TWI776010B - 用於減少光譜分類的誤報識別之設備和方法以及相關的非暫時性電腦可讀取媒體 - Google Patents
用於減少光譜分類的誤報識別之設備和方法以及相關的非暫時性電腦可讀取媒體 Download PDFInfo
- Publication number
- TWI776010B TWI776010B TW108100900A TW108100900A TWI776010B TW I776010 B TWI776010 B TW I776010B TW 108100900 A TW108100900 A TW 108100900A TW 108100900 A TW108100900 A TW 108100900A TW I776010 B TWI776010 B TW I776010B
- Authority
- TW
- Taiwan
- Prior art keywords
- classification model
- classification
- class
- spectral
- unknown sample
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/254—Fusion techniques of classification results, e.g. of results related to same input data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
- G01J3/108—Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2433—Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/698—Matching; Classification
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/20—Identification of molecular entities, parts thereof or of chemical compositions
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/70—Machine learning, data mining or chemometrics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/129—Using chemometrical methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Data Mining & Analysis (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Evolutionary Biology (AREA)
- Medical Informatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Spectrometry And Color Measurement (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
一種設備,其可以接收識別已知樣本的訓練集和已知樣本的驗證集的一組光譜測量的結果的資訊。設備可以基於識別一組光譜測量的結果的資訊產生分類模型,其中,分類模型包括與用於光譜測定的感興趣的材料相關的至少一個類別,並且其中,分類模型包括與至少一種不感興趣的材料或基線光譜測量中的至少一個相關的不匹配類別。設備可以接收識別未知樣本的特定光譜測量的特定結果的資訊。設備可以使用分類模型確定未知樣本是否被包括在不匹配類別中。設備可以提供指示未知樣本是否被包括在不匹配類別中的輸出。
Description
本發明大致涉及用於光譜分類的減少的誤報識別。
原料識別可用於藥物產品的品質控制。例如,可以對醫用材料執行原料識別,以確定醫用材料的成分組成物是否對應於與醫用材料相關聯的包裝標籤。類似地,可以執行原料量化以確定特定樣本中特定化學物的濃度。與其他化學計量技術相比,光譜法可以有助於以減少的準備和資料獲取時間進行原料的無損識別及/或量化。
根據一些可能的實施方式,一種設備可以包括一個或多個記憶體和通信地耦合到一個或多個記憶體的一個或多個處理器。設備可以接收識別已知樣本的訓練集和已知樣本的驗證集的一組光譜測量的結果的資訊。設備可以基於識別一組光譜測量的結果的資訊產生分類模型,其中,分類模型包括與用於光譜測定(spectroscopic determination)的感興趣的材料相關的至少一個類
別,並且其中,分類模型包括與至少一種不感興趣的材料或基線光譜測量中的至少一個相關的不匹配類別(no-match class)。設備可以接收識別未知樣本的特定光譜測量的特定結果的資訊。設備可以使用分類模型確定未知樣本是否被包括在不匹配類別中。設備可以提供指示未知樣本是否被包括在不匹配類別中的輸出。
根據一些可能的實施方式,一種非暫時性電腦可讀取媒體可以儲存一個或多個指令,該一個或多個指令當由一個或多個處理器執行時使一個或多個處理器接收識別對未知樣本執行的光譜測量的結果的資訊。當由一個或多個處理器執行時,一個或多個指令可使一個或多個處理器聚集分類模型的多個類別以產生聚集的分類模型。當由一個或多個處理器執行時,一個或多個指令可以使一個或多個處理器使用聚集的分類模型來確定光譜測量被準確地執行。當由一個或多個處理器執行時,一個或多個指令可以使一個或多個處理器基於確定光譜測量被準確地執行並使用分類模型來確定未知樣本不被包括在分類模型的不匹配類別中,其中,不匹配類別與不感興趣的材料或基線光譜測量相關。當由一個或多個處理器執行時,一個或多個指令可以使一個或多個處理器基於確定未知樣本不被包括在不匹配類別中而執行未知樣本的光譜分類。當由一個或多個處理器執行時,一個或多個指令可使一個或多個處理器基於執行未知樣本的光譜分類來提供識別未知樣本的資訊。
根據一些可能的實施方式,一種方法可以包括通過設備獲得一組光譜測量的結果。方法可以包括由設備基於一組光譜測量的結果產生基於支持向量機(SVM)的分類模型,分類模型包括對應於用於分類的多種感興趣的材料的多個類別,其中,一組光譜測量包括多種感興趣的材料的樣本的臨界值數量的測量,其中,分類模型包括不對應於用於分類的多種感興趣的材料的特定類別,並且其中,一組光譜測量包括與特定類別相關的樣本的小於臨界值數
量的測量。方法可以包括由設備使用分類模型將特定樣本的特定光譜測量分類到特定類別。方法可以包括由設備基於對特定光譜測量的分類來提供指示特定樣本被分配給特定類別的資訊。
100:實施方式
200:環境
210:控制設備
210-1:控制設備
210-2:控制設備
210-3:控制設備
220:光譜儀
220-1:光譜儀
220-2:光譜儀
220-3:光譜儀
230:網路
300:設備
310:匯流排
320:處理器
330:記憶體
340:儲存元件
350:輸入元件
360:輸出元件
370:通信介面
400:流程
410:方塊
420:方塊
430:方塊
500:實施方式
505:執行光譜測量
510:訓練集和驗證集
515:對訓練樣本和驗證樣本執行光譜測量
520:用於訓練樣本的第一光譜和用於驗證樣本的第二光譜
525:訓練和驗證分類模型
530:提供分類模型
600:流程
610:方塊
620:方塊
630:方塊
640:方塊
650:方塊
660:方塊
670:方塊
700:實施方式
705:執行光譜測量
710:未知樣本
715:對未知樣本執行光譜測量
720:未知樣本的光譜
725:分類模型
730-1:感興趣的材料的類別
730-2:感興趣的材料的類別
725-3:感興趣的材料的類別
730-4:感興趣的材料的類別
730-5:感興趣的材料的類別
730-6:感興趣的材料的類別
730-7:不匹配類別
735:未知樣本
740:將未知樣本識別為干擾材料
745:提供識別作為干擾材料的樣本的資訊
750:用戶端設備
圖1A和圖1B是本文中所述的示例實施方式的概況的圖式;圖2是本文中所述的系統及/或方法可以在其中被實現的示例環境的圖式;圖3是圖2的一個或多個設備的示例元件的圖式;圖4是產生用於光譜分類的分類模型的示例流程的流程圖;圖5是與圖4中所示的示例流程相關的示例實施方式的圖式;圖6是用於在光譜分類期間避免誤報(false positive)識別的示例流程的流程圖;以及圖7A和圖7B是與圖6中所示的示例流程有關的示例實施方式的圖式。
以下針對示例實施方式的詳細描述係參考附圖。不同附圖中的相同元件符號可以指代相同或類似的元件。
原料識別(RMID)是用於識別特定樣本的成分(例如,組成物)以用於識別、驗證等的技術。例如,RMID可用於驗證藥物材料中的組成物是否對應於標籤上確定的一組組成物。類似地,原料量化是用於對特定樣本執行量化分析的技術,例如確定特定樣本中特定材料的濃度。光譜儀(spectrometer)可用於對樣本(例如,藥物材料)執行光譜法,以確定樣本的
成分、樣本的成分的濃度等。光譜儀可確定樣本的一組測量,並可提供一組測量以用於光譜測定。光譜分類技術(例如,分類器)可以有助於基於樣本的一組測量來確定樣本的成分。
然而,一些要進行光譜分類的未知樣本實際上不被包括在分類模型用以分類的類別中。例如,對於被訓練用來區分魚的類型的分類模型,使用者可能會無意中提供牛肉用於分類。在該情況下,控制設備可能執行特定材料的光譜分類,並且可能提供特定材料作為特定類型的魚的誤報識別,這將是不準確的。
作為另一示例,分類模型可以被訓練來分類糖的類型(例如,葡萄糖、果糖、半乳糖等),並量化未知樣本中每種類型的糖的各自濃度。然而,光譜儀和控制設備的使用者可能無意中試圖基於不正確地使用光譜儀執行測量來對糖的未知樣本進行分類。例如,使用者可能在離未知樣本不正確的距離處、在不同於校準條件的環境條件下、及/或類似的情況下操作光譜儀,在該校準條件下執行光譜法以訓練分類模型。在該情況下,當未知樣本實際上是第二濃度下的第二類型的糖時,控制設備可能接收到對於未知樣本的不準確光譜,導致未知樣本作為第一濃度下的第一類型的糖的誤報識別。
本文中描述的一些實施方式可以利用用於分類模型的不匹配類別來減少對於光譜法的誤報識別。例如,接收未知樣本的光譜測量的控制設備可以確定是否將未知樣本分配給不匹配類別。在一些實施方式中,控制設備可以確定未知樣本將被分配給不匹配類別,並且可以提供指示未知樣本被分配給不匹配類別的資訊,從而避免對未知樣本的誤報識別。可替代地,基於確定未知樣本並未分配給不匹配類別,控制設備可以分析未知樣本的光譜以提供例如對分類、濃度等的光譜測定。此外,控制設備可以利用置信度度量(諸如機率估計、決策值等)來濾除誤報識別。
以這種方式,光譜法的準確度相對於在不使用不匹配類別及/或置信度度量情況下執行的光譜法而得到提高。另外,當基於已知光譜樣本的訓練集產生分類模型時,可以使用不匹配類別。例如,控制設備可以確定訓練集的樣本不是對應於訓練集的其餘部分的類型(例如,基於導致錯誤樣本被引入訓練集的人為誤差),並且可以確定在產生分類模型時不包括關於樣本的資料。以這種方式,控制設備提高了用於光譜法的分類模型的準確性。
圖1A和圖1B是本文中所述的示例實施方式100的概況的圖式。如圖1A所示,示例實施方式100可以包括控制設備和光譜儀。
如圖1A中進一步示出的,控制設備可以使光譜儀對訓練集和驗證集(例如,用於分類模型的訓練和驗證的已知樣本集)執行一組光譜測量。訓練集和驗證集可以被選擇以包括用於分類模型的每個類別的臨界值數量的樣本。分類模型的類別可以指共用一種或更多種共同特徵的類似材料的分組,例如(在藥物背景下的)乳糖材料、果糖材料、對乙醯氨基酚材料、布洛芬(ibuprophen)材料、阿司匹林材料等。用於訓練分類模型的以及對於其要使用分類模型執行原料識別的材料可以被稱為感興趣的材料。
如圖1A中進一步示出的,光譜儀可以基於從控制設備接收到指令,對訓練集和驗證集執行一組光譜測量。例如,光譜儀可以確定關於訓練集和驗證集的每個樣本的光譜,以使得控制設備能夠產生一組類別,以用於將未知樣本分類為用於分類模型的感興趣的材料之一。
光譜儀可以向控制設備提供一組光譜測量。控制設備可以使用特定的測定技術並基於該組光譜測量來產生分類模型。例如,控制設備可以使用支持向量機(SVM)技術(例如,用於資訊測定的機器學習技術)產生全域分類模型。全域分類模型可以包括與將特定光譜分配給特定類別的感興趣的材料相關聯的資訊,並且可以包括與識別與特定類別相關聯的感興趣的材料的類
型相關聯的資訊。以該方式,控制設備可以基於將未知樣本的光譜分配給特定類別來提供識別未知樣本的材料的類型的資訊。
在一些實施方式中,控制設備可以接收與對於不匹配類別的樣本相關的光譜。例如,控制設備可以接收被確定為與感興趣的材料的光譜類似的光譜、與可能與感興趣的材料(例如在視覺上、化學上等)混淆的材料相關的光譜、與光譜儀的不正確操作相關的光譜(例如,在沒有樣本的情況下執行測量的光譜、在樣本和光譜儀的光學器件之間的不正確距離處執行測量的光譜等等)、及/或類似光譜。不是感興趣的材料以及可被包含在不匹配類別中的材料可以被稱為干擾(nuisance)材料或不感興趣的材料。在該情況下,控制設備可以產生用於分類模型的不匹配類別,並且可以基於被包括在驗證集中的干擾材料的光譜使用不匹配類別來驗證誤報識別避免。另外或可替代地,在分類模型的使用期間,控制設備可以接收識別干擾材料的資訊,並且可以更新分類模型以能夠避免誤報識別(例如,將干擾材料識別為感興趣的材料之一)。
如圖1B所示,控制設備可以(例如,從儲存器、從產生分類模型的另一控制設備等)接收分類模型。控制設備可以使光譜儀對未知樣本(例如,要對其執行分類或量化的未知樣本)執行一組光譜測量。光譜儀可以基於從控制設備接收到指令來執行一組光譜測量。例如,光譜儀可以確定關於未知樣本的光譜。光譜儀可以向控制設備提供一組光譜測量。控制設備可以試圖基於分類模型例如使用多階段分類技術來對未知樣本進行分類。
關於圖1B,控制設備可以試圖使用分類模型來確定未知樣本是否在不匹配類別中。例如,控制設備可以確定對應於未知樣本屬於不匹配類別的可能性的置信度度量。在該情況下,基於控制設備確定置信度度量(例如機率估計、支持向量機的決策值輸出等)滿足臨界值,控制設備可以將未知樣本分配給不匹配類別。在該情況下,控制設備可以報告未知樣本不能夠使用分類
模型被準確地分類,從而降低未知樣本經受未知樣本屬於感興趣的材料的類別的誤報識別的可能性。
在一些實施方式中,基於未知樣本不屬於不匹配類別的第一測定,控制設備可以試圖使用原位(in-situ)局部建模來執行未知集的特定樣本的測定。例如,控制設備可以確定與特定樣本和全域分類模型相關聯的一組置信度度量。在該情況下,控制設備可以基於一個或多個相應的置信度度量來選擇全域分類模型的類別的子集,並且可以基於該組類別來產生局部分類模型。局部分類模型可以是使用SVM技術和類別的子集產生的原位分類模型。基於產生原位分類模型,控制設備可以試圖基於局部分類模型對未知樣本進行分類。在該情況下,基於與局部分類模型相關聯的一個或多個置信度度量滿足臨界值,控制設備可以確定未知樣本確實屬於不匹配類別,並且可以報告未知樣本不能夠使用分類模型被分類。可替代地,控制設備可以確定未知樣本不屬於不匹配類別,並且可以報告與未知樣本相關的分類。
以這種方式,基於減少報告未知樣本作為感興趣的材料的誤報識別的可能性,控制設備相對於其他分類模型以提高的準確度實現了對於未知樣本的光譜法。
如上所指示,圖1A和圖1B僅作為示例被提供。其它示例是可能的,並且可以不同於針對圖1A和圖1B所描述的示例。
圖2是本文中所述的系統及/或方法可以在其中被實現的示例環境200的圖。如圖2所示,環境200可以包括控制設備210、光譜儀220和網路230。環境200的設備可經由有線連接、無線連接或有線連接和無線連接的組合來互連。
控制設備210可以包括能夠儲存、處理及/或路由與光譜分類相關聯的資訊的一個或多個設備。例如,控制設備210可以包括伺服器、電腦、
可穿戴設備、雲端計算設備、及/或基於訓練集的一組測量產生分類模型、基於驗證集的一組測量驗證分類模型及/或利用分類模型來基於未知集的一組測量執行光譜分類的類似設備。在一些實施方式中,如本文中所述,控制設備210可以利用機器學習技術來確定未知樣本的光譜測量是否將被分類到不匹配類別中,以減少誤報識別的可能性。在一些實施方式中,控制設備210可以與特定光譜儀220相關聯。在一些實施方式中,控制設備210可以與多個光譜儀220相關聯。在一些實施方式中,控制設備210可以從環境200中的另一設備(例如光譜儀220)接收資訊及/或向環境200中的另一設備(例如光譜儀220)傳輸資訊。
光譜儀220可以包括能夠對樣本執行光譜測量的一個或多個設備。例如,光譜儀220可以包括執行光譜法(例如,振動光譜法,諸如近紅外光(NIR)光譜儀、中紅外光光譜法(mid-IR)、拉曼(Raman)光譜法等)的光譜儀設備。在一些實施方式中,光譜儀220可以被結合到可穿戴設備中,例如可穿戴光譜儀及/或類似設備。在一些實施方式中,光譜儀220可以從環境200中的另一設備(例如控制設備210)接收資訊及/或向環境200中的另一設備(例如控制設備210)傳輸資訊。
網路230可包括一個或多個有線網路及/或無線網路。例如,網路230可包括蜂巢式網路(例如,長期演進(LTE)網路、3G網路、分碼多重存取(CDMA)網路等)、公用陸上行動網路(PLMN)、區域網路(LAN)、廣域網路(WAN)、都會區網路(MAN)、電話網路(例如,公共交換電話網路(PSTN))、私人網路、自組織網路、內部網路、網際網路、基於光纖的網路、雲端計算網路等、及/或這些或其它類型的網路的組合。
圖2中顯示的設備和網路的數量和佈置作為示例被提供。實際上,與圖2中顯示的設備及/或網路相比,可以有附加的設備及/或網路、更少的
設備及/或網路、不同的設備及/或網路、或不同地佈置的設備及/或網路。此外,圖2中顯示的兩個或更多的設備可在單個設備內實現,或圖2中顯示的單個設備可被實現為多個分散式設備。例如,儘管控制設備210和光譜儀220在本文中被描述為兩個獨立的設備,但是控制設備210和光譜儀220可以在單個設備內實現。另外或可替代地,環境200的一組設備(例如,一個或多個設備)可以執行被描述為由環境200的另一組設備執行的一個或多個功能。
圖3是設備300的示例元件的圖式。設備300可以對應於控制設備210及/或光譜儀220。在一些實施方式中,控制設備210及/或光譜儀220可以包括一個或多個設備300及/或設備300的一個或多個元件。如圖3所示,設備300可包括匯流排310、處理器320、記憶體330、儲存元件340、輸入元件350、輸出元件360、以及通信介面370。
匯流排310包括允許在設備300的元件當中通信的元件。處理器320在硬體、韌體、或硬體和軟體的組合中實現。處理器320是中央處理單元(CPU)、圖形處理單元(GPU)、加速處理單元(APU)、微處理器、微控制器、數位訊號處理器(DSP)、現場可程式閘陣列(FPGA)、專用積體電路(ASIC)、或其它類型的處理元件。在一些實施方式中,處理器320包括能夠被編程以執行功能的一個或多個處理器。記憶體330包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、及/或儲存資訊及/或指令以用於由處理器320使用的另一類型的動態或靜態存放裝置(例如,快閃記憶體、磁記憶體、及/或光學記憶體)。
儲存元件340儲存與設備300的操作和使用相關的資訊及/或軟體。例如,儲存元件340可以包括硬碟(例如,磁片、光碟、磁光碟、及/或固態磁碟)、壓縮光碟(CD)、數位通用光碟(DVD)、軟碟、盒式磁帶(cartridge)、磁帶、及/或另一類型的非暫時性電腦可讀取媒體連同相應的驅
動器。
輸入元件350包括允許設備300例如經由使用者輸入(例如,觸控式螢幕顯示器、鍵盤、小鍵盤、滑鼠、按鈕、開關、及/或麥克風)來接收資訊的元件。另外或可替代地,輸入元件350可以包括用於感測資訊的感測器(例如,全球定位系統(GPS)元件、加速度計、陀螺儀、及/或致動器)。輸出元件360包括提供來自設備300的輸出資訊的元件(例如,顯示器、揚聲器、及/或一個或多個發光二極體(LED))。
通信介面370包括使設備300能夠例如經由有線連接、無線連接、或有線和無線連接的組合與其它設備通信的類似收發機元件(例如,收發機及/或單獨的接收機和發射機)。通信介面370可以允許設備300從另一設備接收資訊及/或將資訊提供給另一設備。例如,通信介面370可以包括乙太網路介面、光學介面、同軸介面、紅外光介面、射頻(RF)介面、通用序列匯流排(USB)介面、無線區域網路介面、蜂巢式網路介面等。
設備300可以執行本文中所述的一個或多個流程。設備300可以基於處理器320執行由非暫時性電腦可讀取媒體(例如記憶體330及/或儲存元件340)儲存的軟體指令來執行這些流程。電腦可讀取媒體在本文中被定義為非暫時性記憶體設備。記憶體設備包括單個實體儲存裝置內的記憶體空間或遍佈於多個實體儲存裝置的記憶體空間。
軟體指令可以經由通信介面370從另一電腦可讀取媒體或從另一設備被讀取到記憶體330及/或儲存元件340中。儲存在記憶體330及/或儲存元件340中的軟體指令當被執行時可使處理器320執行本文中所述的一個或多個流程。另外或可替代地,硬連線電路可代替軟體指令或與軟體指令組合來使用以執行本文中所述的一個或多個流程。因此,本文中所述的實施方式不限於硬體電路和軟體的任何特定組合。
圖3中顯示的元件的數量和佈置作為示例被提供。實際上,與圖3中顯示的那些元件相比,設備300可以包括附加的元件、更少的元件、不同的元件、或不同地佈置的組件。另外或可替代地,設備300的一組元件(例如,一個或多個元件)可以執行被描述為由設備300的另一組元件執行的一個或多個功能。
圖4是產生用於光譜分類的分類模型的示例流程400的流程圖。在一些實施方式中,圖4的一個或多個流程方塊可以由控制設備210執行。在一些實施方式中,圖4的一個或多個流程方塊可以由另一設備或與控制設備210分離的或者包括控制設備210的設備組(諸如光譜儀220)執行。
如圖4所示,流程400可包括針對訓練集及/或驗證集執行一組光譜測量(方塊410)。例如,控制設備210可以(例如,使用處理器320、通信介面370等)使光譜儀220對樣本的訓練集及/或驗證集執行一組光譜測量,以確定對於訓練集及/或驗證集的每個樣本的光譜。訓練集可以指一種或更多種已知材料的樣本集,其用於產生分類模型。類似地,驗證集可以指一種或更多種已知材料的樣本集,其用於驗證分類模型的準確性。例如,訓練集及/或驗證集可以包括一組材料的一個或多個版本(例如,由不同製造商製造以控制製造差異的一個或多個版本)。
在一些實施方式中,訓練集及/或驗證集可以基於預期的一組感興趣的材料來被選擇,對於該預期的一組感興趣的材料將使用分類模型來執行光譜分類。例如,當預期對藥物材料執行光譜量化以確定藥物材料的特定成分的存在時,訓練集及/或驗證集可以包括在一組不同可能濃度下的活性藥物組成物(API)、賦形劑(excipient)等的樣本集。
在一些實施方式中,訓練集及/或驗證集可以被選擇以包括每種類型的材料的特定數量的樣本。例如,訓練集及/或驗證集可以被選擇以包括特
定材料的多個樣本(例如,5個樣本、10個樣本、15個樣本、50個樣本等)及/或其濃度。在一些實施方式中,樣本的數量可以小於臨界值。例如,可以基於10個樣本的50個光譜(例如,光譜掃描)、3個樣本的15個光譜等產生同質(homogeneous)有機化合物的類別。類似地,對於異質(heterogeneous)有機化合物,可以基於例如來自20個樣本的100個光譜、來自10個樣本的50個光譜等產生類別。類似地,可以基於來自40個樣本的400個光譜、來自20個樣本的200個光譜等產生生物或農業材料的類別。在一些實施方式中,用於干擾材料的不匹配類別的樣本及/或光譜的數量可以與同一種類型的材料(例如,同質有機化合物、異質有機化合物、生物或農業材料等)的非不匹配類別(non-no-match class)的相同或減少數量的樣本及/或光譜相關聯。以這種方式,控制設備210可以被提供有與特定類型材料相關聯的臨界值數量的光譜,從而便於對分類模型(例如,全域分類模型、局部分類模型等)或量化模型的類別的產生及/或驗證,未知樣本可以被準確地分配給該類別,該量化模型可以被用來量化分配給與量化模型相關聯的類別的光譜。
在一些實施方式中,將被分配給不匹配類別的材料的一個或多個樣本可以被包括在訓練集及/或驗證集中。例如,光譜儀220可以提供第一材料的測量,該第一材料與待使用量化模型量化的第二材料類似的光譜相關聯。以這種方式,控制設備210可以使用機器學習來訓練誤報識別的避免。在一些實施方式中,控制設備210可以基於接收到的資訊選擇用於不匹配類別的材料。例如,控制設備210可以接收識別具有與要為其產生分類模型的特定濃度的感興趣的材料類似的光譜、外觀等的干擾材料的資訊。另外或可替代地,控制設備210可以執行機器學習技術以自動識別特定感興趣的材料的干擾材料。例如,控制設備210可以使用機器學習來執行模式識別,以識別與感興趣的材料的光譜類似的干擾材料的光譜,以識別視覺上看上去與感興趣的材料類似的
干擾材料、及/或諸如此類。
在一些實施方式中,控制設備210可以使基線光譜測量被執行以識別不匹配類別的光譜。例如,控制設備210可以使光譜測量在沒有樣本存在、背景不正確、照明不正確、及/或諸如此類的情況下執行作為基線光譜測量,以確保不正確的光譜測量被分類為不匹配類別,而不是被分類為特定感興趣的材料。在該情況下,控制設備210可以自動控制光譜儀220、使用使用者介面提供資訊以指導光譜儀220的用戶執行不正確的測量等。另外或可替代地,控制設備210可以接收指示特定光譜測量被錯誤執行以使得能夠產生不匹配類別的資訊。
在一些實施方式中,控制設備210可以使多個光譜儀220執行一組光譜測量以應對一個或多個物理條件。例如,控制設備210可以使第一光譜儀220和第二光譜儀220使用NIR光譜法來執行一組振動光譜測量。另外或可替代地,控制設備210可以使一組光譜測量在多個時間、在多個位置、在多個不同的實驗室條件等被執行。以這種方式,控制設備210減少了光譜測量不準確的可能性,這是作為相對於使一組光譜測量由單個光譜儀220執行的物理條件的結果。
如圖4中進一步示出的,流程400可包括接收識別一組光譜測量的結果的資訊(方塊420)。例如,控制設備210可以(例如,使用處理器320、通信介面370等)接收識別該組光譜測量的結果的資訊。在一些實施方式中,控制設備210可以接收識別對應於訓練集及/或驗證集的樣本的一組光譜的資訊。例如,控制設備210可以接收識別在光譜儀220對訓練集執行光譜法時觀察到的特定光譜的資訊。在一些實施方式中,控制設備210可以同時接收識別訓練集和驗證集的光譜的資訊。在一些實施方式中,控制設備210可以接收識別訓練集的光譜的資訊,可以產生分類模型,並且可以在產生分類模型之後接
收識別驗證集的光譜的資訊,以能夠測試分類模型。在一些實施方式中,控制設備210可以接收作為一組光譜測量的結果的其他資訊,例如指示測量被不準確地執行以產生不匹配類別的資訊。另外或可替代地,控制設備210可以接收與識別能量吸收、能量輻射、能量散射等相關聯的資訊。
在一些實施方式中,控制設備210可以從多個光譜儀220接收識別一組光譜測量的結果的資訊。例如,控制設備210可以通過接收由多個光譜儀220執行的、在多個不同時間執行的、在多個不同位置處等執行的光譜測量來控制物理條件(例如多個光譜儀220之間的差異、實驗室條件中的潛在差異等)。
在一些實施方式中,控制設備210可以從產生分類模型的利用中移除一個或多個光譜。例如,控制設備210可以執行光譜分類,並且可以將光譜分類到不匹配類別中,並且可以確定對應於該光譜的樣本無意地是干擾材料或不感興趣的材料(例如,基於正確執行光譜法中的人為誤差、識別訓練集的光譜的資訊中的誤差等),並且可以確定從訓練集中移除該光譜。以該方式,控制設備210可以通過減少使用關於訓練集或驗證集的不正確或不準確資訊產生分類模型的可能性來提高分類模型的準確性。
如圖4中進一步示出的,流程400可以包括基於識別一組光譜測量的結果的資訊產生分類模型(方塊430)。例如,控制設備210可以基於識別一組光譜測量的結果的資訊(例如,使用處理器320、記憶體330、儲存元件340等)產生與主成分分析(PCA)-SVM分類器技術相關聯的全域分類模型(例如,用於原位局部建模技術)。
在一些實施方式中,控制設備210可以執行一組測定來產生全域分類模型。例如,控制設備210可以產生用於全域分類模型的一組類別,並且可以基於使用SVM技術將由一組光譜測量的結果識別的一組光譜分配到局部類
別中。在一些實施方式中,在使用全域分類模型期間,控制設備210使用與全域分類模型相關的置信度度量來識別對應於未知光譜的局部類別的臨界值量,基於局部類別產生局部分類模型,並且基於局部分類模型來確定未知光譜的身份。在該情況下,可以產生用於局部分類模型的不匹配類別(例如,從全域分類模型原位產生的局部分類模型可以包括不匹配類別)。以這種方式,通過使用具有第一分類和第二分類的原位局部建模,控制設備210能夠對大量類別(例如,大於臨界值,諸如大於50個類別、大於100個類別、大於200個類別、大於1000個類別等)進行分類。在一些實施方式中,控制設備210可以產生用於分類未知光譜的另一類型的分類模型及/或使用另一種類型的分類器用於分類模型。
SVM可以指執行模式識別並使用置信度度量以進行分類的監督學習模型。在一些實施方式中,當使用SVM技術產生全域分類模型時,控制設備210可以利用特定類型的核心函數來確定兩個或更多的輸入(例如,光譜)的類似性。例如,控制設備210可以利用徑向基底函數(RBF)(例如,稱為SVM-rbf)類型的核心函數,其可以被表示為對於光譜x和y的k(x,y)=exp(-∥x-y∥^2);線性函數(例如,當用於多階段測定技術時,稱為SVM-線性和層次(hier)-SVM-線性)類型的核心函數,其可以被表示為k(x,y)=<x.y>;S形函數(sigmoid function)類型的核心函數;多項式函數類型的核心函數;指數函數類型的核心函數;及/或類似的函數。
在一些實施方式中,控制設備210可以針對SVM利用特定類型的置信度度量,諸如基於機率值的SVM(例如,基於確定樣本是一組類別中的類別的成員的機率的測定)、基於決策值的SVM(例如,利用決策函數投票給一組類別中的類別作為樣本是其成員的類別的測定)等。例如,在利用基於決策值的SVM的分類模型的使用期間,控制設備210可以基於未知樣本的光譜的
測繪來確定未知樣本是否位於組成類別的邊界內,並且可以基於未知樣本是否位於組成類別的邊界內來將樣本分配給類別。以這種方式,控制設備210可以確定是否將未知光譜分配給特定類別、分配給不匹配類別等。
在一些實施方式中,控制設備210可以利用特定類別比較技術來確定決策值。例如,控制設備210可以利用一對多(one-versus-all)技術(有時稱為一對所有其它者技術),其中分類模型被分成一組子模型,每個子模型基於一類別與分類模型的每個其他類別的比較,並且決策值基於每個子模型來確定。另外或可替代地,控制設備210可以利用任一對(all-pairs)技術,其中分類模型被劃分成每個可能的類別對以形成子模型,從子模型確定決策值。
儘管本文中所述的一些實施方式是以一組特定的機器學習技術的方式來描述的,但是其他技術也可能用於確定關於未知光譜的資訊,例如材料的分類等等。
在一些實施方式中,控制設備210可以從一組分類技術中選擇要用於產生全域分類模型的特定分類器。例如,控制設備210可以產生對應於多個分類器的多個分類模型,並且可以測試多個分類模型,例如通過確定每個模型的可傳遞性(例如,基於在第一光譜儀220上執行的光譜測量產生的分類模型當應用於在第二光譜儀220上執行的光譜測量時準確的程度)、大規模測定的準確度(例如,分類模型可被用於同時對滿足臨界值的一定量的樣本分類的準確度)等等。在該情況下,控制設備210可以基於確定分類器相對於其他分類器與優越的可轉移性及/或大規模測定的準確度相關聯來選擇分類器,諸如SVM分類器(例如,層次-SVM-線性)。
在一些實施方式中,控制設備210可以基於識別訓練集的樣本的資訊來產生分類模型。例如,控制設備210可以利用識別由訓練集的樣本表示的材料的類型或濃度的資訊來識別具有材料的類型或濃度的光譜的類別。在一
些實施方式中,當產生分類模型時,控制設備210可以訓練分類模型。例如,控制設備210可以使用一組光譜測量的一部分(例如,與訓練集相關的測量)來訓練模型。另外或可替代地,控制設備210可以執行分類模型的評估。例如,控制設備210可以利用該組光譜測量的另一部分(例如,驗證集)驗證分類模型(例如,針對預測強度)。
在一些實施方式中,控制設備210可以使用多階段測定技術來驗證分類模型。例如,對於基於原位局部建模的分類,控制設備210可以確定全域分類模型當與一個或多個局部分類模型相關聯地被利用時是準確的。以該方式,控制設備210確保在提供分類模型以用於例如由控制設備210、由與其他光譜儀220相關聯的其他控制設備210等利用之前以臨界值準確度產生分類模型。
在一些實施方式中,控制設備210可以在產生分類模型之後向與其他光譜儀220相關聯的其他控制設備210提供分類模型。例如,第一控制設備210可以產生分類模型,並且可以將分類模型提供給第二控制設備210用於利用。在該情況下,對於基於原位局部建模的分類,第二控制設備210可以儲存分類模型(例如,全域分類模型),並且可以利用分類模型來產生一個或多個原位局部分類模型,以用於對未知集的一個或多個樣本進行分類。另外或可替代地,控制設備210可以儲存分類模型用於由控制設備210在執行分類、在產生一個或多個局部分類模型(例如,用於基於原位局部建模的分類)、及/或類似情況時利用。以該方式,控制設備210提供分類模型用於在未知樣本的光譜分類時利用。
雖然圖4示出了流程400的示例方塊,但在一些實施方式中,與圖4中描繪的那些方塊相比,流程400可以包括附加的方塊、更少的方塊、不同的方塊或不同地佈置的方塊。另外或可替代地,流程400的兩個或更多的方塊可平行地執行。
圖5是與圖4中所示的示例流程400相關的示例實施方式500的圖式。圖5示出了產生用於量化的具有誤報識別的分類模型的示例。
如圖5所示,控制設備210-1向光譜儀220-1傳輸資訊,以指導光譜儀220-1對訓練集和驗證集510執行一組光譜測量。假設訓練集和驗證集510包括第一組訓練樣本(例如,其測量用於訓練分類模型)和第二組驗證樣本(例如,其測量用於驗證分類模型的準確性)。如由元件符號515示出的,光譜儀220-1基於接收到指令來執行一組光譜測量。如由元件符號520示出的,控制設備210-1接收用於訓練樣本的第一組光譜和用於驗證樣本的第二組光譜。在該情況下,驗證樣本可以包括用於分類的多種感興趣的材料的樣本以及用於訓練分類模型的不匹配類別以避免誤報識別的一種或更多種干擾材料或不正確測量的一個或多個樣本。假設控制設備210-1儲存識別訓練集和驗證集510的每個樣本的資訊。
關於圖5,假設控制設備210-1已經選擇利用層次-SVM-線性分類器來產生分類模型(例如,基於針對一個或多個其他分類器測試層次-SVM-線性分類器),該分類模型可以是原位局部建模類型的分類模型。如由元件符號525示出的,控制設備210-1使用層次-SVM-線性分類器和第一組光譜訓練分類模型,並使用層次-SVM-線性分類器和第二組光譜驗證分類模型。控制設備210-1可以使用第一組光譜的子集來訓練分類模型以識別干擾材料,並且使用第二組光譜的子集來驗證分類模型在識別干擾材料中的準確性,從而產生分類模型的不匹配類別。
假設控制設備210-1確定分類模型滿足驗證臨界值(例如,具有超過驗證臨界值的準確度)。如元件符號530示出的,控制設備210-1將分類模型提供給控制設備210-2(例如,以用於在對由光譜儀220-2執行的光譜測量執行分類時利用)並提供給控制設備210-3(例如,以用於在對由光譜儀220-3執
行的光譜測量執行分類時利用)。
如上所指示,圖5僅作為示例被提供。其它示例是可能的,並且可以不同於關於圖5描述的示例。
以這種方式,控制設備210有助於基於選擇的分類技術(例如,基於模型可傳遞性、大規模分類的準確度等所選擇的技術)的分類模型的產生和分類模型的分配以供與一個或多個光譜儀220相關聯的一個或多個其他控制設備210利用。另外,控制設備210通過包括干擾材料的光譜測量以避免誤報識別來提高分類模型的準確度。
圖6是用於在原料識別期間避免誤報識別的示例流程600的流程圖。在一些實施方式中,圖6的一個或多個流程方塊可由控制設備210執行。在一些實施方式中,圖6的一個或多個流程方塊可由另一設備或與控制設備210分離的或者包括控制設備210的設備組(諸如光譜儀220)執行。
如圖6所示,流程600可以包括接收識別對未知樣本執行的一組光譜測量的結果的資訊(方塊610)。例如,控制設備210可以(例如,使用處理器320、通信介面370等)接收識別對未知樣本執行的一組光譜測量的結果的資訊。在一些實施方式中,控制設備210可以接收識別對(例如,多個樣本的)未知集的一組光譜測量的結果的資訊。未知集可以包括要對其執行測定(例如,光譜分類)的一組樣本(例如,未知樣本)。例如,控制設備210可以使光譜儀220對該組未知樣本執行一組光譜測量,並且可以接收識別對應於該組未知樣本的一組光譜的資訊。
在一些實施方式中,控制設備210可以從多個光譜儀220接收識別結果的資訊。例如,控制設備210可以使多個光譜儀220對未知集(例如,相同的樣本集)執行一組光譜測量,並且可以接收識別對應於未知集的樣本的一組光譜的資訊。另外或可替代地,控制設備210可以接收識別在多個時間、在
多個位置等執行的一組光譜測量的結果的資訊,並且可以基於在多個時間、在多個位置等執行的一組光譜測量(例如,基於平均該組光譜測量或基於另一技術)對特定樣本進行分類及/或量化。以該方式,控制設備210可以應對可能影響該組光譜測量的結果的物理條件。
另外或可替代地,控制設備210可以使第一光譜儀220對未知集的第一部分執行一組光譜測量的第一部分,並且可以使第二光譜儀220對未知集的第二部分執行該組光譜測量的第二部分。以該方式,相對於使所有光譜測量都由單個光譜儀220執行,控制設備210可以減少一定量的時間來執行一組光譜測量。
如圖6中進一步示出的,流程600可以包括確定一組光譜測量是否被準確地執行(方塊620)。例如,控制設備210可以(例如,使用處理器320、記憶體330、儲存元件340等)確定該組光譜測量是否被準確地執行。在一些實施方式中,控制設備210可以確定未知樣本的光譜測量是否在(例如,在光譜儀220的光學元件和樣本之間、在光譜儀220的光學元件和樣本的背景之間等的)校準的距離處執行。另外或可替代地,控制設備210可以確定未知樣本的光譜測量是否在校準的溫度下、在校準的壓力下、在校準的濕度下、使用校準的背景、使用校準的光譜儀、及/或類似條件下執行。
對於校準條件(諸如校準的距離、校準的溫度、校準的壓力、校準的濕度、校準的背景等)的校準的值可以包括模型在其處被訓練及/或驗證的值。例如,控制設備210可以從光譜儀220接收測量資料,其識別測量條件(諸如溫度、未知樣本和光譜儀220的光學元件之間的距離等)的值,並且控制設備210可以驗證模型是使用與在臨界值量的值內的對於校準條件的校準的值相關聯的訓練集及/或驗證集來訓練的。
另外或可替代地,控制設備210可以使用單類SVM(SC-SVM)
分類器技術來執行健全性(sanity)檢查,以確定未知光譜是否與被正確執行的測量相關聯。例如,控制設備210可以聚集分類模型中的多個類別,以形成具有單個類別的聚集分類模型,並且使用具有決策值的SVM分類器來確定未知樣本是否是離群(outlier)樣本。在該情況下,當未知樣本是離群樣本時,控制設備210可以確定該組光譜測量沒有被準確地執行,並且可以使一組光譜測量被再次執行,並且可以接收識別另一組光譜測量的另一組結果(方塊620-否)。以該方式,控制設備210能夠識別與分類模型相差臨界值量的未知光譜,而無需使用與未知樣本類似的樣本(例如,也與感興趣的材料的訓練集樣本相差臨界值量)來訓練分類模型。另外,控制設備210減少了要收集用於產生分類模型的樣本量,從而相對於獲取、儲存和處理與感興趣的材料相差臨界值量的干擾材料的其他樣本,減少了成本、時間和計算資源利用率(例如,處理資源和記憶體資源)。
此外,相對於在不確定測量條件是否匹配校準條件的情況下執行光譜法,控制設備210降低了光譜法的不準確結果(例如,不準確的量化、不準確的測定等)的可能性。另外,基於在嘗試對未知樣本進行分類之前確定對未知樣本的測量被正確地執行,相對於嘗試執行由於不正確的測量而失敗的光譜法以及執行光譜法的另一次嘗試,控制設備210減少了計算資源的利用。
如圖6中進一步示出的,基於確定一組光譜測量被準確地執行(方塊620-是),流程600可以包括基於該組光譜測量的結果確定未知樣本是否被包括在不匹配類別中(方塊630)。例如,控制設備210可以嘗試(例如,使用處理器320、記憶體330、儲存元件340等)確定未知樣本是否將被分類為不匹配類別(例如,不感興趣的材料或干擾材料)。在一些實施方式中,控制設備210可以對未知樣本進行分類,以確定未知樣本是否被包括在不匹配類別中。例如,控制設備210可以對模型使用SVM-rbf核心函數或SVM-線性核心函
數來確定用於將未知樣本分類為不匹配類別的決策值。基於該決策值滿足臨界值決策值,控制設備210可以確定未知樣本屬於不匹配類別(例如,未知樣本被確定為干擾材料,光譜被確定為與基線光譜測量相關聯,諸如使用不正確的測量距離執行的測量、使用不正確的測量背景執行的測量、使用不正確的測量照明執行的測量、不存在樣本的情況下執行的測量等)。以這種方式,控制設備210確定用於光譜法的分類模型沒有被校準用於特定未知樣本的光譜,並且避免了特定未知樣本的誤報識別。可替代地,控制設備210可以確定未知樣本不屬於不匹配類別。
如圖6中進一步示出的,基於確定未知樣本被包括在不匹配類別中(方塊630-是),流程600可以包括提供指示未知樣本被包括在不匹配類別中的輸出(方塊640)。例如,控制設備210可以例如經由使用者介面(例如,使用處理器320、記憶體330、儲存元件340、通信介面370等)提供指示未知樣本被包括在不匹配類別中的資訊。在一些實施方式中,控制設備210可以提供與識別未知樣本相關聯的資訊。例如,基於嘗試量化特定植物中的特定化學物的量,並且確定未知樣本不是該特定植物(而是另一植物,例如基於人為誤差),控制設備210可以提供識別另一植物的資訊。在一些實施方式中,控制設備210可以獲得其它分類模型,並且可以使用其它分類模型以基於將未知光譜分配給分類模型的不匹配類別來識別未知樣本。
以這種方式,控制設備210減少了基於對未知樣本的誤報識別提供不正確資訊的可能性,並且通過提供資訊以輔助確定未知樣本是另一種植物而不是特定植物來使技術人員能夠進行誤差校正。
如圖6中進一步示出的,基於確定未知樣本不被包括在不匹配類別中(方塊630-否),流程600可以包括基於一組光譜測量的結果執行一個或多個光譜測定(方塊650)。例如,控制設備210可以基於一組光譜測量的結果
(例如使用處理器320、記憶體330、儲存元件340等)執行一個或多個光譜測定。在一些實施方式中,控制設備210可以將未知樣本分配給全域分類模型的一組類別中的特定類別,以執行第一測定。例如,控制設備210可以基於全域分類模型確定與特定樣本相關聯的特定光譜對應於局部類別的材料(例如,纖維素材料、乳糖材料、咖啡因材料等)。
在一些實施方式中,控制設備210可以基於置信度度量來分配特定樣本。例如,控制設備210可以基於全域分類模型來確定特定光譜與全域分類模型的每個類別相關聯的機率。在該情況下,控制設備210可以基於對於特定局部類別的特定機率超過與其他非局部類別相關聯的其他機率,來將未知樣本分配給該特定局部類別。以這種方式,控制設備210確定與樣本相關聯的材料的類型,從而識別樣本。在一些實施方式中,控制設備210可以確定未知樣本不滿足與任何類別相關聯的臨界值,並且不滿足與不匹配類別相關聯的臨界值。在該情況下,控制設備210可以提供輸出,該輸出指示未知樣本不被包括在任何類別中,並且不能以對應於與不匹配類別相關聯的臨界值的置信度水準分配給不匹配類別。
在一些實施方式中,為了執行原位局部建模,例如對於具有大於臨界值量的類別的分類模型,控制設備210可以基於第一測定產生局部分類模型。局部分類模型可以指基於與第一測定相關聯的置信度度量使用SVM測定技術(例如SVM-rbf、SVM-線性等的核心函數;基於機率值的SVM、基於決策值的SVM等;及/或類似技術)產生的原位分類模型。在一些實施方式中,控制設備210可以產生多個局部分類模型。
在一些實施方式中,控制設備210可以基於使用全域分類模型執行第一測定來產生局部量化模型。例如,當控制設備210被用於確定未知樣本中的物質的濃度,並且多個未知樣本與用於確定物質的濃度的不同量化模型相
關聯時,控制設備210可以利用第一測定來選擇類別的子集作為用於未知樣本的局部類別,並且可以基於第一測定的結果來選擇用於未知樣本的量化模型。以這種方式,控制設備210利用層次測定和量化模型來改進光譜分類。
在一些實施方式中,控制設備210可以基於結果和局部分類模型來執行第二測定。例如,控制設備210可以基於局部分類模型和特定光譜將未知樣本分類為全域分類模型的感興趣的材料之一。在一些實施方式中,控制設備210可以確定與特定光譜和局部分類模型相關聯的一組置信度度量。例如,控制設備210可以確定特定光譜與局部分類模型的每個類別相關聯的機率,並且可以將特定光譜(例如,與特定光譜相關聯的未知樣本)分配給比局部分類模型的其他類別具有更高機率的類別。以這種方式,控制設備210識別未知樣本。在一些實施方式中,控制設備210可以確定局部分類模型的不匹配類別,並且可以將特定光譜分配給局部分類模型的不匹配類別。在一些實施方式中,控制設備210可以確定未知樣本未能滿足分類模型的類別的臨界值置信度度量,並且可以確定對於未知樣本的分類失敗。以這種方式,基於使用臨界值置信度度量,控制設備210減少未知樣本的誤報識別的可能性。
在一些實施方式中,控制設備210可以在執行第一測定之後(及/或在執行第二測定之後)執行量化。例如,控制設備210可以基於執行一個或多個測定來選擇局部量化模型,並且可以基於選擇局部量化模型來執行與特定樣本相關的量化。作為示例,當執行原料識別以確定植物材料中特定化學物的濃度時,其中植物材料與多個量化模型相關聯(例如,與植物是在室內還是室外、在冬季還是夏季生長等相關),控制設備210可以執行一組測定以識別特定量化模型。在該情況下,控制設備210可以基於執行一組測定來確定植物在冬季室內生長,並且可以選擇與在冬季室內生長的植物相關的量化模型以用於確定特定化學物的濃度。
如圖6中進一步示出的,基於當執行一個或多個光譜分類時的分類失敗(方塊650-A),流程600可以包括提供指示分類失敗的輸出,以及選擇性地更新分類模型的類別(方塊660)。例如,控制設備210可以(例如,使用處理器320、記憶體330、儲存元件340、通信介面370等)提供指示分類失敗的資訊。例如,基於確定與分類相關聯的置信度水準不滿足臨界值置信度水準,控制設備210可以提供指示分類失敗的輸出,從而降低誤報測定的可能性。另外或可替代地,基於確定置信度水準不滿足臨界值,控制設備210可以選擇性地更新分類模型的類別以用於執行分類。例如,控制設備210可以獲得(例如,諸如來自操作員、資料庫等的)識別樣本的附加資訊,並且可以確定樣本屬於標記的類別。在該情況下,控制設備210可以更新標記的類別,以實現改進的後續光譜分類。另外或可替代地,控制設備210可以獲得指示樣本不屬於標記的類別的資訊。在該情況下,控制設備210可以更新不匹配類別,以實現改進的後續不匹配分類。以這種方式,控制設備210針對光譜分類使反覆運算模型增強成為可能。
如圖6中進一步示出的,基於執行一個或多個光譜分類時的分類成功(方塊650-B),流程600可以包括提供識別與未知樣本相關的分類的資訊(方塊670)。例如,控制設備210可以(例如,使用處理器320、記憶體330、儲存元件340、通信介面370等)提供識別與未知樣本相關的分類的資訊。在一些實施方式中,控制設備210可以提供識別用於未知樣本的特定類別的資訊。例如,控制設備210可以提供指示與未知樣本相關聯的特定光譜被確定為與特定類別相關聯的資訊,從而識別未知樣本。
在一些實施方式中,控制設備210可以提供指示與將未知樣本分配給特定類別相關聯的置信度度量的資訊。例如,控制設備210可以提供識別未知樣本與特定類別等相關聯的機率的資訊。以該方式,控制設備210提供指
示特定光譜被準確地分配給特定類別的可能性的資訊。
在一些實施方式中,控制設備210可以基於執行一組分類來提供量化。例如,基於識別與未知樣本的類別相關的局部量化模型,控制設備210可以提供識別未知樣本中的物質的濃度的資訊。在一些實施方式中,控制設備210可以基於執行一組分類來更新分類模型。例如,控制設備210可以基於確定未知樣本作為感興趣的材料、干擾材料、及/或類似材料的分類,產生包括未知樣本作為訓練集的樣本的新分類模型。
雖然圖6示出了流程600的示例方塊,但在一些實施方式中,與圖6中描繪的那些方塊相比,流程600可包括附加的方塊、更少的方塊、不同的方塊或不同地佈置的方塊。另外或可替代地,流程600的兩個或更多的方塊可平行地執行。
圖7A和圖7B是與圖6中所示的示例流程600相關聯的預測成功率相關的示例實施方式700的圖式。圖7A和圖7B示出了使用基於層次支持向量機(層次-SVM線性)的技術的原料識別的示例結果。
如圖7A中由元件符號705所示,控制設備210可以使光譜儀220執行一組光譜測量。例如,控制設備210可以提供指令,以使光譜儀220獲得未知樣本的光譜,從而確定未知樣本作為分類模型被訓練來識別的一組感興趣的材料中的特定感興趣的材料的分類。如由元件符號710和元件符號715示出的,光譜儀220可以接收未知樣本,並且可以對未知樣本執行一組光譜測量。如由元件符號720示出的,控制設備210可以接收基於光譜儀220對未知樣本執行一組光譜測量的未知樣本的光譜。
如圖7B所示,控制設備210可以使用分類模型725來執行光譜分類。分類模型725包括針對訓練集的一組光譜識別的一組類別730。例如,分類模型725包括潛在感興趣的材料的類別730-1至730-6和干擾材料(例如,類似的
材料;類似的光譜;不正確獲得的光譜,例如不正確的照明光譜、不正確的距離光譜、不正確的背景光譜等;及/或類似物)的不匹配類別730-7。
如圖7B中由元件符號735和740進一步示出的,未知樣本的光譜被分配給不匹配類別,並且未知樣本被識別為干擾材料(例如,不匹配類別的成員)。例如,控制設備210可以使用原位局部建模技術來基於全域模型(例如,分類模型725)產生局部模型,並且可以基於局部模型來確定未知樣本是否是干擾材料。在一些實施方式中,控制設備210可以執行原位臨界值技術以確定未知樣本是否是干擾材料。例如,用戶端設備750可以自驗證或交叉驗證與未知樣本的第一最可能類別及/或樣本的亞軍(runner up)類別(例如,第二最可能類別)相關聯的決策值,並且可以使用該決策值來設置用於預測臨界值的上限和下限。在一些實施方式中,用戶端設備750可以利用多個局部建模策略。例如,用戶端設備750可以利用第一建模技術來確定獲勝者(winner)類別,並且利用第二建模技術來確定置信度度量。在一些實施方式中,用戶端設備750可以利用單類SVM(SC-SVM)技術來確定未知樣本是否是干擾材料。如由元件符號745示出的,控制設備210向用戶端設備750提供指示未知樣本是干擾材料的輸出,而不是提供未知樣本作為感興趣的材料中的特定濃度的感興趣材料的誤報識別。
如上所指示,圖7A和圖7B僅作為示例被提供。其它示例是可能的,並且可以不同於關於圖7A和圖7B描述的示例。
以這種方式,控制設備210基於避免未知樣本作為分類模型被訓練來識別的特定感興趣的材料的誤報識別來降低了提供光譜法的不準確結果的可能性。
前述揭示提供了說明和描述,但並不旨在窮舉或將實施方式限制到所揭露的精確形式。根據以上揭示,修改和變化是可能的或者可以從實施
方式的實踐中獲得。
本文中結合臨界值描述了一些實施方式。如本文中所使用的,滿足臨界值可以指值大於臨界值、多於臨界值、高於臨界值、大於或等於臨界值、小於臨界值、少於臨界值、低於臨界值、小於或等於臨界值、等於臨界值等。
明顯的是,本文中所述的系統和/方法可在硬體、韌體或硬體和軟體的組合的不同形式中實現。用於實現這些系統及/或方法的實際專用控制硬體或軟體碼不是實施方式的限制。因此,在本文中描述系統及/或方法的操作和行為而不參考特定的軟體碼,應理解,軟體和硬體可以被設計成基於本文中的描述來實現系統及/或方法。
儘管在申請專利範圍中陳述及/或在說明書中揭露了特徵的特定組合,但是這些組合並不旨在限制可能的實施方式的揭露內容。事實上,這些特徵中的許多可以以申請專利範圍中未具體陳述及/或說明書中未揭露的方式組合。儘管所附的每個附屬項可以直接附屬於僅僅一個申請專利範圍,但是可能的實施方式的揭露內容包括與申請專利範圍中的每個其他申請專利範圍相結合的每個附屬項。
本文中使用的任何元素、動作或指令都不應當被解釋為關鍵或必要的,除非明確這樣描述。另外,如本文中所使用的,冠詞“一”和“一個”旨在包括一個或多個專案,並且可以與“一個或多個(one or more)”互換使用。此外,如本文中所使用的,術語“集(set)”旨在包括一個或多個專案(例如,相關專案、不相關專案、相關項目和不相關專案的組合等),並且可以與“一個或多個”互換使用。在意指僅一個專案的情況下,使用術語“一個(one)”或類似的語言。另外,如本文中所使用的,術語“包含”、“包括”、“具有”、及/或類似詞語旨在是開放式的術語。此外,除非另有明確地
說明,否則術語“基於”旨在表示“至少部分基於”。
此外,本申請案包括根據下列條目的實施例:
條目1:一種設備,包括:一個或多個記憶體;以及一個或多個處理器,所述一個或多個處理器通信地耦合到所述一個或多個記憶體,所述一個或多個處理器用以:接收識別已知樣本的訓練集和已知樣本的驗證集的一組光譜測量的結果的資訊;基於識別所述一組光譜測量的結果的資訊產生分類模型,所述分類模型包括與用於光譜測定的感興趣的材料相關的至少一個類別,所述分類模型包括與至少一種不感興趣的材料或基線光譜測量中的至少一個相關的不匹配類別;接收識別未知樣本的特定光譜測量的特定結果的資訊;使用所述分類模型確定所述未知樣本是否被包括在所述不匹配類別中;以及提供指示所述未知樣本是否被包括在所述不匹配類別中的輸出。
條目2:根據條目1所述的設備,其中,當確定所述未知樣本是否被包括在所述不匹配類別中時,所述一個或多個處理器用以:基於所述分類模型確定所述未知樣本被包括在所述不匹配類別中;以及其中,當提供指示所述未知樣本是否被包括在所述不匹配類別中的輸出時,所述一個或多個處理器提供指示所述未知樣本被包括在所述不匹配類別中的輸出。
條目3:根據條目1或2所述的設備,其中,當確定所述未知樣本是否被包括在所述不匹配類別中時,所述一個或多個處理器用以:
基於所述分類模型確定所述未知樣本不被包括在所述不匹配類別中;使用所述分類模型並基於確定所述未知樣本不被包括在所述不匹配類別中來確定所述未知樣本的分類;以及其中,當提供指示所述未知樣本是否被包括在所述不匹配類別中的輸出時,所述一個或多個處理器提供識別所述未知樣本的分類的輸出。
條目4:根據條目1~3中任一條目所述的設備,其中,當接收識別所述一組光譜測量的結果的資訊時,所述一個或多個處理器用以:接收識別一組基線光譜測量的資訊;以及其中,當產生所述分類模型時,所述一個或多個處理器用以:基於所述一組基線光譜測量來訓練所述分類模型的所述不匹配類別。
條目5:根據條目1~4中任一條目所述的設備,其中,所述一組基線光譜測量與下列中的至少一個相關聯:使用不正確的測量距離執行的測量,使用不正確的測量背景執行的測量,使用不正確的測量照明執行的測量,或在不存在樣本的情況下執行的測量。
條目6:根據條目1~5中任一條目所述的設備,其中,當接收識別所述一組光譜測量的結果的資訊時,所述一個或多個處理器用以:接收識別所述至少一種不感興趣的材料的資訊;以及其中,當產生所述分類模型時,所述一個或多個處理器用以:基於識別所述至少一種不感興趣的材料的資訊,訓練所述分類模型的所述不匹配類別。
條目7:根據條目1~6中任一條目所述的設備,其中,當使用所述分類模型確定所述未知樣本是否被包括在所述不匹配類別中時,所述一個或多個處理器
用以:使用基於支持向量機的置信度度量來確定所述未知樣本是否被包括在所述不匹配類別中。
條目8:根據條目1~7中任一條目所述的設備,其中,所述置信度度量是下列中的至少一個:機率估計,或決策值。
條目9:根據條目1~8中任一條目所述的設備,其中,所述分類模型是第一分類模型;以及其中,當確定所述未知樣本是否被包括在所述不匹配類別中時,所述一個或多個處理器用以:使用所述第一分類模型執行第一分類,以針對所述特定光譜測量識別所述第一分類模型的一組局部類別;基於所述一組局部類別產生第二分類模型,所述第二分類模型包括所述不匹配類別;以及執行第二分類以確定所述未知樣本是否被包括在所述不匹配類別中。
條目10:一種儲存指令的非暫時性電腦可讀取媒體,所述指令包括:一個或多個指令,所述一個或多個指令當由一個或多個處理器執行時使所述一個或多個處理器執行以下動作:接收識別對未知樣本執行的光譜測量的結果的資訊;聚集分類模型的多個類別以產生聚集的分類模型;使用所述聚集的分類模型來確定所述光譜測量被準確地執行;基於確定所述光譜測量被準確地執行並且使用所述分類模型,確定所述未知樣本不被包括在所述分類模型的不匹配類別中,所述不匹配類別與
不感興趣的材料或基線光譜測量相關;基於確定所述未知樣本不被包括在所述不匹配類別中,執行所述未知樣本的光譜分類;以及基於執行所述未知樣本的所述光譜分類,提供識別所述未知樣本的資訊。
條目11:根據條目10所述的非暫時性電腦可讀取媒體,其中,使所述一個或多個處理器確定所述未知樣本不被包括在所述不匹配類別中的所述一個或多個指令使所述一個或多個處理器:基於與所述分類模型相關聯的置信度度量滿足臨界值,確定所述未知樣本不被包括在所述不匹配類別中。
條目12:根據條目10或11所述的非暫時性電腦可讀取媒體,其中,所述一個或多個指令當由所述一個或多個處理器執行時還使所述一個或多個處理器:基於使用一對多(one-versus-all)技術或任一對(all-pairs)技術將所述分類模型劃分成多個子模型來確定所述置信度度量。
條目13:根據條目10~12中任一條目所述的非暫時性電腦可讀取媒體,其中,所述分類模型包括大於臨界值數量的類別;以及其中,使所述一個或多個處理器執行所述光譜分類的所述一個或多個指令使所述一個或多個處理器:基於所述分類模型執行所述未知樣本的第一光譜分類;基於執行所述第一光譜分類,使用所述分類模型的類別子集來產生其它分類模型;基於所述其它分類模型來確定所述未知樣本不被包括在所述不匹配類別中;以及執行第二分類以識別所述未知樣本。
條目14:一種方法,包括:由設備獲得一組光譜測量的結果;由所述設備基於所述一組光譜測量的結果產生基於支持向量機(SVM)的分類模型,其中,所述分類模型包括對應於用於分類的多個感興趣的材料的多個類別,所述一組光譜測量包括所述多個感興趣的材料的樣本的臨界值數量的測量,其中,所述分類模型包括不對應於用於分類的所述多個感興趣的材料的特定類別,所述一組光譜測量包括與所述特定類別相關的樣本的小於所述臨界值數量的測量;由所述設備使用所述分類模型將特定樣本的特定光譜測量分類到所述特定類別;以及由所述設備基於對所述特定光譜測量的分類來提供指示所述特定樣本被分配給所述特定類別的資訊。
條目15:根據條目14所述的方法,其中,將所述特定光譜測量分類包括:將所述分類模型劃分為多個子模型,所述多個子模型中的每個子模型對應於所述分類模型的對應類別和所述分類模型的每個其他類別之間的比較;確定對應於所述多個子模型的多個決策值;以及基於所述多個決策值為所述特定樣本選擇所述特定類別。
條目16:根據條目14或15中任一條目所述的方法,其中,將所述特定光譜測量分類包括:將所述分類模型劃分為多個子模型,所述多個子模型對應於所述分類模型的每個類別之間的比較;確定對應於所述多個子模型的多個決策值;以及
基於所述多個決策值為所述特定樣本選擇所述特定類別。
條目17:根據條目14~16中任一條目所述的方法,其中,將所述特定光譜測量分類包括:使用徑向基底函數類型的核心函數或線性核心類型的核心函數來對所述特定光譜測量進行分類。
條目18:根據條目14~17中任一條目所述的方法,其中,所述一組光譜測量包括基線光譜測量和不感興趣的材料的光譜測量;以及其中,所述基線光譜測量和所述不感興趣的材料的光譜測量被分類到所述特定類別中。
條目19:根據條目14~18中任一條目所述的方法,其中,將所述特定光譜測量分類包括:使用基於所述分類模型所產生的原位局部分類模型來對所述特定光譜測量進行分類。
條目20:根據條目14~19中任一條目所述的方法,其中,將所述特定光譜測量分類包括:將所述分類模型的類別聚集成單個類別;以及基於所述單個類別來對所述特定光譜測量進行分類。
210:控制設備
700:實施方式
725:分類模型
730-1:感興趣的材料的類別
730-2:感興趣的材料的類別
725-3:感興趣的材料的類別
730-4:感興趣的材料的類別
730-5:感興趣的材料的類別
730-6:感興趣的材料的類別
730-7:不匹配類別
735:未知樣本
740:將未知樣本識別為干擾材料
745:提供識別作為干擾材料的樣本的資訊
750:用戶端設備
Claims (20)
- 一種用於減少光譜分類的誤報識別之設備,包括:一個或多個記憶體;以及一個或多個處理器,所述一個或多個處理器通信地耦合到所述一個或多個記憶體,所述一個或多個處理器用以:接收識別已知樣本的訓練集和已知樣本的驗證集的一組光譜測量的結果的資訊;基於識別所述一組光譜測量的結果的資訊產生分類模型,所述分類模型包括與用於光譜測定的感興趣的材料相關的至少一個類別,所述分類模型包括與至少一種不感興趣的材料或基線光譜測量中的至少一個相關的不匹配類別;接收識別未知樣本的特定光譜測量的特定結果的資訊;使用所述分類模型確定所述未知樣本是否被包括在所述不匹配類別中;以及提供指示所述未知樣本是否被包括在所述不匹配類別中的輸出。
- 根據請求項1所述的設備,其中,當確定所述未知樣本是否被包括在所述不匹配類別中時,所述一個或多個處理器用以:基於所述分類模型確定所述未知樣本被包括在所述不匹配類別中;以及其中,當提供指示所述未知樣本是否被包括在所述不匹配類別中的輸出時,所述一個或多個處理器提供指示所述未知樣本被包括在所述不匹配類別中的輸出。
- 根據請求項1所述的設備,其中,當確定所述未知樣本是否被包括在所述不匹配類別中時,所述一個或多個處理器用以:基於所述分類模型確定所述未知樣本不被包括在所述不匹配類別中; 使用所述分類模型並基於確定所述未知樣本不被包括在所述不匹配類別中來確定所述未知樣本的分類;以及其中,當提供指示所述未知樣本是否被包括在所述不匹配類別中的輸出時,所述一個或多個處理器提供識別所述未知樣本的分類的輸出。
- 根據請求項1所述的設備,其中,當接收識別所述一組光譜測量的結果的資訊時,所述一個或多個處理器用以:接收識別一組基線光譜測量的資訊;以及其中,當產生所述分類模型時,所述一個或多個處理器用以:基於所述一組基線光譜測量來訓練所述分類模型的所述不匹配類別。
- 根據請求項4所述的設備,其中,所述一組基線光譜測量與下列中的至少一個相關聯:使用不正確的測量距離執行的測量,使用不正確的測量背景執行的測量,使用不正確的測量照明執行的測量,或在不存在樣本的情況下執行的測量。
- 根據請求項1所述的設備,其中,當接收識別所述一組光譜測量的結果的資訊時,所述一個或多個處理器用以:接收識別所述至少一種不感興趣的材料的資訊;以及其中,當產生所述分類模型時,所述一個或多個處理器用以:基於識別所述至少一種不感興趣的材料的資訊,訓練所述分類模型的所述不匹配類別。
- 根據請求項1所述的設備,其中,當使用所述分類模型確定所述未知樣本是否被包括在所述不匹配類別中時,所述一個或多個處理器用以:使用基於支持向量機的置信度度量來確定所述未知樣本是否被包括在所述 不匹配類別中。
- 根據請求項7所述的設備,其中,所述置信度度量是下列中的至少一個:機率估計,或決策值。
- 根據請求項1所述的設備,其中,所述分類模型是第一分類模型;以及其中,當確定所述未知樣本是否被包括在所述不匹配類別中時,所述一個或多個處理器用以:使用所述第一分類模型執行第一分類,以針對所述特定光譜測量識別所述第一分類模型的一組局部類別;基於所述一組局部類別產生第二分類模型,所述第二分類模型包括所述不匹配類別;以及執行第二分類以確定所述未知樣本是否被包括在所述不匹配類別中。
- 一種儲存指令的非暫時性電腦可讀取媒體,所述指令包括:一個或多個指令,所述一個或多個指令當由一個或多個處理器執行時使所述一個或多個處理器執行以下動作:接收識別對未知樣本執行的光譜測量的結果的資訊;聚集分類模型的多個類別以產生聚集的分類模型;使用所述聚集的分類模型來確定所述光譜測量被準確地執行;基於確定所述光譜測量被準確地執行並且使用所述分類模型,確定所述未知樣本不被包括在所述分類模型的不匹配類別中,所述不匹配類別與不感興趣的材料或基線光譜測量相關;基於確定所述未知樣本不被包括在所述不匹配類別中,執行所述未知 樣本的光譜分類;以及基於執行所述未知樣本的所述光譜分類,提供識別所述未知樣本的資訊。
- 根據請求項10所述的非暫時性電腦可讀取媒體,其中,使所述一個或多個處理器確定所述未知樣本不被包括在所述不匹配類別中的所述一個或多個指令使所述一個或多個處理器:基於與所述分類模型相關聯的置信度度量滿足臨界值,確定所述未知樣本不被包括在所述不匹配類別中。
- 根據請求項11所述的非暫時性電腦可讀取媒體,其中,所述一個或多個指令當由所述一個或多個處理器執行時還使所述一個或多個處理器:基於使用一對多(one-versus-all)技術或任一對(all-pairs)技術將所述分類模型劃分成多個子模型來確定所述置信度度量。
- 根據請求項11所述的非暫時性電腦可讀取媒體,其中,所述分類模型包括大於臨界值數量的類別;以及其中,使所述一個或多個處理器執行所述光譜分類的所述一個或多個指令使所述一個或多個處理器:基於所述分類模型執行所述未知樣本的第一光譜分類;基於執行所述第一光譜分類,使用所述分類模型的類別子集來產生其它分類模型;基於所述其它分類模型來確定所述未知樣本不被包括在所述不匹配類別中;以及執行第二分類以識別所述未知樣本。
- 一種用於減少光譜分類的誤報識別之方法,包括:由設備獲得一組光譜測量的結果; 由所述設備基於所述一組光譜測量的結果產生基於支持向量機(SVM)的分類模型,其中,所述分類模型包括對應於用於分類的多個感興趣的材料的多個類別,所述一組光譜測量包括所述多個感興趣的材料的樣本的臨界值數量的測量,其中,所述分類模型包括不對應於用於分類的所述多個感興趣的材料的特定類別,所述一組光譜測量包括與所述特定類別相關的樣本的小於所述臨界值數量的測量;由所述設備使用所述分類模型將特定樣本的特定光譜測量分類到所述特定類別;以及由所述設備基於對所述特定光譜測量的分類來提供指示所述特定樣本被分配給所述特定類別的資訊。
- 根據請求項14所述的方法,其中,將所述特定光譜測量分類包括:將所述分類模型劃分為多個子模型,所述多個子模型中的每個子模型對應於所述分類模型的對應類別和所述分類模型的每個其他類別之間的比較;確定對應於所述多個子模型的多個決策值;以及基於所述多個決策值為所述特定樣本選擇所述特定類別。
- 根據請求項14所述的方法,其中,將所述特定光譜測量分類包括:將所述分類模型劃分為多個子模型,所述多個子模型對應於所述分類模型的每個類別之間的比較;確定對應於所述多個子模型的多個決策值;以及基於所述多個決策值為所述特定樣本選擇所述特定類別。
- 根據請求項14所述的方法,其中,將所述特定光譜測量分類包括:使用徑向基底函數類型的核心函數或線性核心類型的核心函數來對所述特定光譜測量進行分類。
- 根據請求項14所述的方法,其中,所述一組光譜測量包括基線光譜測量和不感興趣的材料的光譜測量;以及其中,所述基線光譜測量和所述不感興趣的材料的光譜測量被分類到所述特定類別中。
- 根據請求項14所述的方法,其中,將所述特定光譜測量分類包括:使用基於所述分類模型所產生的原位局部分類模型來對所述特定光譜測量進行分類。
- 根據請求項14所述的方法,其中,將所述特定光譜測量分類包括:將所述分類模型的類別聚集成單個類別;以及基於所述單個類別來對所述特定光譜測量進行分類。
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862622637P | 2018-01-26 | 2018-01-26 | |
| US62/622,637 | 2018-01-26 | ||
| US16/130,732 US10810408B2 (en) | 2018-01-26 | 2018-09-13 | Reduced false positive identification for spectroscopic classification |
| US16/130,732 | 2018-09-13 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201933261A TW201933261A (zh) | 2019-08-16 |
| TWI776010B true TWI776010B (zh) | 2022-09-01 |
Family
ID=64949198
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112124935A TWI875062B (zh) | 2018-01-26 | 2019-01-09 | 用於減少光譜分類的誤報識別之方法和設備以及相關的非暫時性電腦可讀取媒體 |
| TW111129742A TWI810013B (zh) | 2018-01-26 | 2019-01-09 | 用於減少光譜分類的誤報識別之設備和方法以及相關的非暫時性電腦可讀取媒體 |
| TW108100900A TWI776010B (zh) | 2018-01-26 | 2019-01-09 | 用於減少光譜分類的誤報識別之設備和方法以及相關的非暫時性電腦可讀取媒體 |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112124935A TWI875062B (zh) | 2018-01-26 | 2019-01-09 | 用於減少光譜分類的誤報識別之方法和設備以及相關的非暫時性電腦可讀取媒體 |
| TW111129742A TWI810013B (zh) | 2018-01-26 | 2019-01-09 | 用於減少光譜分類的誤報識別之設備和方法以及相關的非暫時性電腦可讀取媒體 |
Country Status (8)
| Country | Link |
|---|---|
| US (3) | US10810408B2 (zh) |
| EP (2) | EP3518147A1 (zh) |
| JP (3) | JP6942741B2 (zh) |
| KR (4) | KR102338904B1 (zh) |
| CN (3) | CN113989603B (zh) |
| CA (1) | CA3029507A1 (zh) |
| MX (2) | MX393791B (zh) |
| TW (3) | TWI875062B (zh) |
Families Citing this family (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11656174B2 (en) | 2018-01-26 | 2023-05-23 | Viavi Solutions Inc. | Outlier detection for spectroscopic classification |
| US10810408B2 (en) | 2018-01-26 | 2020-10-20 | Viavi Solutions Inc. | Reduced false positive identification for spectroscopic classification |
| US11009452B2 (en) | 2018-01-26 | 2021-05-18 | Viavi Solutions Inc. | Reduced false positive identification for spectroscopic quantification |
| WO2020086635A1 (en) * | 2018-10-23 | 2020-04-30 | Amgen Inc. | Automatic calibration and automatic maintenance of raman spectroscopic models for real-time predictions |
| US11223638B2 (en) * | 2018-12-27 | 2022-01-11 | Rapid7, Inc. | Stable network user account classifier |
| JP6856103B2 (ja) * | 2019-09-30 | 2021-04-07 | 株式会社三洋物産 | 遊技機 |
| WO2021081263A1 (en) * | 2019-10-25 | 2021-04-29 | Amgen Inc. | Configurable handheld biological analyzers for identification of biological products based on raman spectroscopy |
| JP7353940B2 (ja) * | 2019-11-26 | 2023-10-02 | 株式会社日立製作所 | 転移可能性判定装置、転移可能性判定方法、及び転移可能性判定プログラム |
| SG10201911636PA (en) * | 2019-12-04 | 2020-03-30 | Teapasar Pte Ltd | System and method for non-destructive rapid food profiling using artificial intelligence |
| JP7361594B2 (ja) | 2019-12-19 | 2023-10-16 | キヤノン株式会社 | 識別装置、処理装置、処理方法、およびプログラム |
| JP7418200B2 (ja) * | 2019-12-19 | 2024-01-19 | キヤノン株式会社 | 識別装置、処理装置、処理方法、およびプログラム |
| CN113093967A (zh) * | 2020-01-08 | 2021-07-09 | 富泰华工业(深圳)有限公司 | 数据生成方法、装置、计算机装置及存储介质 |
| KR20210094328A (ko) * | 2020-01-21 | 2021-07-29 | 삼성전자주식회사 | 대상체 인식 장치 및 그 동작 방법 |
| WO2021168612A1 (en) | 2020-02-24 | 2021-09-02 | Yangtze Memory Technologies Co., Ltd. | Systems and methods for semiconductor chip surface topography metrology |
| CN111356896B (zh) | 2020-02-24 | 2021-01-12 | 长江存储科技有限责任公司 | 用于半导体芯片表面形貌计量的系统和方法 |
| CN111356897B (zh) * | 2020-02-24 | 2021-02-19 | 长江存储科技有限责任公司 | 用于半导体芯片表面形貌计量的系统和方法 |
| US11727089B2 (en) * | 2020-09-08 | 2023-08-15 | Nasdaq, Inc. | Modular machine learning systems and methods |
| EP4033419A1 (en) * | 2021-01-20 | 2022-07-27 | Viavi Solutions Inc. | Outlier detection for spectroscopic classification |
| TWI760206B (zh) * | 2021-05-04 | 2022-04-01 | 行政院農業委員會農業藥物毒物試驗所 | 基於光譜圖辨識提供風險值的光學量測方法、光學量測系統、伺服端電腦裝置與客戶端電腦裝置 |
| US20230038984A1 (en) * | 2021-07-30 | 2023-02-09 | Viavi Solutions Inc. | Utilizing prediction thresholds to facilitate spectroscopic classification |
| CN115004019B (zh) * | 2021-07-30 | 2025-09-30 | 北京大学深圳研究生院 | 一种基于晶体结构数据库的材料解析方法、系统及应用 |
| US11860035B2 (en) * | 2021-12-27 | 2024-01-02 | Viavi Solutions Inc. | Blending process end point detection |
| US12352692B2 (en) | 2021-12-27 | 2025-07-08 | Viavi Solutions Inc. | Dynamic process end point detection |
| US11920980B2 (en) * | 2022-01-31 | 2024-03-05 | Viavi Solutions Inc. | Rolling principal component analysis for dynamic process monitoring and end point detection |
| CN114692719B (zh) * | 2022-02-24 | 2023-04-07 | 电子科技大学 | 一种基于svm-Tradboost模型迁移的XRF小样本元素分类方法 |
| WO2025115002A1 (en) * | 2023-11-27 | 2025-06-05 | Ogi Systems Ltd | A method and apparatus for analyzing a gemstone |
| CN121167434B (zh) * | 2025-11-20 | 2026-01-30 | 福建耘福食品有限公司 | 一种基于多模态传感的草本类作物加工质量监测系统 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030028358A1 (en) * | 2001-08-06 | 2003-02-06 | Xinhui Niu | Method and system of dynamic learning through a regression-based library generation process |
| US20070008523A1 (en) * | 2003-04-16 | 2007-01-11 | Kaye Stephen T | Rapid pharmaceutical identification and verification system |
| US20070192035A1 (en) * | 2005-06-09 | 2007-08-16 | Chem Image Corporation | Forensic integrated search technology |
| US20110237446A1 (en) * | 2006-06-09 | 2011-09-29 | Chemlmage Corporation | Detection of Pathogenic Microorganisms Using Fused Raman, SWIR and LIBS Sensor Data |
| US20150066377A1 (en) * | 2012-04-10 | 2015-03-05 | Biosparq B.V. | Method for Classification of a Sample on the Basis of Spectral Data, Method for Creating a Database and Method for Using this Database, and Corresponding Computer Program, Data Storage Medium and System |
| US20150154286A1 (en) * | 2013-12-02 | 2015-06-04 | Qbase, LLC | Method for disambiguated features in unstructured text |
| TW201546640A (zh) * | 2013-09-16 | 2015-12-16 | Biodesix Inc | 使用微分類器及規則化之組合的分類器產生方法與其用途 |
| CN106483083A (zh) * | 2015-08-26 | 2017-03-08 | 唯亚威通讯技术有限公司 | 使用光谱学的识别 |
Family Cites Families (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2566543B1 (fr) | 1984-06-20 | 1988-02-26 | Commissariat Energie Atomique | Dispositif optique a rendement de collection eleve et cytofluorimetre en faisant application |
| JP2922110B2 (ja) | 1994-02-22 | 1999-07-19 | 株式会社エヌ・ティ・ティ・データ | 物品同定システム |
| JP3761080B2 (ja) * | 2001-11-05 | 2006-03-29 | 富士写真フイルム株式会社 | 全反射減衰を利用した測定方法および測定装置 |
| JP4189322B2 (ja) | 2002-03-08 | 2008-12-03 | センシス メディカル インク | 近赤外線分光によるブドウ糖の非侵襲的測定のためのコンパクトな装置 |
| US7376456B2 (en) | 2002-08-05 | 2008-05-20 | Infraredx, Inc. | Near-infrared spectroscopic analysis of blood vessel walls |
| JP4253522B2 (ja) * | 2003-03-28 | 2009-04-15 | 株式会社日立ハイテクノロジーズ | 欠陥分類方法及び装置 |
| US7514268B2 (en) | 2003-11-24 | 2009-04-07 | The Boeing Company | Method for identifying contaminants |
| WO2005069188A1 (ja) | 2003-12-26 | 2005-07-28 | Dainippon Sumitomo Pharma Co., Ltd. | 化合物および蛋白質間の相互作用を予測するシステム |
| AU2005309338A1 (en) * | 2004-11-29 | 2006-06-01 | Scientific Analytics Systems Pty Ltd | Modelling a phenomenon that has spectral data |
| CA2589176A1 (en) * | 2004-11-29 | 2006-06-01 | Scientific Analytics Systems Pty Ltd | Modelling a phenomenon that has spectral data |
| US20070148697A1 (en) | 2005-12-27 | 2007-06-28 | Boston Scientific Scimed, Inc. | Methods and system for high throughput screening of polymer materials for medical devices |
| RU2466458C2 (ru) | 2006-03-10 | 2012-11-10 | Конинклейке Филипс Электроникс, Н.В. | Способы и системы идентификации паттернов днк при помощи спектрального анализа |
| US7990532B2 (en) * | 2007-01-16 | 2011-08-02 | Chemimage Corporation | Method and apparatus for multimodal detection |
| EP1992939A1 (en) | 2007-05-16 | 2008-11-19 | National University of Ireland, Galway | A kernel-based method and apparatus for classifying materials or chemicals and for quantifying the properties of materials or chemicals in mixtures using spectroscopic data. |
| US8781757B2 (en) * | 2007-10-12 | 2014-07-15 | Real-Time Analyzers, Inc. | Method and apparatus for determining properties of fuels |
| JP5186278B2 (ja) * | 2008-05-14 | 2013-04-17 | アズビル株式会社 | 外れ値検出方法、外れ値検出装置およびプログラム |
| CN101504363A (zh) | 2009-03-18 | 2009-08-12 | 哈尔滨商业大学 | 一种基于近红外光谱分析的食用油脂酸价检测方法 |
| JP5586889B2 (ja) | 2009-07-29 | 2014-09-10 | 株式会社日立ハイテクノロジーズ | 粒子画像解析装置 |
| JP4805415B2 (ja) | 2009-12-25 | 2011-11-02 | 古河電気工業株式会社 | 検体識別分取装置および検体識別分取方法 |
| WO2012019118A1 (en) | 2010-08-05 | 2012-02-09 | Abbott Point Of Care, Inc. | Method and apparatus for automated whole blood sample analyses from microscopy images |
| US8859969B2 (en) | 2012-03-27 | 2014-10-14 | Innovative Science Tools, Inc. | Optical analyzer for identification of materials using reflectance spectroscopy |
| EP2648133A1 (fr) | 2012-04-04 | 2013-10-09 | Biomerieux | Identification de microorganismes par spectrometrie et classification structurée |
| CN103364359A (zh) | 2012-04-11 | 2013-10-23 | 天士力制药集团股份有限公司 | Simca模式识别法在近红外光谱识别大黄药材中的应用 |
| US10043264B2 (en) * | 2012-04-19 | 2018-08-07 | Applied Materials Israel Ltd. | Integration of automatic and manual defect classification |
| US20130311136A1 (en) * | 2012-05-18 | 2013-11-21 | Mustard Tree Instruments, Llc | Rule-Based Sample Verification and Chemical Monitoring Methodology |
| EP2976605B1 (en) | 2013-03-21 | 2023-11-01 | Viavi Solutions Inc. | Spectroscopic characterization of seafood |
| JP5850205B2 (ja) | 2013-11-27 | 2016-02-03 | 大日本印刷株式会社 | 培地情報登録システム、コロニー検出装置、プログラム及び衛生管理システム |
| CN105829869B (zh) * | 2013-12-23 | 2020-05-05 | 赛默科技便携式分析仪器有限公司 | 现场使用光谱法设备的适配 |
| EP3201812B1 (en) | 2014-10-02 | 2021-02-17 | Biodesix, Inc. | Predictive test for aggressiveness or indolence of prostate cancer from mass spectrometry of blood-based sample |
| JP6547275B2 (ja) * | 2014-10-29 | 2019-07-24 | 株式会社リコー | 情報処理システム、情報処理装置、情報処理方法、及びプログラム |
| US9824434B2 (en) | 2015-08-18 | 2017-11-21 | Industrial Technology Research Institute | System and method for object recognition |
| RU2018127709A (ru) | 2016-01-22 | 2020-02-25 | Отрэйсис, Инк. | Системы и способы улучшения диагностики заболеваний |
| SG10202009671UA (en) | 2016-04-04 | 2020-11-27 | Boehringer Ingelheim Rcv Gmbh | Real time monitoring of product purification |
| EP3258285B1 (en) | 2016-06-14 | 2020-10-21 | Bruker BioSpin GmbH | Method for predicting chemical shift values of nmr spin systems in a sample of a fluid class, in particular in a sample of a biofluid |
| EP3267374A1 (en) * | 2016-07-04 | 2018-01-10 | Mu Sigma Business Solutions Pvt. Ltd. | Guided analytics system and method |
| WO2018017467A1 (en) | 2016-07-18 | 2018-01-25 | NantOmics, Inc. | Distributed machine learning systems, apparatus, and methods |
| US10444213B2 (en) * | 2016-08-25 | 2019-10-15 | Viavi Solutions Inc. | Spectroscopic classification of conformance with dietary restrictions |
| CN106772417B (zh) * | 2016-12-31 | 2017-11-14 | 华中科技大学 | 一种动目标多维度多尺度红外光谱特征测量方法及系统 |
| CN107229819A (zh) * | 2017-05-03 | 2017-10-03 | 中国石油大学(北京) | 一种催化裂化装置数据中离群数据识别方法及系统 |
| US10936921B2 (en) | 2017-06-15 | 2021-03-02 | Spynsite Llc | Machine learning and/or image processing for spectral object classification |
| CN107480690A (zh) * | 2017-07-04 | 2017-12-15 | 中国科学院计算技术研究所 | 一种基于支持向量机的包含未知类别的多分类方法 |
| CN107561024B (zh) | 2017-07-17 | 2020-03-17 | 核工业北京地质研究院 | 一种适用于盐湖富铀水体的高光谱遥感识别方法 |
| US10810408B2 (en) | 2018-01-26 | 2020-10-20 | Viavi Solutions Inc. | Reduced false positive identification for spectroscopic classification |
| US11009452B2 (en) | 2018-01-26 | 2021-05-18 | Viavi Solutions Inc. | Reduced false positive identification for spectroscopic quantification |
| US11656174B2 (en) | 2018-01-26 | 2023-05-23 | Viavi Solutions Inc. | Outlier detection for spectroscopic classification |
-
2018
- 2018-09-13 US US16/130,732 patent/US10810408B2/en active Active
-
2019
- 2019-01-03 EP EP19150264.0A patent/EP3518147A1/en not_active Ceased
- 2019-01-03 EP EP23157642.2A patent/EP4206653A1/en active Pending
- 2019-01-09 CA CA3029507A patent/CA3029507A1/en active Pending
- 2019-01-09 TW TW112124935A patent/TWI875062B/zh active
- 2019-01-09 TW TW111129742A patent/TWI810013B/zh active
- 2019-01-09 TW TW108100900A patent/TWI776010B/zh active
- 2019-01-10 MX MX2019000411A patent/MX393791B/es unknown
- 2019-01-10 MX MX2022008349A patent/MX2022008349A/es unknown
- 2019-01-21 JP JP2019007899A patent/JP6942741B2/ja active Active
- 2019-01-21 CN CN202111346296.9A patent/CN113989603B/zh active Active
- 2019-01-21 CN CN202511334723.XA patent/CN121190844A/zh active Pending
- 2019-01-21 CN CN201910054785.3A patent/CN110084261B/zh active Active
- 2019-01-23 KR KR1020190008936A patent/KR102338904B1/ko active Active
-
2020
- 2020-10-16 US US17/072,437 patent/US11656175B2/en active Active
-
2021
- 2021-09-08 JP JP2021146267A patent/JP7238056B2/ja active Active
- 2021-12-08 KR KR1020210174941A patent/KR102569560B1/ko active Active
-
2023
- 2023-03-01 JP JP2023031287A patent/JP7539511B2/ja active Active
- 2023-05-04 US US18/312,241 patent/US12099003B2/en active Active
- 2023-08-17 KR KR1020230107648A patent/KR102731696B1/ko active Active
-
2024
- 2024-11-13 KR KR1020240161275A patent/KR20240164487A/ko active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030028358A1 (en) * | 2001-08-06 | 2003-02-06 | Xinhui Niu | Method and system of dynamic learning through a regression-based library generation process |
| US20070008523A1 (en) * | 2003-04-16 | 2007-01-11 | Kaye Stephen T | Rapid pharmaceutical identification and verification system |
| US20070192035A1 (en) * | 2005-06-09 | 2007-08-16 | Chem Image Corporation | Forensic integrated search technology |
| US20110237446A1 (en) * | 2006-06-09 | 2011-09-29 | Chemlmage Corporation | Detection of Pathogenic Microorganisms Using Fused Raman, SWIR and LIBS Sensor Data |
| US20150066377A1 (en) * | 2012-04-10 | 2015-03-05 | Biosparq B.V. | Method for Classification of a Sample on the Basis of Spectral Data, Method for Creating a Database and Method for Using this Database, and Corresponding Computer Program, Data Storage Medium and System |
| TW201546640A (zh) * | 2013-09-16 | 2015-12-16 | Biodesix Inc | 使用微分類器及規則化之組合的分類器產生方法與其用途 |
| US20150154286A1 (en) * | 2013-12-02 | 2015-06-04 | Qbase, LLC | Method for disambiguated features in unstructured text |
| CN106483083A (zh) * | 2015-08-26 | 2017-03-08 | 唯亚威通讯技术有限公司 | 使用光谱学的识别 |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI776010B (zh) | 用於減少光譜分類的誤報識別之設備和方法以及相關的非暫時性電腦可讀取媒體 | |
| TWI759577B (zh) | 用於在光譜量化期間避免誤報識別的設備和方法以及相關的非暫時性電腦可讀取媒體 | |
| US20230273121A1 (en) | Outlier detection for spectroscopic classification | |
| HK40058730A (zh) | 用於光谱分类的减少的误报识别 | |
| EP4033419A1 (en) | Outlier detection for spectroscopic classification | |
| HK40005112B (zh) | 用於光谱分类的减少的误报识别 | |
| HK40005112A (zh) | 用於光谱分类的减少的误报识别 | |
| HK40069312A (zh) | 光谱分类的异常检测 | |
| HK40004123A (zh) | 用於光谱分类的减少的误报识别 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| GD4A | Issue of patent certificate for granted invention patent |