者關於該輸出。
  33. 根據申請專利範圍第24項之用於半導體製造設備之使使用者互動自動化的系統,其中該機器可讀指令係將該處理器配置成基於該輸出來控制該基板處理工具,以確保該基板之處理完成、防止對該基板的損害並且防止該處理模組閒置。
  34. 根據申請專利範圍第24項之用於半導體製造設備之使使用者互動自動化的系統,其中該機器可讀指令係將該處理器配置成基於該輸出來控制該基板處理工具,以最佳化該處理模組對該基板之處理的排程。
TW107131668A 2017-09-11 2018-09-10 用於半導體製造設備之使使用者互動自動化的系統及方法 TWI782085B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762556733P 2017-09-11 2017-09-11
US62/556,733 2017-09-11
US16/119,202 2018-08-31
US16/119,202 US10747210B2 (en) 2017-09-11 2018-08-31 System and method for automating user interaction for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
TW201921241A TW201921241A (zh) 2019-06-01
TWI782085B true TWI782085B (zh) 2022-11-01

Family

ID=63720456

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107131668A TWI782085B (zh) 2017-09-11 2018-09-10 用於半導體製造設備之使使用者互動自動化的系統及方法

Country Status (7)

Country Link
US (1) US10747210B2 (zh)
EP (1) EP3454141B1 (zh)
JP (1) JP7311253B2 (zh)
KR (1) KR102637272B1 (zh)
CN (1) CN109637947B (zh)
SG (1) SG10201807788QA (zh)
TW (1) TWI782085B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3200037A1 (en) * 2016-01-26 2017-08-02 Basf Se System and method for risk based control of a process performed by production equipment
US11133204B2 (en) * 2019-01-29 2021-09-28 Applied Materials, Inc. Chamber matching with neural networks in semiconductor equipment tools
KR102857160B1 (ko) * 2019-03-29 2025-09-08 램 리써치 코포레이션 기판 프로세싱 시스템들을 위한 모델 기반 스케줄링
JP7244367B2 (ja) * 2019-06-20 2023-03-22 ファナック株式会社 加工指令改良システム及び加工指令改良方法
US11782397B2 (en) * 2019-11-27 2023-10-10 Johnson Controls Tyco IP Holdings LLP Operator automation system
CN113642819B (zh) * 2020-05-11 2024-12-20 上海华力集成电路制造有限公司 连环许容时间区段站点异常时产品自动调度装置和方法
US11901204B2 (en) * 2020-05-22 2024-02-13 Applied Materials, Inc. Predictive wafer scheduling for multi-chamber semiconductor equipment
US12020961B2 (en) * 2020-06-22 2024-06-25 Lavorro, Inc. Automated assistance in a semiconductor manufacturing environment
US11545379B2 (en) * 2020-07-31 2023-01-03 Nanya Technology Corporation System and method for controlling semiconductor manufacturing equipment
US20220351997A1 (en) * 2021-04-28 2022-11-03 Tel Manufacturing And Engineering Of America, Inc. Automated Fault Detection in Microfabrication
US20220384223A1 (en) * 2021-05-27 2022-12-01 Tokyo Electron Limited Board processing equipment and recovery processing method
JP2022183039A (ja) * 2021-05-27 2022-12-08 東京エレクトロン株式会社 基板処理装置及びリカバリ処理方法
KR102587791B1 (ko) * 2021-12-30 2023-10-12 한국세라믹기술원 미세채널을 갖거나 다공성재질을 갖는 피증착물에 대한 원자층증착 시뮬레이션 방법
KR102737299B1 (ko) * 2022-03-10 2024-12-02 한국수력원자력 주식회사 인공지능을 이용하여 플랜트의 이상상태에 대한 조치사항을 제공하는 방법
JP7575432B2 (ja) * 2022-08-26 2024-10-29 株式会社アルバック 情報処理装置、情報処理方法およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090228408A1 (en) * 2008-03-08 2009-09-10 Tokyo Electron Limited Autonomous adaptive semiconductor manufacturing
US20120242667A1 (en) * 2011-03-21 2012-09-27 Tokyo Electron Limited Biologically based chamber matching
TW201411763A (zh) * 2012-09-04 2014-03-16 Taiwan Semiconductor Mfg 機台狀況定性監測方法及錯誤偵測分類系統
US20140195184A1 (en) * 2011-08-17 2014-07-10 Hitachi, Ltd Anomaly Detection/Diagnostic Method and Anomaly Detection/Diagnostic System
TW201528398A (zh) * 2014-01-15 2015-07-16 Ebara Corp 基板處理裝置之異常檢測裝置、及基板處理裝置
CN106815115A (zh) * 2017-01-13 2017-06-09 郑州云海信息技术有限公司 一种服务器运行状态监控系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122566A (en) * 1998-03-03 2000-09-19 Applied Materials Inc. Method and apparatus for sequencing wafers in a multiple chamber, semiconductor wafer processing system
KR100672632B1 (ko) * 2001-11-06 2007-02-09 엘지.필립스 엘시디 주식회사 액정표시소자의 약액교환방법 및 그 장치
JP4367621B2 (ja) 2003-09-18 2009-11-18 スズキ株式会社 シフト操作制御装置
US8821099B2 (en) * 2005-07-11 2014-09-02 Brooks Automation, Inc. Load port module
DE102006004408B4 (de) * 2006-01-31 2010-03-18 Advanced Micro Devices, Inc., Sunnyvale Verfahren und System zum Analysieren von standardmäßigen Anlagennachrichten in einer Fertigungsumgebung
US20070260420A1 (en) * 2006-05-03 2007-11-08 Data I/O Corporation Automated calibration system
US7801635B2 (en) * 2007-01-30 2010-09-21 Tokyo Electron Limited Real-time parameter tuning for etch processes
US7642102B2 (en) * 2007-01-30 2010-01-05 Tokyo Electron Limited Real-time parameter tuning using wafer thickness
US7571074B2 (en) * 2007-01-30 2009-08-04 Tokyo Electron Limited Method of using a wafer-thickness-dependant profile library
US8271103B2 (en) * 2007-05-02 2012-09-18 Mks Instruments, Inc. Automated model building and model updating
US8396582B2 (en) 2008-03-08 2013-03-12 Tokyo Electron Limited Method and apparatus for self-learning and self-improving a semiconductor manufacturing tool
US8501499B2 (en) * 2011-03-28 2013-08-06 Tokyo Electron Limited Adaptive recipe selector
US9471873B1 (en) 2012-09-20 2016-10-18 Amazon Technologies, Inc. Automating user patterns on a user device
US9396443B2 (en) 2013-12-05 2016-07-19 Tokyo Electron Limited System and method for learning and/or optimizing manufacturing processes
US9673071B2 (en) * 2014-10-23 2017-06-06 Lam Research Corporation Buffer station for thermal control of semiconductor substrates transferred therethrough and method of transferring semiconductor substrates
US11569138B2 (en) * 2015-06-16 2023-01-31 Kla Corporation System and method for monitoring parameters of a semiconductor factory automation system
JP6603600B2 (ja) 2015-06-30 2019-11-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 需要予測方法、需要予測装置及び需要予測プログラムを記録したコンピュータ読み取り可能な記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090228408A1 (en) * 2008-03-08 2009-09-10 Tokyo Electron Limited Autonomous adaptive semiconductor manufacturing
US20120242667A1 (en) * 2011-03-21 2012-09-27 Tokyo Electron Limited Biologically based chamber matching
US20140195184A1 (en) * 2011-08-17 2014-07-10 Hitachi, Ltd Anomaly Detection/Diagnostic Method and Anomaly Detection/Diagnostic System
TW201411763A (zh) * 2012-09-04 2014-03-16 Taiwan Semiconductor Mfg 機台狀況定性監測方法及錯誤偵測分類系統
TW201528398A (zh) * 2014-01-15 2015-07-16 Ebara Corp 基板處理裝置之異常檢測裝置、及基板處理裝置
CN106815115A (zh) * 2017-01-13 2017-06-09 郑州云海信息技术有限公司 一种服务器运行状态监控系统

Also Published As

Publication number Publication date
TW201921241A (zh) 2019-06-01
KR20190029465A (ko) 2019-03-20
EP3454141A1 (en) 2019-03-13
CN109637947B (zh) 2023-06-20
CN109637947A (zh) 2019-04-16
US20190079503A1 (en) 2019-03-14
JP2019083309A (ja) 2019-05-30
KR102637272B1 (ko) 2024-02-15
SG10201807788QA (en) 2019-04-29
US10747210B2 (en) 2020-08-18
JP7311253B2 (ja) 2023-07-19
EP3454141B1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
TWI782085B (zh) 用於半導體製造設備之使使用者互動自動化的系統及方法
KR102643782B1 (ko) 샤워헤드 전압 변동을 사용한 결함 검출
KR102726214B1 (ko) 증착 불균일성을 보상하기 위한 전극간 갭 가변 방법들
US11605546B2 (en) Moveable edge coupling ring for edge process control during semiconductor wafer processing
US10971384B2 (en) Auto-calibrated process independent feedforward control for processing substrates
TW202121483A (zh) 具有多個輸出埠的射頻功率產生器
KR20180106931A (ko) 기판 프로세싱 시스템의 전구체 증기 공급 시스템에서 플로우 모니터링을 위한 시스템들 및 방법들
US20180173255A1 (en) System and method for calculating substrate support temperture
US20250230546A1 (en) Selective control of multi-station processing chamber components
KR20180087145A (ko) 웨이퍼의 다른 cd (critical dimension) 를 예측하기 위해 피드포워드 cd 데이터를 사용하는 가상 계측 시스템들 및 방법들
JP7454509B2 (ja) 基板処理システムのモデルベースの制御
US11429409B2 (en) Software emulator for hardware components in a gas delivery system of substrate processing system