[go: up one dir, main page]

TWI775059B - Tool wear prediction system using evolutionary fuzzy neural network and method thereof - Google Patents

Tool wear prediction system using evolutionary fuzzy neural network and method thereof Download PDF

Info

Publication number
TWI775059B
TWI775059B TW109109057A TW109109057A TWI775059B TW I775059 B TWI775059 B TW I775059B TW 109109057 A TW109109057 A TW 109109057A TW 109109057 A TW109109057 A TW 109109057A TW I775059 B TWI775059 B TW I775059B
Authority
TW
Taiwan
Prior art keywords
tool wear
module
sub
neural network
fuzzy neural
Prior art date
Application number
TW109109057A
Other languages
Chinese (zh)
Other versions
TW202137024A (en
Inventor
林正堅
陳紹賢
謝天昕
吳宇杋
林鑫佑
Original Assignee
百德機械股份有限公司
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 百德機械股份有限公司, 國立勤益科技大學 filed Critical 百德機械股份有限公司
Priority to TW109109057A priority Critical patent/TWI775059B/en
Publication of TW202137024A publication Critical patent/TW202137024A/en
Application granted granted Critical
Publication of TWI775059B publication Critical patent/TWI775059B/en

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Numerical Control (AREA)

Abstract

A tool wear prediction system using an evolutionary fuzzy neural network and a system thereof are proposed. The tool wear prediction system is configured to observe a plurality of cutting chips as the basis for tool wear. Since the cutting chips make direct contact with a tool during processing, it can reflect the real situation during processing compared signals obtained by a camera. A color of a surface of the cutting chips is imaged, and the acquired image color information is converted to a plurality of standard CIExy chromaticity coordinate values. The standard CIExy chromaticity coordinate values, a plurality of cumulative cutting time and a plurality of tool wear values are used to establish a prediction model. Therefore, the present disclosure uses an interval type-II fuzzy neural network as the prediction model, and a cooperative whale optimization algorithm to optimize the model parameters.

Description

利用演化式模糊類神經網路之刀具磨耗預測系統及其方法 Tool wear prediction system and method using evolutionary fuzzy neural network

本發明是關於一種刀具磨耗預測系統及其方法,特別是關於一種利用演化式模糊類神經網路之刀具磨耗預測系統及其方法。 The present invention relates to a tool wear prediction system and method, in particular to a tool wear prediction system and method using evolutionary fuzzy neural network.

現今的機械產業中,電腦數值控制(Computer Numerical Control;CNC)加工機佔有相當高的影響,在使用刀具加工的過程中,刀具必定會產生磨耗,而磨耗攸關著整體加工的品質與成本、更換刀具的時機,過早或過晚更換都會增加成本。而為了避免成本增加的問題,刀具磨耗的預測就有其重要性。 In today's machinery industry, Computer Numerical Control (CNC) processing machines have a very high influence. In the process of using tools to process, the tools will inevitably wear, and wear is related to the quality and cost of the overall processing. The timing of changing the tool, too early or too late can increase the cost. In order to avoid the problem of increased cost, the prediction of tool wear is important.

習知刀具磨耗的感測方式可分為兩種,其中一種是直接式感測,其可細分為:放射物質感測器、距離感測器及光學感測器等等。另一種則為間接式感測,其可依照接觸與否細分為接觸式與非接觸式,接觸式的感測器有:動力計、加速規、電流感測器等,而非接觸式則可以使用聲發射感測器。間接式量測取得的數據較難直接反應實際的 切削狀況,且習知刀具磨耗預測技術的演算法存在收斂速度過快而易陷入區域最佳解之問題。由此可知,目前此領域上缺乏一種可優化模型參數而得到較準確之預測刀具磨耗值的刀具磨耗預測系統及其方法,故相關研究者均在尋求其解決之道。 There are two conventional sensing methods for tool wear, one of which is direct sensing, which can be subdivided into: radioactive material sensor, distance sensor, optical sensor and so on. The other is indirect sensing, which can be subdivided into contact type and non-contact type according to the contact or not. Contact type sensors include: dynamometer, accelerometer, current sensor, etc., while non-contact type can be Use acoustic emission sensors. The data obtained by indirect measurement is difficult to directly reflect the actual cutting conditions, and the algorithm of the conventional tool wear prediction technology has the problem that the convergence speed is too fast and it is easy to fall into the regional optimal solution. It can be seen that there is currently a lack of a tool wear prediction system and method that can optimize the model parameters to obtain a more accurate prediction tool wear value. Therefore, relevant researchers are all looking for solutions.

因此,本發明之目的在於提供一種利用演化式模糊類神經網路之刀具磨耗預測系統及其方法,其先對切屑表面顏色進行取像,再將取得的圖像色彩資訊轉換到標準色度參數,並使用標準色度參數、切削參數、累積切削時間與刀具磨耗值來建立預測模型。然後以區間第二型模糊類神經網路作為預測模型,並使用動態分群協同式差分進化演算法來優化模型參數,以解決習知刀具磨耗預測技術中演算法存在收斂速度過快而易陷入區域最佳解之問題。 Therefore, the purpose of the present invention is to provide a tool wear prediction system and method using an evolutionary fuzzy neural network, which firstly takes an image of the chip surface color, and then converts the obtained image color information into standard chromaticity parameters , and use standard chromaticity parameters, cutting parameters, cumulative cutting time and tool wear values to build a predictive model. Then, the interval second type fuzzy neural network is used as the prediction model, and the dynamic grouping cooperative differential evolution algorithm is used to optimize the model parameters, so as to solve the problem that the algorithm in the conventional tool wear prediction technology has a too fast convergence speed and is easy to fall into the area. The problem of the best solution.

依據本發明的結構態樣之一實施方式提供一種利用演化式模糊類神經網路之刀具磨耗預測系統,其用以預測刀具切削工件所產生之實際刀具磨耗值。此利用演化式模糊類神經網路之刀具磨耗預測系統包含切削機台、攝影機以及運算處理器,其中切削機台驅動刀具切削工件而產生複數切屑。攝影機擷取各切屑之影像。運算處理器訊號連接切削機台與攝影機,且運算處理器包含參數規劃模組、時間記錄模組、色彩轉換模組及預測刀具磨耗值產生模組。參數規劃模組提供複數切削因子依據一田口直交表 規劃出複數切削參數,此些切削因子對應刀具。時間記錄模組記錄刀具切削過程之複數累積切削時間。色彩轉換模組接收切屑之影像並將影像轉換成複數標準色度參數。預測刀具磨耗值產生模組訊號連接參數規劃模組、時間記錄模組及色彩轉換模組。預測刀具磨耗值產生模組將切削參數、標準色度參數及累積切削時間依據一區間第二型模糊類神經網路運算而產生複數預測刀具磨耗值,區間第二型模糊類神經網路經由一動態分群協同式差分進化演算單元調整而產生一橫向演化預測刀具磨耗值與一縱向演化預測刀具磨耗值,且預測刀具磨耗值產生模組將預測刀具磨耗值、橫向演化預測刀具磨耗值及縱向演化預測刀具磨耗值進行比較而選擇出與實際刀具磨耗值相差之最小誤差者,以更新為一最佳預測刀具磨耗值。 According to an embodiment of the structural aspect of the present invention, a tool wear prediction system using an evolutionary fuzzy neural network is provided, which is used to predict the actual tool wear value generated by the tool cutting a workpiece. The tool wear prediction system using evolutionary fuzzy neural network includes a cutting machine, a camera and an arithmetic processor, wherein the cutting machine drives the tool to cut the workpiece to generate multiple chips. The camera captures images of each chip. The arithmetic processor signal is connected to the cutting machine and the camera, and the arithmetic processor includes a parameter planning module, a time recording module, a color conversion module and a predicted tool wear value generating module. The parametric planning module provides complex cutting factors based on the Itaguchi orthogonal table Complex cutting parameters are planned, and these cutting factors correspond to the tools. The time recording module records the complex cumulative cutting time of the tool cutting process. The color conversion module receives the image of the chips and converts the image into complex standard chromaticity parameters. The predicted tool wear value generation module signal is connected to the parameter planning module, the time recording module and the color conversion module. The predicted tool wear value generation module generates complex predicted tool wear values according to the cutting parameters, standard chromaticity parameters and accumulated cutting time according to the operation of an interval type 2 fuzzy neural network. The dynamic grouping synergistic differential evolution calculation unit is adjusted to generate a lateral evolution predicted tool wear value and a longitudinal evolution predicted tool wear value, and the predicted tool wear value generation module will predict the tool wear value, the lateral evolution predicted tool wear value and the longitudinal evolution The predicted tool wear value is compared and the one with the smallest error from the actual tool wear value is selected to be updated as an optimal predicted tool wear value.

藉此,本發明的利用演化式模糊類神經網路之刀具磨耗預測系統透過區間第二型模糊類神經網路作為預測模型,並使用動態分群協同式差分進化演算單元來優化模型參數,以解決習知刀具磨耗預測技術中演算法存在收斂速度過快而易陷入區域最佳解之問題。 Thereby, the tool wear prediction system using the evolutionary fuzzy neural network of the present invention uses the interval type II fuzzy neural network as the prediction model, and uses the dynamic grouping cooperative differential evolution calculation unit to optimize the model parameters to solve the problem. The algorithm in the conventional tool wear prediction technology has the problem that the convergence speed is too fast and it is easy to fall into the regional optimal solution.

依據本發明的方法態樣之一實施方式提供一種利用演化式模糊類神經網路之刀具磨耗預測方法,其用以預測一刀具切削一工件所產生之一實際刀具磨耗值。此利用演化式模糊類神經網路之刀具磨耗預測方法包含參數規劃步驟、切削步驟、數據收集步驟、色彩轉換步驟以及預測刀具磨耗值產生步驟。參數規劃步驟係提供複數切削因子 依據一田口直交表規劃出複數切削參數,此些切削因子對應刀具。切削步驟係驅動刀具切削工件而產生複數切屑,並記錄刀具於切削過程之複數累積切削時間。數據收集步驟係驅動一攝影機擷取各切屑之一影像。色彩轉換步驟係將切屑之影像轉換成複數標準色度參數。預測刀具磨耗值產生步驟係將切削參數、標準色度參數及累積切削時間依據一區間第二型模糊類神經網路模型運算而產生複數預測刀具磨耗值。區間第二型模糊類神經網路模型經由一動態分群協同式差分進化演算法調整而產生一橫向演化預測刀具磨耗值與一縱向演化預測刀具磨耗值,且預測刀具磨耗值產生步驟將預測刀具磨耗值、橫向演化預測刀具磨耗值及縱向演化預測刀具磨耗值進行比較而選擇出與實際刀具磨耗值相差之最小誤差者,以更新為一最佳預測刀具磨耗值。 An embodiment of a method aspect according to the present invention provides a tool wear prediction method using an evolutionary fuzzy neural network, which is used to predict an actual tool wear value generated by a tool cutting a workpiece. The tool wear prediction method using an evolutionary fuzzy neural network includes a parameter planning step, a cutting step, a data collection step, a color conversion step, and a predicted tool wear value generation step. The parametric planning step provides complex cutting factors Complex cutting parameters are planned according to a Taguchi orthogonal table, and these cutting factors correspond to tools. The cutting step is to drive the tool to cut the workpiece to generate multiple chips, and record the multiple accumulated cutting time of the tool during the cutting process. In the data collection step, a camera is driven to capture an image of each chip. The color conversion step converts the image of the chips into complex standard chromaticity parameters. In the step of generating the predicted tool wear value, the cutting parameter, the standard chromaticity parameter and the accumulated cutting time are calculated according to an interval type II fuzzy neural network model to generate a complex number of predicted tool wear value. The interval second type fuzzy neural network model is adjusted by a dynamic grouping collaborative differential evolution algorithm to generate a lateral evolution prediction tool wear value and a longitudinal evolution prediction tool wear value, and the predicted tool wear value generation step will predict the tool wear. value, the predicted tool wear value of lateral evolution and the predicted tool wear value of longitudinal evolution are compared to select the one with the smallest deviation from the actual tool wear value, and update it as an optimal predicted tool wear value.

藉此,本發明的利用演化式模糊類神經網路之刀具磨耗預測方法透過區間第二型模糊類神經網路模型作為預測模型,並使用動態分群協同式差分進化演算法來優化模型參數,以解決習知刀具磨耗預測技術中演算法存在收斂速度過快而易陷入區域最佳解之問題。 Thereby, the tool wear prediction method using the evolutionary fuzzy neural network of the present invention uses the interval second type fuzzy neural network model as the prediction model, and uses the dynamic grouping collaborative differential evolution algorithm to optimize the model parameters, so as to To solve the problem that the algorithm in the conventional tool wear prediction technology has too fast convergence speed and is easy to fall into the regional optimal solution.

100:利用演化式模糊類神經網路之刀具磨耗預測系統 100: A Tool Wear Prediction System Using Evolutionary Fuzzy Neural Networks

200:切削機台 200: Cutting machine

300:攝影機 300: Camera

400:運算處理器 400: arithmetic processor

410:參數規劃模組 410: Parameter planning module

420:時間記錄模組 420: Time Recording Module

430:色彩轉換模組 430: Color conversion module

431:範圍選定子模組 431: Scope selected submodule

432:色彩校正子模組 432: Color correction submodule

433:第一色彩轉換子模組 433: first color conversion submodule

434:第二色彩轉換子模組 434: Second color conversion submodule

435:第三色彩轉換子模組 435: The third color conversion submodule

440:預測刀具磨耗值產生模組 440: Predict tool wear value generation module

442:區間第二型模糊類神經網路 442: Interval Type II Fuzzy Neural Network

444:動態分群協同式差分進化演算單元 444: Dynamic Grouping Cooperative Differential Evolution Algorithm Unit

4441:初始化子模組 4441: Initialize submodule

4442:分群子模組 4442: Grouping submodules

4443:領導者確認子模組 4443: Leader Confirmation Submodule

4444:突變子模組 4444: Mutant Submodule

4445:交換子模組 4445: Swap submodules

4446:選擇子模組 4446: select submodule

4447:領導者調整子模組 4447: Leader adjustment submod

4448:更新子模組 4448: Update submodules

4449:迭代次數判斷子模組 4449: Iterations judgment submodule

Layer1:第一層 Layer1: the first layer

Layer2:第二層 Layer2: The second layer

Layer3:第三層 Layer3: The third layer

Layer4:第四層 Layer4: the fourth layer

Layer5:第五層 Layer5: fifth layer

X1,Xn:個體向量 X 1 , X n : individual vectors

Y:最佳預測刀具磨耗值 Y: Best predicted tool wear value

500:利用演化式模糊類神經網路之刀具磨耗預測方法 500: A Tool Wear Prediction Method Using Evolutionary Fuzzy Neural Networks

S02:參數規劃步驟 S02: Parameter planning step

S04:切削步驟 S04: Cutting step

S06:數據收集步驟 S06: Data collection steps

S08:色彩轉換步驟 S08: Color conversion steps

S081:範圍選定步驟 S081: Range selection step

S082:色彩校正步驟 S082: Color Correction Steps

S083:第一色彩轉換步驟 S083: The first color conversion step

S084:第二色彩轉換步驟 S084: Second color conversion step

S085:第三色彩轉換步驟 S085: The third color conversion step

S10:預測刀具磨耗值產生步驟 S10: Prediction of tool wear value generation step

S102:區間第二型模糊類神經網路模型 S102: Interval Type II Fuzzy Neural Network Model

S104:動態分群協同式差分進化演算法 S104: Dynamic Clustering Cooperative Differential Evolution Algorithm

S1041:初始化步驟 S1041: initialization step

S1042:分群步驟 S1042: Grouping step

S1043:領導者確認步驟 S1043: Leader Confirmation Step

S1044:突變步驟 S1044: Mutation step

S1045:交換步驟 S1045: Exchange step

S1046:選擇步驟 S1046: Selection step

S1047:領導者調整步驟 S1047: Leader Adjustment Steps

S1048:更新步驟 S1048: Update steps

S1049:迭代次數判斷步驟 S1049: Step of judging the number of iterations

第1圖係繪示本發明第一實施例之利用演化式模糊類神經網路之刀具磨耗預測系統的方塊示意圖; FIG. 1 is a block diagram illustrating a tool wear prediction system using an evolutionary fuzzy neural network according to a first embodiment of the present invention;

第2圖係繪示第1圖之利用演化式模糊類神經網路之刀具磨耗預測系統的色彩轉換模組之方塊示意圖; Fig. 2 is a block diagram of the color conversion module of the tool wear prediction system using evolutionary fuzzy neural network in Fig. 1;

第3圖係繪示第1圖之利用演化式模糊類神經網路之刀具磨耗預測系統的區間第二型模糊類神經網路之示意圖; FIG. 3 is a schematic diagram of the interval type 2 fuzzy neural network of the tool wear prediction system using the evolutionary fuzzy neural network of FIG. 1;

第4圖係繪示第1圖之利用演化式模糊類神經網路之刀具磨耗預測系統的動態分群協同式差分進化演算單元之方塊示意圖; Fig. 4 is a block schematic diagram of the dynamic grouping cooperative differential evolution calculation unit of the tool wear prediction system using the evolutionary fuzzy neural network of Fig. 1;

第5圖係繪示本發明第二實施例之利用演化式模糊類神經網路之刀具磨耗預測方法的流程示意圖; FIG. 5 is a schematic flowchart of a tool wear prediction method using an evolutionary fuzzy neural network according to a second embodiment of the present invention;

第6圖係繪示第5圖之利用演化式模糊類神經網路之刀具磨耗預測方法的色彩轉換步驟之流程示意圖;以及 FIG. 6 is a schematic flowchart showing the color conversion steps of the tool wear prediction method using the evolutionary fuzzy neural network in FIG. 5; and

第7圖係繪示第5圖之利用演化式模糊類神經網路之刀具磨耗預測方法的動態分群協同式差分進化演算法之流程示意圖。 FIG. 7 is a schematic flowchart of the dynamic grouping collaborative differential evolution algorithm of the tool wear prediction method using the evolutionary fuzzy neural network in FIG. 5 .

請一併參閱第1圖至第4圖,其中第1圖係繪示本發明第一實施例之利用演化式模糊類神經網路之刀具磨耗預測系統100的方塊示意圖;第2圖係繪示第1圖之利用演化式模糊類神經網路之刀具磨耗預測系統100的色彩轉換模組430之方塊示意圖;第3圖係繪示第1圖之利用演化式模糊類神經網路之刀具磨耗預測系統100的區間第二型模糊類神經網路442之示意圖;及第4圖係繪示第1圖之利用演化式模糊類神經網路之刀具磨耗預測系統100 的動態分群協同式差分進化演算單元444之方塊示意圖。如圖所示,此利用演化式模糊類神經網路之刀具磨耗預測系統100用以預測刀具切削工件所產生之實際刀具磨耗值。此利用演化式模糊類神經網路之刀具磨耗預測系統100包含切削機台200、攝影機300以及運算處理器400。 Please refer to FIG. 1 to FIG. 4 together. FIG. 1 is a block diagram of a tool wear prediction system 100 using an evolutionary fuzzy neural network according to the first embodiment of the present invention; FIG. 2 is a schematic diagram of a block diagram. FIG. 1 is a block diagram of the color conversion module 430 of the tool wear prediction system 100 using the evolutionary fuzzy neural network; FIG. 3 shows the tool wear prediction using the evolutionary fuzzy neural network in FIG. 1 A schematic diagram of the interval-type second type fuzzy neural network 442 of the system 100; and FIG. 4 shows the tool wear prediction system 100 using the evolutionary fuzzy neural network of FIG. 1 A block diagram of the dynamic grouping cooperative differential evolution calculation unit 444 of . As shown in the figure, the tool wear prediction system 100 using the evolutionary fuzzy neural network is used to predict the actual tool wear value generated by the tool cutting the workpiece. The tool wear prediction system 100 using an evolutionary fuzzy neural network includes a cutting machine 200 , a camera 300 and an arithmetic processor 400 .

切削機台200驅動刀具切削工件而產生複數切屑。具體而言,切削機台200可為五軸加工機或其他適合的電腦數值控制(Computer Numerical Control;CNC)工具機,但本發明不以此為限。 The cutting table 200 drives the tool to cut the workpiece to generate a plurality of chips. Specifically, the cutting machine table 200 may be a five-axis machining machine or other suitable computer numerical control (Computer Numerical Control; CNC) machine tools, but the invention is not limited thereto.

攝影機300朝向切削機台200所產生的切屑,並擷取各切屑之影像。 The camera 300 faces the chips generated by the cutting machine 200 and captures images of the chips.

運算處理器400訊號連接切削機台200與攝影機300,且運算處理器400包含參數規劃模組410、時間記錄模組420、色彩轉換模組430及預測刀具磨耗值產生模組440。 The operation processor 400 is connected to the cutting machine 200 and the camera 300 by signals, and the operation processor 400 includes a parameter planning module 410 , a time recording module 420 , a color conversion module 430 and a predicted tool wear value generation module 440 .

參數規劃模組410提供複數切削因子依據一田口直交表規劃出複數切削參數,此些切削因子對應刀具。具體而言,切削參數包含切削速度(m/min)、每刃進給量(mm/rev)、切削深度(mm),而田口直交表選擇使用L9(34)直交表。 The parameter planning module 410 provides complex cutting factors to plan complex cutting parameters according to a Taguchi orthogonal table, and these cutting factors correspond to tools. Specifically, the cutting parameters include cutting speed (m/min), feed per edge (mm/rev), and depth of cut (mm), while Taguchi orthogonal table is selected to use L 9 (3 4 ) orthogonal table.

時間記錄模組420記錄刀具切削過程之複數累積切削時間。 The time recording module 420 records the multiple accumulated cutting times of the tool cutting process.

色彩轉換模組430接收切屑之影像並將影像轉換成複數標準色度參數。具體而言,色彩轉換模組430包含 範圍選定子模組431、色彩校正子模組432、第一色彩轉換子模組433、第二色彩轉換子模組434及第三色彩轉換子模組435。其中範圍選定子模組431選定各影像之一中心區域,例如選取影像中300×300像素(pixel)的範圍進行特徵提取。色彩校正子模組432訊號連接範圍選定子模組431,色彩校正子模組432針對中心區域依據一色彩校正模型執行色彩校正,以產生一標準色彩資訊。標準色彩資訊可為CIELAB色彩資訊。第一色彩轉換子模組433訊號連接色彩校正子模組432,第一色彩轉換子模組433將標準色彩資訊依據一第一標準光源轉換成複數第一刺激值,此些第一刺激值可為XYZD50之三刺激值。第二色彩轉換子模組434訊號連接第一色彩轉換子模組433,第二色彩轉換子模組434將第一刺激值依據一第二標準光源轉換成複數第二刺激值,此些第二刺激值可為XYZD65三刺激值。第三色彩轉換子模組435訊號連接第二色彩轉換子模組434,第三色彩轉換子模組435將第二刺激值依據一標準色度關係式轉換成標準色度參數,標準色度參數可為CIExy色彩資訊。 The color conversion module 430 receives the image of the chips and converts the image into complex standard chromaticity parameters. Specifically, the color conversion module 430 includes a range selection submodule 431 , a color correction submodule 432 , a first color conversion submodule 433 , a second color conversion submodule 434 and a third color conversion submodule 435 . The range selection sub-module 431 selects a central area of each image, for example, selects a range of 300×300 pixels (pixel) in the image for feature extraction. The color correction sub-module 432 is connected to the signal range selection sub-module 431, and the color correction sub-module 432 performs color correction according to a color correction model for the central area to generate a standard color information. The standard color information may be CIELAB color information. The signal of the first color conversion sub-module 433 is connected to the color correction sub-module 432, and the first color conversion sub-module 433 converts the standard color information into a plurality of first stimulus values according to a first standard light source, and these first stimulus values can be is the tristimulus value of XYZ D50 . The signal of the second color conversion sub-module 434 is connected to the first color conversion sub-module 433. The second color conversion sub-module 434 converts the first stimulus value into a plurality of second stimulus values according to a second standard light source. Stimulus values may be XYZ D65 tristimulus values. The signal of the third color conversion sub-module 435 is connected to the second color conversion sub-module 434. The third color conversion sub-module 435 converts the second stimulus value into a standard chromaticity parameter according to a standard chromaticity relationship, and the standard chromaticity parameter Can be CIExy color information.

預測刀具磨耗值產生模組440訊號連接參數規劃模組410、時間記錄模組420及色彩轉換模組430。預測刀具磨耗值產生模組440將切削參數、標準色度參數及累積切削時間依據一區間第二型模糊類神經網路442運算而產生複數預測刀具磨耗值。區間第二型模糊類神經網路442經由一動態分群協同式差分進化演算單元444調整而 產生一橫向演化預測刀具磨耗值與一縱向演化預測刀具磨耗值,且預測刀具磨耗值產生模組440將預測刀具磨耗值、橫向演化預測刀具磨耗值及縱向演化預測刀具磨耗值進行比較而選擇出與實際刀具磨耗值相差之最小誤差者,以更新為一最佳預測刀具磨耗值Y。詳細地說,區間第二型模糊類神經網路442(Interval Type-II Fuzzy Neural Network,IT2FNN)包含第一層Layer1、第二層Layer2、第三層Layer3、第四層Layer4以及第五層Layer5。第一層Layer1、第二層Layer2、第三層Layer3、第四層Layer4以及第五層Layer5彼此依序連接。第一層Layer1的每個節點都為一個輸入節點,並將輸入值(個體向量X1至Xn)傳送至第二層Layer2。第二層Layer2進行模糊化運算,每個節點被定義為區間第二型模糊集合。第二層Layer2包含一區間第二型模糊平移量及一高斯函數之一平均值與一標準差。第三層Layer3之節點稱為規則節點,每一個節點代表一個模糊規則。第四層Layer4先將區間第二型模糊集合透過降階運算降階成一型模糊集合,再使用重心解模糊取得明確的輸出。第四層Layer4包含一後鑑部權重。第五層Layer5將第四層Layer4的輸出透過計算平均值來解模糊,以得到最佳預測刀具磨耗值Y。換言之,區間第二型模糊平移量、平均值、標準差及後鑑部權重經由動態分群協同式差分進化演算單元444調整,致使區間第二型模糊類神經網路442輸出最佳預測刀具磨耗值Y。 The predicted tool wear value generation module 440 is connected to the parameter planning module 410 , the time recording module 420 and the color conversion module 430 by signals. The predicted tool wear value generating module 440 calculates the cutting parameters, the standard chromaticity parameters and the accumulated cutting time according to an interval 2 type fuzzy neural network 442 to generate a complex predicted tool wear value. The interval second type fuzzy neural network 442 is adjusted by a dynamic grouping cooperative differential evolution calculation unit 444 to generate a lateral evolution predicted tool wear value and a longitudinal evolution predicted tool wear value, and the predicted tool wear value generation module 440 will The predicted tool wear value, the lateral evolution predicted tool wear value and the longitudinal evolution predicted tool wear value are compared to select the one with the smallest error from the actual tool wear value to update as an optimal predicted tool wear value Y. In detail, the Interval Type-II Fuzzy Neural Network 442 (IT2FNN) includes the first layer Layer1, the second layer Layer2, the third layer Layer3, the fourth layer Layer4 and the fifth layer Layer5 . The first layer Layer1, the second layer Layer2, the third layer Layer3, the fourth layer Layer4, and the fifth layer Layer5 are sequentially connected to each other. Each node of the first layer Layer1 is an input node and transmits input values (individual vectors X 1 to X n ) to the second layer Layer2. The second layer, Layer2, performs fuzzification operations, and each node is defined as an interval type-2 fuzzy set. The second layer Layer2 includes an interval second-type blur translation amount and an average value and a standard deviation of a Gaussian function. The nodes of the third layer Layer3 are called rule nodes, and each node represents a fuzzy rule. The fourth layer, Layer4, first reduces the interval type-2 fuzzy set to a type-1 fuzzy set through the reduction operation, and then uses the center of gravity to de-fuzz to obtain a clear output. The fourth layer, Layer4, contains a post-authentication weight. The fifth layer, Layer5, deblurs the output of the fourth layer, Layer4, by calculating the average value, so as to obtain the best predicted tool wear value Y. In other words, the interval type-2 fuzzy translation amount, the average value, the standard deviation and the post-identification weight are adjusted by the dynamic grouping cooperative differential evolution calculation unit 444, so that the interval-type type-2 fuzzy neural network 442 outputs the best predicted tool wear value Y.

另外,預測刀具磨耗值產生模組440可包含一動態分群協同式差分進化演算單元444,動態分群協同式差分進化演算單元444包含初始化子模組4441、分群子模組4442、領導者確認子模組4443、突變子模組4444、交換子模組4445、選擇子模組4446、領導者調整子模組4447、更新子模組4448及迭代次數判斷子模組4449。 In addition, the predicted tool wear value generation module 440 may include a dynamic grouping cooperative differential evolution calculation unit 444, and the dynamic grouping cooperative differential evolution calculation unit 444 includes an initialization sub-module 4441, a grouping sub-module 4442, and a leader confirmation sub-module Group 4443, Mutation sub-module 4444, Swap sub-module 4445, Selection sub-module 4446, Leader adjustment sub-module 4447, Update sub-module 4448, and iteration count sub-module 4449.

初始化子模組4441將區間第二型模糊平移量、平均值、標準差及後鑑部權重視為一個體並進行編碼,區間第二型模糊類神經網路442更包含複數個體。 The initialization sub-module 4441 regards the interval type 2 fuzzy translation amount, the average value, the standard deviation and the post-identification weight as an individual and encodes it, and the interval type 2 fuzzy neural network 442 further includes a plurality of individuals.

分群子模組4442訊號連接初始化子模組4441,分群子模組4442將個體依據一群組閾值分群成複數群組。具體而言,分群子模組4442先將所有個體依其適應值由高到低排序,並將個體的群組編號初始值設為0。排序後將適應值最高且群組編號為0的個體設定為領導者,並將群組編號更新為k,然後計算群組閾值,群組閾值包含距離閾值Dis(k)及適應值閾值Fit(k),如下式所示: The grouping sub-module 4442 is connected to the initialization sub-module 4441 by a signal, and the grouping sub-module 4442 groups the individuals into plural groups according to a group threshold. Specifically, the grouping sub-module 4442 first sorts all individuals according to their fitness values from high to low, and sets the initial value of the individual's group number to 0. After sorting, the individual with the highest fitness value and group number 0 is set as the leader, and the group number is updated to k, and then the group threshold is calculated. The group threshold includes the distance threshold Dis(k) and the fitness threshold Fit( k), as shown in the following formula:

Figure 109109057-A0101-12-0009-1
Figure 109109057-A0101-12-0009-1

Figure 109109057-A0101-12-0009-4
Figure 109109057-A0101-12-0009-4

Figure 109109057-A0101-12-0009-2
Figure 109109057-A0101-12-0009-2

Figure 109109057-A0101-12-0009-3
其中NP為個體總數,D為維度,Leaderk,j是第k群的領導者,Dis_Threshold(k)、Fit_Threshold(k)則是第k群的距離閾值與適應值閾值,NG為未被分群個體數。 然後,分群子模組4442計算群組編號為0的個體與領導者的距離差及適應值差,並利用群組閾值來決定個體是否屬於同一群組,如下式所示:
Figure 109109057-A0101-12-0009-3
Among them, NP is the total number of individuals, D is the dimension, Leader k,j is the leader of the kth group, Dis_Threshold(k) and Fit_Threshold(k) are the distance threshold and fitness threshold of the kth group, and NG is the ungrouped individual. number. Then, the grouping sub-module 4442 calculates the distance difference and fitness difference between the individual whose group number is 0 and the leader, and uses the group threshold to determine whether the individual belongs to the same group, as shown in the following formula:

Figure 109109057-A0101-12-0010-5
Fit(i)=|Fit(Leader k )-Fit(X i )| (6)。若Dis(i)<Dis_Threshold(k)且Fit(i)<Fit_Threshold(k),則表示此個體與領導者是相似的,故將個體分入此群組並將群組編號更新為k。
Figure 109109057-A0101-12-0010-5
Fit ( i )=| Fit ( Leader k )- Fit ( X i )| (6). If Dis(i)<Dis_Threshold(k) and Fit(i)<Fit_Threshold(k), it means that this individual is similar to the leader, so the individual is divided into this group and the group number is updated to k.

領導者確認子模組4443訊號連接分群子模組4442,領導者確認子模組4443確認各群組之各個體是否為一領導者,領導者代表各群組之個體之複數預測刀具磨耗值之最小者。具體而言,若各群組之其中一個體是領導者,則突變子模組4444、交換子模組4445及選擇子模組4446被執行而產生橫向演化預測刀具磨耗值。反之,若各群組之其中一個體不是領導者,則領導者調整子模組4447、突變子模組4444、交換子模組4445及選擇子模組4446被執行而產生縱向演化預測刀具磨耗值。 The leader confirming sub-module 4443 signal is connected to the grouping sub-module 4442, the leader confirming sub-module 4443 confirms whether each individual of each group is a leader, and the leader represents the number of predicted tool wear values of each group of individuals. smallest. Specifically, if one of the individuals in each group is the leader, mutation submodule 4444, exchange submodule 4445, and selection submodule 4446 are executed to generate laterally evolved predicted tool wear values. Conversely, if one of the individuals in each group is not the leader, the leader adjustment sub-module 4447, mutation sub-module 4444, exchange sub-module 4445 and selection sub-module 4446 are executed to generate the longitudinal evolution prediction tool wear value. .

突變子模組4444訊號連接領導者確認子模組4443,突變子模組4444依據領導者執行一突變演化關係式而得到一突變向量。突變演化關係式包含突變向量Vi、隨機領導者XrL、突變權重因子F、第一隨機個體Xr1及第二隨機個體Xr2。突變演化關係式符合下式:Vi=XrL+F×(Xr1-Xr2) (7)。 The signal of the mutation sub-module 4444 is connected to the leader confirmation sub-module 4443, and the mutation sub-module 4444 obtains a mutation vector according to the leader's execution of a mutation evolution relation. The mutation evolution relational formula includes a mutation vector V i , a random leader X rL , a mutation weight factor F, a first random individual X r1 and a second random individual X r2 . The mutation evolution relational formula conforms to the following formula: V i =X rL +F×(X r1 -X r2 ) (7).

交換子模組4445訊號連接突變子模組4444,交換子模組4445依據突變向量Vi執行一交換關係式而得到一試驗向量Ui。具體而言,交換關係式包含突變向量Vi、個體向量Xi及試驗向量Ui。交換關係式符合下式: The signal of the exchange sub-module 4445 is connected to the mutation sub-module 4444, and the exchange sub-module 4445 executes an exchange relation according to the mutation vector V i to obtain a test vector U i . Specifically, the exchange relation includes a mutation vector V i , an individual vector X i and a test vector U i . The exchange relation is as follows:

Figure 109109057-A0101-12-0011-6
其中rand j 為每個維度對應的隨機值,其值為[0,1]的亂數;CR為交換率,其值為[0,1]。
Figure 109109057-A0101-12-0011-6
Among them, rand j is the random value corresponding to each dimension, and its value is a random number of [0,1]; CR is the exchange rate, and its value is [0,1].

選擇子模組4446訊號連接交換子模組4445,選擇子模組4446依據試驗向量Ui執行一選擇關係式而得到選擇後的個體向量Xi,區間第二型模糊類神經網路442依據個體向量Xi運算而產生橫向演化預測刀具磨耗值。具體而言,選擇關係式包含試驗向量Ui與個體向量Xi,選擇關係式符合下式: The selection sub-module 4446 is connected to the switching sub-module 4445 by the signal, the selection sub-module 4446 executes a selection relation according to the test vector U i to obtain the selected individual vector X i , and the interval second type fuzzy neural network 442 determines the individual The vector X i operation is used to generate the lateral evolution prediction tool wear value. Specifically, the selection relation includes the test vector U i and the individual vector X i , and the selection relation conforms to the following formula:

Figure 109109057-A0101-12-0011-7
Figure 109109057-A0101-12-0011-7

領導者調整子模組4447訊號連接領導者確認子模組4443與突變子模組4444,領導者調整子模組4447將個體排列成p×n個體向量,並將p×n個體向量分成n組p×1個體向量,然後尋找出n組p×1個體向量之n個縱向領導者。區間第二型模糊類神經網路442依據n個縱向領導者運算而產生縱向演化預測刀具磨耗值。個體的數量為p,各個體包含複數個體向量,各個體之個體向量的數量為n。 The leader adjustment submodule 4447 signal connects the leader confirmation submodule 4443 and the mutation submodule 4444. The leader adjustment submodule 4447 arranges the individuals into p×n individual vectors, and divides the p×n individual vectors into n groups p × 1 individual vectors, and then find n vertical leaders of n groups of p × 1 individual vectors. The interval second type fuzzy neural network 442 generates a longitudinal evolution prediction tool wear value according to n longitudinal leader operations. The number of individuals is p, each individual contains a plurality of individual vectors, and the number of individual vectors of each individual is n.

更新子模組4448訊號連接選擇子模組4446,更 新子模組4448將預測刀具磨耗值、橫向演化預測刀具磨耗值及縱向演化預測刀具磨耗值進行比較並選擇最小誤差者而更新為最佳預測刀具磨耗值Y。 Updated Submodule 4448 Signal Connection Selection Submodule 4446, more The new sub-module 4448 compares the predicted tool wear value, the lateral evolution predicted tool wear value and the longitudinal evolution predicted tool wear value, and selects the one with the smallest error to update the best predicted tool wear value Y.

迭代次數判斷子模組4449訊號連接更新子模組4448與分群子模組4442,迭代次數判斷子模組4449判斷分群子模組4442被執行的一迭代次數是否到達一預設次數;若否,則分群子模組4442與領導者確認子模組4443重新被執行;若是,則動態分群協同式差分進化演算單元444終止執行。 The number of iterations judging sub-module 4449 signals to connect the updating sub-module 4448 and the sub-module 4442, and the number of iterations judging sub-module 4449 judges whether the number of iterations executed by the sub-module 4442 reaches a preset number of times; if not, Then the grouping sub-module 4442 confirms with the leader that the sub-module 4443 is executed again; if so, the dynamic grouping cooperative differential evolution calculation unit 444 terminates the execution.

藉此,本發明之利用演化式模糊類神經網路之刀具磨耗預測系統100透過區間第二型模糊類神經網路442作為預測模型,並使用動態分群協同式差分進化演算單元444來優化模型參數,以解決習知刀具磨耗預測技術中演算法存在收斂速度過快而易陷入區域最佳解之問題。 Thereby, the tool wear prediction system 100 using the evolutionary fuzzy neural network of the present invention uses the interval second type fuzzy neural network 442 as the prediction model, and uses the dynamic grouping cooperative differential evolution calculation unit 444 to optimize the model parameters , in order to solve the problem that the algorithm in the conventional tool wear prediction technology has too fast convergence speed and is easy to fall into the regional optimal solution.

請一併參閱第1圖至第7圖,其中第5圖係繪示本發明第二實施例之利用演化式模糊類神經網路之刀具磨耗預測方法500的流程示意圖;第6圖係繪示第5圖之利用演化式模糊類神經網路之刀具磨耗預測方法500的色彩轉換步驟S08之流程示意圖;以及第7圖係繪示第5圖之利用演化式模糊類神經網路之刀具磨耗預測方法500的動態分群協同式差分進化演算法S104之流程示意圖。如圖所示,此利用演化式模糊類神經網路之刀具磨耗預測方法500用以預測刀具切削工件所產生之實際刀具磨耗值。此利用演化式模糊類神經網路之刀具磨耗預測方法500包含 參數規劃步驟S02、切削步驟S04、數據收集步驟S06、色彩轉換步驟S08以及預測刀具磨耗值產生步驟S10。 Please refer to FIG. 1 to FIG. 7 together, wherein FIG. 5 is a schematic flowchart of a tool wear prediction method 500 using an evolutionary fuzzy neural network according to the second embodiment of the present invention; FIG. 6 is a diagram showing the FIG. 5 is a schematic flowchart of the color conversion step S08 of the tool wear prediction method 500 using the evolutionary fuzzy neural network; and FIG. 7 is the tool wear prediction using the evolutionary fuzzy neural network in FIG. 5. A schematic flowchart of the dynamic grouping cooperative differential evolution algorithm S104 of the method 500 . As shown in the figure, the tool wear prediction method 500 using the evolutionary fuzzy neural network is used to predict the actual tool wear value generated by the tool cutting the workpiece. The tool wear prediction method 500 using evolutionary fuzzy neural network includes: Parameter planning step S02, cutting step S04, data collection step S06, color conversion step S08, and predicted tool wear value generation step S10.

參數規劃步驟S02係提供複數切削因子依據一田口直交表規劃出複數切削參數,此些切削因子對應刀具。參數規劃步驟S02透過參數規劃模組410執行。 The parameter planning step S02 is to provide complex cutting factors to plan complex cutting parameters according to a Taguchi orthogonal table, and these cutting factors correspond to tools. The parameter planning step S02 is executed through the parameter planning module 410 .

切削步驟S04係驅動刀具切削工件而產生複數切屑,並記錄刀具於切削過程之複數累積切削時間。切削步驟S04透過切削機台200與時間記錄模組420執行。 The cutting step S04 is to drive the tool to cut the workpiece to generate multiple chips, and record the multiple accumulated cutting times of the tool during the cutting process. The cutting step S04 is performed by the cutting machine 200 and the time recording module 420 .

數據收集步驟S06係驅動一攝影機300擷取各切屑之一影像。數據收集步驟S06透過攝影機300執行。 The data collection step S06 is to drive a camera 300 to capture an image of each chip. The data collection step S06 is performed through the camera 300 .

色彩轉換步驟S08係將切屑之影像轉換成複數標準色度參數。色彩轉換步驟S08透過色彩轉換模組430執行。具體而言,色彩轉換步驟S08包含範圍選定步驟S081、色彩校正步驟S082、第一色彩轉換步驟S083、第二色彩轉換步驟S084及第三色彩轉換步驟S085。範圍選定步驟S081係選定各影像之中心區域,範圍選定步驟S081透過範圍選定子模組431執行。色彩校正步驟S082係針對中心區域依據一色彩校正模型執行色彩校正,以產生一標準色彩資訊。色彩校正步驟S082透過色彩校正子模組432執行。第一色彩轉換步驟S083係將標準色彩資訊依據一第一標準光源轉換成複數第一刺激值。第一色彩轉換步驟S083透過第一色彩轉換子模組433執行。第二色彩轉換步驟S084係將第一刺激值依據一第二標準光源轉換成複數第二刺激值。第二色彩轉換步驟S084透過第 二色彩轉換子模組434執行。第三色彩轉換步驟S085係將第二刺激值依據一標準色度關係式轉換成此些標準色度參數。第三色彩轉換步驟S085透過第三色彩轉換子模組435執行。 The color conversion step S08 is to convert the image of the chips into complex standard chromaticity parameters. The color conversion step S08 is performed by the color conversion module 430 . Specifically, the color conversion step S08 includes a range selection step S081, a color correction step S082, a first color conversion step S083, a second color conversion step S084, and a third color conversion step S085. The range selection step S081 is to select the center area of each image, and the range selection step S081 is performed through the range selection sub-module 431 . The color correction step S082 is to perform color correction on the central area according to a color correction model to generate a standard color information. The color correction step S082 is performed by the color correction sub-module 432 . The first color conversion step S083 is to convert the standard color information into a plurality of first stimulus values according to a first standard light source. The first color conversion step S083 is performed by the first color conversion sub-module 433 . The second color conversion step S084 is to convert the first stimulus value into a plurality of second stimulus values according to a second standard light source. The second color conversion step S084 passes through the The second color conversion sub-module 434 executes. The third color conversion step S085 is to convert the second stimulus value into the standard chromaticity parameters according to a standard chromaticity relation. The third color conversion step S085 is performed by the third color conversion sub-module 435 .

預測刀具磨耗值產生步驟S10係將切削參數、標準色度參數及累積切削時間依據一區間第二型模糊類神經網路模型S102運算而產生複數預測刀具磨耗值。區間第二型模糊類神經網路模型S102經由動態分群協同式差分進化演算法S104調整而產生橫向演化預測刀具磨耗值與縱向演化預測刀具磨耗值,且預測刀具磨耗值產生步驟S10將預測刀具磨耗值、橫向演化預測刀具磨耗值及縱向演化預測刀具磨耗值進行比較而選擇出與實際刀具磨耗值相差之最小誤差者,以更新為一最佳預測刀具磨耗值Y。預測刀具磨耗值產生步驟S10透過預測刀具磨耗值產生模組440執行。區間第二型模糊類神經網路模型S102透過區間第二型模糊類神經網路442執行。動態分群協同式差分進化演算法S104透過動態分群協同式差分進化演算單元444執行。 The predicted tool wear value generating step S10 is to generate complex predicted tool wear values by operating the cutting parameters, the standard chromaticity parameters and the accumulated cutting time according to the second type fuzzy neural network model S102 in an interval. The interval second type fuzzy neural network model S102 is adjusted by the dynamic grouping collaborative differential evolution algorithm S104 to generate a lateral evolution predicted tool wear value and a longitudinal evolution predicted tool wear value, and the predicted tool wear value generation step S10 will predict the tool wear value, the predicted tool wear value of the lateral evolution and the predicted tool wear value of the longitudinal evolution are compared to select the one with the smallest difference from the actual tool wear value to update as an optimal predicted tool wear value Y. The predicted tool wear value generating step S10 is performed by the predicted tool wear value generating module 440 . The interval second type fuzzy neural network model S102 is executed by the interval second type fuzzy neural network 442 . The dynamic grouping cooperative differential evolution algorithm S104 is executed by the dynamic grouping cooperative differential evolution algorithm unit 444 .

另外,動態分群協同式差分進化演算法S104可包含初始化步驟S1041、分群步驟S1042、領導者確認步驟S1043、突變步驟S1044、交換步驟S1045、選擇步驟S1046、領導者調整步驟S1047、更新步驟S1048及迭代次數判斷步驟S1049。 In addition, the dynamic grouping cooperative differential evolution algorithm S104 may include an initialization step S1041, a grouping step S1042, a leader confirmation step S1043, a mutation step S1044, an exchange step S1045, a selection step S1046, a leader adjustment step S1047, an update step S1048, and an iteration The number of times judgment step S1049.

初始化步驟S1041係將區間第二型模糊平移量、 平均值、標準差及後鑑部權重視為一個體並進行編碼,區間第二型模糊類神經網路模型S102包含複數個體。初始化步驟S1041透過初始化子模組4441執行。 The initialization step S1041 is to set the interval second type fuzzy translation amount, The average value, standard deviation and post-identification weight are regarded as one individual and encoded, and the interval type II fuzzy neural network model S102 includes plural individuals. The initialization step S1041 is performed by the initialization sub-module 4441 .

分群步驟S1042係將此些個體依據一群組閾值分群成複數群組。分群步驟S1042透過分群子模組4442執行。 The grouping step S1042 is to group the individuals into plural groups according to a group threshold. The grouping step S1042 is performed by the grouping sub-module 4442 .

領導者確認步驟S1043係確認各群組之各個體是否為一領導者,領導者代表各群組之個體之複數預測刀具磨耗值之最小者。領導者確認步驟S1043透過領導者確認子模組4443執行。 The leader confirming step S1043 is to confirm whether each individual of each group is a leader, and the leader represents the minimum of the plurality of predicted tool wear values of the individuals of each group. The leader confirmation step S1043 is executed through the leader confirmation sub-module 4443 .

突變步驟S1044係將此些個體執行一突變演化關係式而得到一突變向量。突變步驟S1044透過突變子模組4444執行。 The mutation step S1044 is to execute a mutation evolution relational expression on these individuals to obtain a mutation vector. The mutation step S1044 is performed by the mutation sub-module 4444 .

交換步驟S1045係依據突變向量執行一交換關係式而得到一試驗向量。交換步驟S1045透過交換子模組4445執行。 The exchange step S1045 is to execute an exchange relation according to the mutation vector to obtain a test vector. The exchange step S1045 is performed by the exchange sub-module 4445 .

選擇步驟S1046係依據試驗向量執行一選擇關係式而得到選擇後的一個體向量,區間第二型模糊類神經網路模型S102依據個體向量運算而產生橫向演化預測刀具磨耗值。選擇步驟S1046透過選擇子模組4446執行。 The selection step S1046 is to execute a selection relational expression according to the test vector to obtain a selected body vector, and the interval second type fuzzy neural network model S102 generates a lateral evolution prediction tool wear value according to the calculation of the individual vector. The selection step S1046 is performed through the selection sub-module 4446 .

領導者調整步驟S1047係將此些個體排列成p×n個體向量,並將p×n個體向量分成n組p×1個體向量,然後尋找出n組p×1個體向量之n個縱向領導者。區間第二型模糊類神經網路模型S102依據n個縱向領導者運算 而產生縱向演化預測刀具磨耗值。領導者調整步驟S1047透過領導者調整子模組4447執行。 The leader adjustment step S1047 is to arrange these individuals into p×n individual vectors, and divide the p×n individual vectors into n groups of p×1 individual vectors, and then find n vertical leaders of the n groups of p×1 individual vectors . The interval second type fuzzy neural network model S102 is calculated according to n vertical leaders The longitudinal evolution is generated to predict the tool wear value. The leader adjustment step S1047 is executed through the leader adjustment sub-module 4447 .

更新步驟S1048係將預測刀具磨耗值、橫向演化預測刀具磨耗值及縱向演化預測刀具磨耗值進行比較並選擇最小誤差者而更新為最佳預測刀具磨耗值Y。更新步驟S1048透過更新子模組4448執行。 The updating step S1048 compares the predicted tool wear value, the lateral evolution predicted tool wear value, and the longitudinal evolution predicted tool wear value, and selects the one with the smallest error to update the best predicted tool wear value Y. The update step S1048 is performed by the update sub-module 4448 .

迭代次數判斷步驟S1049係判斷分群步驟S1042的一迭代次數是否到達一預設次數;若否,則重新執行分群步驟S1042與領導者確認步驟S1043;若是,則結束動態分群協同式差分進化演算法S104。迭代次數判斷步驟S1049透過迭代次數判斷子模組4449執行。 The iteration count judgment step S1049 is to judge whether an iteration count of the grouping step S1042 reaches a preset number of times; if not, re-execute the grouping step S1042 and the leader confirmation step S1043; if so, end the dynamic grouping cooperative differential evolution algorithm S104 . The step of determining the number of iterations S1049 is performed by the sub-module 4449 for determining the number of iterations.

藉此,本發明的利用演化式模糊類神經網路之刀具磨耗預測方法500透過區間第二型模糊類神經網路模型S102作為預測模型,並使用動態分群協同式差分進化演算法S104來優化模型參數,以解決習知刀具磨耗預測技術中演算法存在收斂速度過快而易陷入區域最佳解之問題。 Thereby, the tool wear prediction method 500 using the evolutionary fuzzy neural network of the present invention uses the interval second type fuzzy neural network model S102 as the prediction model, and uses the dynamic grouping collaborative differential evolution algorithm S104 to optimize the model parameters, in order to solve the problem that the algorithm in the conventional tool wear prediction technology has a too fast convergence speed and is easy to fall into the regional optimal solution.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be determined by the scope of the appended patent application.

100:利用演化式模糊類神經網路之刀具磨耗預測系統 100: A Tool Wear Prediction System Using Evolutionary Fuzzy Neural Networks

200:切削機台 200: Cutting machine

300:攝影機 300: Camera

400:運算處理器 400: arithmetic processor

410:參數規劃模組 410: Parameter planning module

420:時間記錄模組 420: Time Recording Module

430:色彩轉換模組 430: Color conversion module

440:預測刀具磨耗值產生模組 440: Predict tool wear value generation module

442:區間第二型模糊類神經網路 442: Interval Type II Fuzzy Neural Network

444:動態分群協同式差分進化演算單元 444: Dynamic Grouping Cooperative Differential Evolution Algorithm Unit

Claims (8)

一種利用演化式模糊類神經網路之刀具磨耗預測系統,用以預測一刀具切削一工件所產生之一實際刀具磨耗值,該利用演化式模糊類神經網路之刀具磨耗預測系統包含:一切削機台,驅動該刀具切削該工件而產生複數切屑;一攝影機,擷取各該切屑之一影像;以及一運算處理器,訊號連接該切削機台與該攝影機,該運算處理器包含:一參數規劃模組,提供複數切削因子依據一田口直交表規劃出複數切削參數,該些切削因子對應該刀具;一時間記錄模組,記錄該刀具切削過程之複數累積切削時間;一色彩轉換模組,接收該些切屑之該些影像並將該些影像轉換成複數標準色度參數;及一預測刀具磨耗值產生模組,訊號連接該參數規劃模組、該時間記錄模組及該色彩轉換模組,該預測刀具磨耗值產生模組將該些切削參數、該些標準色度參數及該些累積切削時間依據一區間第二型模糊類神經網路運算而產生複數預測刀具磨耗值,該區間第二型模糊類神經網路經由一動態分群協同式差分進化演算單元調整而產生一橫向演化預測刀具磨耗值與一縱向演化預測刀具磨耗值,且該預測刀具磨耗值產生模組將該些預測刀具磨耗值、該橫向演化預測刀具磨耗值及該縱向演化預測刀 具磨耗值進行比較而選擇出與該實際刀具磨耗值相差之最小誤差者,以更新為一最佳預測刀具磨耗值;其中,該區間第二型模糊類神經網路包含複數層,該些層彼此依序連接,其中一該層包含一區間第二型模糊平移量及一高斯函數之一平均值與一標準差,另一該層包含一後鑑部權重,該區間第二型模糊平移量、該平均值、該標準差及該後鑑部權重經由該動態分群協同式差分進化演算單元調整,致使該區間第二型模糊類神經網路輸出該最佳預測刀具磨耗值。 A tool wear prediction system using an evolutionary fuzzy neural network is used to predict an actual tool wear value generated by a tool cutting a workpiece. The tool wear prediction system using an evolutionary fuzzy neural network includes: a cutting a machine, for driving the tool to cut the workpiece to generate a plurality of chips; a camera for capturing an image of each of the chips; and an arithmetic processor for signally connecting the cutting machine and the camera, the arithmetic processor comprising: a parameter Planning module, providing complex cutting factors to plan complex cutting parameters according to a Taguchi orthogonal table, these cutting factors correspond to the tool; a time recording module, recording the complex cumulative cutting time of the cutting process of the tool; a color conversion module, Receive the images of the chips and convert the images into complex standard chromaticity parameters; and a predicted tool wear value generating module, the signal is connected to the parameter planning module, the time recording module and the color conversion module , the predicted tool wear value generating module generates a complex predicted tool wear value based on the cutting parameters, the standard chromaticity parameters and the accumulated cutting time according to a second type of fuzzy neural network operation in an interval. The type II fuzzy neural network is adjusted by a dynamic grouping cooperative differential evolution calculation unit to generate a lateral evolution predicted tool wear value and a longitudinal evolution predicted tool wear value, and the predicted tool wear value generating module generates these predicted tool wear values. Wear value, the lateral evolution prediction tool wear value and the longitudinal evolution prediction tool The tool wear value is compared to select the one with the smallest error from the actual tool wear value, so as to update it as an optimal predicted tool wear value; wherein, the second type of the interval fuzzy neural network includes a plurality of layers, and these layers connected to each other in sequence, wherein one of the layers includes an interval type 2 fuzzy translation and a mean value and a standard deviation of a Gaussian function, the other layer includes a posterior identification weight, and the interval second type fuzzy translation , the average value, the standard deviation and the weight of the rear identification part are adjusted by the dynamic grouping cooperative differential evolution calculation unit, so that the second type fuzzy neural network in the interval outputs the best predicted tool wear value. 如請求項1所述之利用演化式模糊類神經網路之刀具磨耗預測系統,其中該色彩轉換模組包含:一範圍選定子模組,選定各該影像之一中心區域;一色彩校正子模組,訊號連接該範圍選定子模組,該色彩校正子模組針對該中心區域依據一色彩校正模型執行色彩校正,以產生一標準色彩資訊;一第一色彩轉換子模組,訊號連接該色彩校正子模組,該第一色彩轉換子模組將該標準色彩資訊依據一第一標準光源轉換成複數第一刺激值;一第二色彩轉換子模組,訊號連接該第一色彩轉換子模組,該第二色彩轉換子模組將該些第一刺激值依據一第二標準光源轉換成複數第二刺激值;及一第三色彩轉換子模組,訊號連接該第二色彩轉換子模組,該第三色彩轉換子模組將該些第二刺激值依據一標準 色度關係式轉換成該些標準色度參數。 The tool wear prediction system using an evolutionary fuzzy neural network as claimed in claim 1, wherein the color conversion module comprises: a range selection submodule for selecting a central area of each of the images; a color correction submodule a group, the signal is connected to the range selection sub-module, the color correction sub-module performs color correction according to a color correction model for the central area, so as to generate a standard color information; a first color conversion sub-module, the signal is connected to the color a correction submodule, the first color conversion submodule converts the standard color information into a plurality of first stimulus values according to a first standard light source; a second color conversion submodule, the signal is connected to the first color conversion submodule a group, the second color conversion sub-module converts the first stimulus values into a plurality of second stimulus values according to a second standard light source; and a third color conversion sub-module, the signal is connected to the second color conversion sub-module group, the third color conversion sub-module bases the second stimulus values on a standard The chromaticity relationship is converted into these standard chromaticity parameters. 如請求項1所述之利用演化式模糊類神經網路之刀具磨耗預測系統,其中該預測刀具磨耗值產生模組包含該動態分群協同式差分進化演算單元,該動態分群協同式差分進化演算單元包含:一初始化子模組,其將該區間第二型模糊平移量、該平均值、該標準差及該後鑑部權重視為一個體並進行編碼,該區間第二型模糊類神經網路更包含複數該個體;一分群子模組,訊號連接該初始化子模組,該分群子模組將該些個體依據一群組閾值分群成複數群組;一領導者確認子模組,訊號連接該分群子模組,該領導者確認子模組確認各該群組之各該個體是否為一領導者,該領導者代表各該群組之該些個體之複數該預測刀具磨耗值之最小者;一突變子模組,訊號連接該領導者確認子模組,該突變子模組依據該領導者執行一突變演化關係式而得到一突變向量;一交換子模組,訊號連接該突變子模組,該交換子模組依據該突變向量執行一交換關係式而得到一試驗向量;及一選擇子模組,訊號連接該交換子模組,該選擇子模組依據該試驗向量執行一選擇關係式而得到選擇後的一個體向量,該區間第二型模糊類神經網路依據該個體向量運算而產生該橫向演化預測刀具磨耗值。 The tool wear prediction system using evolutionary fuzzy neural network according to claim 1, wherein the predicted tool wear value generating module comprises the dynamic grouping cooperative differential evolution calculation unit, the dynamic grouping cooperative differential evolution calculation unit Including: an initialization sub-module, which takes the interval second type fuzzy translation amount, the average value, the standard deviation and the post-identification weight as an entity and encodes it, the interval second type fuzzy neural network It also includes a plurality of the individuals; a grouping sub-module, the signal is connected to the initialization sub-module, the grouping sub-module groups the individuals into plural groups according to a group threshold; a leader confirms the sub-module, the signal is connected In the grouping sub-module, the leader confirming sub-module confirms whether each of the individuals in each of the groups is a leader, and the leader represents the smallest of the plurality of the predicted tool wear values of the individuals in each of the groups ; a mutation sub-module, the signal is connected to the leader confirmation sub-module, the mutation sub-module obtains a mutation vector according to the leader's execution of a mutation evolution relationship; a switch sub-module, the signal is connected to the mutation sub-module set, the exchange sub-module executes an exchange relationship according to the mutation vector to obtain a test vector; and a selector sub-module connects the exchange sub-module with a signal, and the selector sub-module executes a selection relationship according to the test vector A selected body vector is obtained by using the formula, and the second type fuzzy neural network of the interval generates the lateral evolution prediction tool wear value according to the calculation of the individual vector. 如請求項3所述之利用演化式模糊類神經網路之刀具磨耗預測系統,其中該動態分群協同式差分進化演算單元更包含:一領導者調整子模組,訊號連接該領導者確認子模組與該突變子模組,該領導者調整子模組將該些個體排列成p×n個體向量,並將p×n個體向量分成n組p×1個體向量,然後尋找出n組p×1個體向量之n個縱向領導者,該區間第二型模糊類神經網路依據n個縱向領導者運算而產生該縱向演化預測刀具磨耗值;一更新子模組,訊號連接該選擇子模組,該更新子模組將該些預測刀具磨耗值、該橫向演化預測刀具磨耗值及該縱向演化預測刀具磨耗值進行比較並選擇最小誤差者而更新為該最佳預測刀具磨耗值;及一迭代次數判斷子模組,訊號連接該更新子模組與該分群子模組,該迭代次數判斷子模組判斷該分群子模組被執行的一迭代次數是否到達一預設次數;若否,則該分群子模組與該領導者確認子模組重新被執行;若是,則該動態分群協同式差分進化演算單元終止執行。 The tool wear prediction system using evolutionary fuzzy neural network as described in claim 3, wherein the dynamic grouping cooperative differential evolution calculation unit further comprises: a leader adjustment sub-module, the signal is connected to the leader confirmation sub-module group and the mutant submodule, the leader adjusts the submodule to arrange these individuals into p×n individual vectors, and divides the p×n individual vectors into n groups of p×1 individual vectors, and then finds out n groups of p×1 individual vectors. n longitudinal leaders of an individual vector, the second type of fuzzy neural network in this interval generates the longitudinal evolution prediction tool wear value according to the operation of the n longitudinal leaders; an update sub-module, the signal is connected to the selection sub-module , the update sub-module compares the predicted tool wear values, the lateral evolution predicted tool wear values, and the longitudinal evolution predicted tool wear values, and selects the one with the smallest error to update the best predicted tool wear value; and an iteration The number of times judgment sub-module, the signal connects the update sub-module and the grouping sub-module, and the iteration-count judging sub-module judges whether the number of iterations executed by the grouping sub-module reaches a preset number of times; if not, then The grouping submodule and the leader confirm that the submodule is executed again; if so, the dynamic grouping cooperative differential evolution calculation unit terminates execution. 一種利用演化式模糊類神經網路之刀具磨耗預測方法,用以預測一刀具切削一工件所產生之一實際刀具磨耗值,該利用演化式模糊類神經網路之刀具磨耗預測方法包含以下步驟:一參數規劃步驟,係提供複數切削因子依據一田口直交 表規劃出複數切削參數,該些切削因子對應該刀具;一切削步驟,係驅動該刀具切削該工件而產生複數切屑,並記錄該刀具於切削過程之複數累積切削時間;一數據收集步驟,係驅動一攝影機擷取各該切屑之一影像;一色彩轉換步驟,係將該些切屑之該些影像轉換成複數標準色度參數;以及一預測刀具磨耗值產生步驟,係將該些切削參數、該些標準色度參數及該些累積切削時間依據一區間第二型模糊類神經網路模型運算而產生複數預測刀具磨耗值,該區間第二型模糊類神經網路模型經由一動態分群協同式差分進化演算法調整而產生一橫向演化預測刀具磨耗值與一縱向演化預測刀具磨耗值,且該預測刀具磨耗值產生步驟將該些預測刀具磨耗值、該橫向演化預測刀具磨耗值及該縱向演化預測刀具磨耗值進行比較而選擇出與該實際刀具磨耗值相差之最小誤差者,以更新為一最佳預測刀具磨耗值;其中,該區間第二型模糊類神經網路模型包含複數層,該些層彼此依序連接,其中一該層包含一區間第二型模糊平移量及一高斯函數之一平均值與一標準差,另一該層包含一後鑑部權重,該區間第二型模糊平移量、該平均值、該標準差及該後鑑部權重經由該動態分群協同式差分進化演算法調整,致使該區間第二型模糊類神經網路模型輸出該最佳預測刀具磨耗值。 A tool wear prediction method using an evolutionary fuzzy neural network is used to predict an actual tool wear value generated by a tool cutting a workpiece. The tool wear prediction method using an evolutionary fuzzy neural network comprises the following steps: A parametric planning step that provides complex cutting factors based on a Taguchi orthogonal The table plans complex cutting parameters, and these cutting factors correspond to the tool; a cutting step is to drive the tool to cut the workpiece to generate complex chips, and record the complex accumulated cutting time of the tool during the cutting process; a data collection step is to A camera is driven to capture an image of each of the chips; a color conversion step is to convert the images of the chips into complex standard chromaticity parameters; and a predicted tool wear value generation step is to convert the cutting parameters, The standard chromaticity parameters and the accumulated cutting times are calculated according to an interval type 2 fuzzy neural network model to generate complex predicted tool wear values, and the interval type 2 fuzzy neural network model uses a dynamic grouping collaborative formula The differential evolution algorithm is adjusted to generate a lateral evolution predicted tool wear value and a longitudinal evolution predicted tool wear value, and the predicted tool wear value generating step generates these predicted tool wear values, the lateral evolution predicted tool wear value and the longitudinal evolution The predicted tool wear value is compared to select the one with the smallest error from the actual tool wear value, so as to update it as an optimal predicted tool wear value; wherein, the second type of the interval fuzzy neural network model includes a plurality of layers, the The layers are connected to each other in sequence, one of the layers includes an interval type 2 blur translation and an average value and a standard deviation of a Gaussian function, the other layer includes a posterior identification weight, the interval type 2 blur The translation amount, the average value, the standard deviation and the post-identification weight are adjusted by the dynamic grouping cooperative differential evolution algorithm, so that the second type fuzzy neural network model of the interval outputs the best predicted tool wear value. 如請求項5所述之利用演化式模糊類神經網路之刀具磨耗預測方法,其中該色彩轉換步驟包含:一範圍選定步驟,係選定各該影像之一中心區域;一色彩校正步驟,係針對該中心區域依據一色彩校正模型執行色彩校正,以產生一標準色彩資訊;一第一色彩轉換步驟,係將該標準色彩資訊依據一第一標準光源轉換成複數第一刺激值;一第二色彩轉換步驟,係將該些第一刺激值依據一第二標準光源轉換成複數第二刺激值;及一第三色彩轉換步驟,係將該些第二刺激值依據一標準色度關係式轉換成該些標準色度參數。 The tool wear prediction method using evolutionary fuzzy neural network as claimed in claim 5, wherein the color conversion step comprises: a range selection step, which is to select a central area of each of the images; a color correction step, which is for The central area performs color correction according to a color correction model to generate a standard color information; a first color conversion step converts the standard color information into a plurality of first stimulus values according to a first standard light source; a second color The conversion step is to convert the first stimulus values into a plurality of second stimulus values according to a second standard light source; and a third color conversion step is to convert the second stimulus values to a standard chromaticity relationship according to a standard chromaticity relationship. These standard chromaticity parameters. 如請求項5所述之利用演化式模糊類神經網路之刀具磨耗預測方法,其中該動態分群協同式差分進化演算法包含:一初始化步驟,係將該區間第二型模糊平移量、該平均值、該標準差及該後鑑部權重視為一個體並進行編碼,該區間第二型模糊類神經網路模型包含複數該個體;一分群步驟,係將該些個體依據一群組閾值分群成複數群組;一領導者確認步驟,係確認各該群組之各該個體是否為一領導者,該領導者代表各該群組之該些個體之複數該預測刀具磨耗值之最小者;一突變步驟,係將該些個體執行一突變演化關係式而得 到一突變向量;一交換步驟,係依據該突變向量執行一交換關係式而得到一試驗向量;及一選擇步驟,係依據該試驗向量執行一選擇關係式而得到選擇後的一個體向量,該區間第二型模糊類神經網路模型依據該個體向量運算而產生該橫向演化預測刀具磨耗值。 The tool wear prediction method using an evolutionary fuzzy neural network as described in claim 5, wherein the dynamic grouping collaborative differential evolution algorithm comprises: an initialization step, comprising the second type fuzzy translation in the interval, the average The value, the standard deviation and the post-identification weight are regarded as an individual and encoded, and the interval type II fuzzy neural network model includes a plurality of the individuals; a grouping step is to group these individuals according to a group threshold forming a plurality of groups; a leader confirming step is to confirm whether each of the individuals in each of the groups is a leader, and the leader represents the smallest of the predicted tool wear values of the plurality of the individuals of each of the groups; A mutation step is obtained by performing a mutational evolution relation on these individuals to a mutation vector; an exchange step is to execute an exchange relationship according to the mutation vector to obtain a test vector; and a selection step is to execute a selection relationship according to the test vector to obtain a selected individual vector, the The interval second type fuzzy neural network model generates the lateral evolution prediction tool wear value according to the individual vector operation. 如請求項7所述之利用演化式模糊類神經網路之刀具磨耗預測方法,其中該動態分群協同式差分進化演算法更包含:一領導者調整步驟,係將該些個體排列成p×n個體向量,並將p×n個體向量分成n組p×1個體向量,然後尋找出n組p×1個體向量之n個縱向領導者,該區間第二型模糊類神經網路模型依據n個縱向領導者運算而產生該縱向演化預測刀具磨耗值;一更新步驟,係將該些預測刀具磨耗值、該橫向演化預測刀具磨耗值及該縱向演化預測刀具磨耗值進行比較並選擇最小誤差者而更新為該最佳預測刀具磨耗值;及一迭代次數判斷步驟,係判斷該分群步驟的一迭代次數是否到達一預設次數;若否,則重新執行該分群步驟與該領導者確認步驟;若是,則結束該動態分群協同式差分進化演算法。 The tool wear prediction method using evolutionary fuzzy neural network as described in claim 7, wherein the dynamic grouping collaborative differential evolution algorithm further comprises: a leader adjustment step of arranging the individuals into p×n individual vectors, and divide the p×n individual vectors into n groups of p×1 individual vectors, and then find n vertical leaders of the n groups of p×1 individual vectors. The second type of fuzzy neural network model in this interval is based on n The longitudinal evolution prediction tool wear value is generated by the longitudinal leader operation; an update step is to compare these predicted tool wear values, the lateral evolution prediction tool wear value and the longitudinal evolution prediction tool wear value, and select the one with the smallest error to obtain updating to the best predicted tool wear value; and an iteration number judging step for judging whether an iteration number of the grouping step reaches a preset number of times; if not, re-execute the grouping step and the leader confirmation step; if so , the dynamic grouping cooperative differential evolution algorithm ends.
TW109109057A 2020-03-18 2020-03-18 Tool wear prediction system using evolutionary fuzzy neural network and method thereof TWI775059B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109109057A TWI775059B (en) 2020-03-18 2020-03-18 Tool wear prediction system using evolutionary fuzzy neural network and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109109057A TWI775059B (en) 2020-03-18 2020-03-18 Tool wear prediction system using evolutionary fuzzy neural network and method thereof

Publications (2)

Publication Number Publication Date
TW202137024A TW202137024A (en) 2021-10-01
TWI775059B true TWI775059B (en) 2022-08-21

Family

ID=79601279

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109109057A TWI775059B (en) 2020-03-18 2020-03-18 Tool wear prediction system using evolutionary fuzzy neural network and method thereof

Country Status (1)

Country Link
TW (1) TWI775059B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781982B1 (en) * 2011-09-23 2014-07-15 Lockheed Martin Corporation System and method for estimating remaining useful life
TW201834784A (en) * 2017-03-24 2018-10-01 國立成功大學 Tool wear monitoring and predicting method
CN110245689A (en) * 2019-05-23 2019-09-17 杭州有容智控科技有限公司 Shield cutter identification and position finding and detection method based on machine vision
CN110263474A (en) * 2019-06-27 2019-09-20 重庆理工大学 A kind of cutter life real-time predicting method of numerically-controlled machine tool
CN110355608A (en) * 2019-07-18 2019-10-22 浙江大学 Tool wear prediction method based on self-attention mechanism and deep learning
CN110488753A (en) * 2019-08-29 2019-11-22 山东大学 Whirling tool periscopic testing agency, forecasting system and method
CN110509109A (en) * 2019-07-16 2019-11-29 西安交通大学 Tool Wear Monitoring method based on multiple dimensioned depth convolution loop neural network
TW202006340A (en) * 2018-07-18 2020-02-01 國立勤益科技大學 Method for estimating tool wear by using color of chips estimating the tool wear generated when the chips are produced
TWM597429U (en) * 2020-03-18 2020-06-21 百德機械股份有限公司 Tool wear prediction system using evolutionary fuzzy neural network

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781982B1 (en) * 2011-09-23 2014-07-15 Lockheed Martin Corporation System and method for estimating remaining useful life
TW201834784A (en) * 2017-03-24 2018-10-01 國立成功大學 Tool wear monitoring and predicting method
TW202006340A (en) * 2018-07-18 2020-02-01 國立勤益科技大學 Method for estimating tool wear by using color of chips estimating the tool wear generated when the chips are produced
CN110245689A (en) * 2019-05-23 2019-09-17 杭州有容智控科技有限公司 Shield cutter identification and position finding and detection method based on machine vision
CN110263474A (en) * 2019-06-27 2019-09-20 重庆理工大学 A kind of cutter life real-time predicting method of numerically-controlled machine tool
CN110509109A (en) * 2019-07-16 2019-11-29 西安交通大学 Tool Wear Monitoring method based on multiple dimensioned depth convolution loop neural network
CN110355608A (en) * 2019-07-18 2019-10-22 浙江大学 Tool wear prediction method based on self-attention mechanism and deep learning
CN110488753A (en) * 2019-08-29 2019-11-22 山东大学 Whirling tool periscopic testing agency, forecasting system and method
TWM597429U (en) * 2020-03-18 2020-06-21 百德機械股份有限公司 Tool wear prediction system using evolutionary fuzzy neural network

Also Published As

Publication number Publication date
TW202137024A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
TWI773063B (en) Image generation system and image generation method
CN115860592B (en) Quality detection and evaluation method and system for gypsum block
CN109916913A (en) A machine vision-based intelligent manufacturing product identification and detection method
CN116385476B (en) Quality analysis method of iron tower based on visual detection
WO2025148572A1 (en) Target detection method and apparatus, electronic device, and storage medium
TWM597429U (en) Tool wear prediction system using evolutionary fuzzy neural network
CN117746055B (en) Algorithm for extracting stereo features based on 3D point cloud data
TWI775059B (en) Tool wear prediction system using evolutionary fuzzy neural network and method thereof
CN120095718A (en) A hardware intelligent grinding system and method based on machine vision
TW202109356A (en) Clothing image classification and image classification methods and apparatuses, and device
TWM550465U (en) Semiconductor wafer analyzing system
CN120595665A (en) A metal processing error monitoring method and system based on situation awareness
CN118682177A (en) An adaptive CNC milling method and system for special-shaped thin-walled parts
CN115049791B (en) Numerical control lathe workpiece three-dimensional modeling method combined with image processing
CN113360838B (en) Nozzle casting monitoring method and system based on image processing
CN119048875B (en) Monitoring imaging system for oral care
CN115421445A (en) Processing method of hardware thin-wall part
CN119668189B (en) Efficient processing control method, device, equipment and storage medium based on cloud platform
CN112862826A (en) Normal sample nondestructive generation method for surface defect detection task
CN115880645B (en) Progress prediction system of jewelry chain loom based on multi-picture monitoring analysis
CN119963544B (en) Parts milling machine processing detection method and system
CN120352028B (en) A surface color difference control system for plastic products
CN114111574B (en) Binocular line laser vision three-dimensional measurement method for high-temperature red-hot targets
CN117115143B (en) Method and device for detecting wafer core particle, computer equipment and storage medium
Fomin et al. Improvement of the Quality of Wear Zones for Cutting Tools Textures Classes Recognition

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent