[go: up one dir, main page]

TWI683321B - Data processing method and system using binary space division - Google Patents

Data processing method and system using binary space division Download PDF

Info

Publication number
TWI683321B
TWI683321B TW107139862A TW107139862A TWI683321B TW I683321 B TWI683321 B TW I683321B TW 107139862 A TW107139862 A TW 107139862A TW 107139862 A TW107139862 A TW 107139862A TW I683321 B TWI683321 B TW I683321B
Authority
TW
Taiwan
Prior art keywords
data
geographic
historical transaction
geographical
transaction data
Prior art date
Application number
TW107139862A
Other languages
Chinese (zh)
Other versions
TW202018732A (en
Inventor
杜文達
郭坤昇
鄭如雯
陳淑梅
鄭佳揚
高碧霞
黃雅郁
陳瑞芬
Original Assignee
第一商業銀行股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一商業銀行股份有限公司 filed Critical 第一商業銀行股份有限公司
Priority to TW107139862A priority Critical patent/TWI683321B/en
Application granted granted Critical
Publication of TWI683321B publication Critical patent/TWI683321B/en
Publication of TW202018732A publication Critical patent/TW202018732A/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

於一種資料處理方法及系統,處理單元根據多筆相關於預定地理範圍所含的參考劃分物件的地理位置資料並利用二元空間分割方式將預定地理範圍劃分成多個地理區域;將該等筆地理位置資料及指派給該等地理區域的索引儲存於二元樹;根據二元樹及多筆相關於該預定地理範圍內之建物的歷史交易資料所含的地理座標,將該等筆歷史交易資料分成分別相關於該等地理區域的多組;及根據每組之歷史交易資料所含的建物資料,產生相關於對應地理區域的參考資料,並將該參考資料儲存於該儲存模組且位在一對應於指派給該對應地理區域的索引的儲存位置。In a data processing method and system, the processing unit divides the predetermined geographic range into multiple geographic areas based on multiple geographic location data related to reference division objects contained in the predetermined geographic range and uses a binary space segmentation method; The geographical location data and the indexes assigned to these geographical areas are stored in the binary tree; based on the geographical coordinates contained in the binary tree and the historical transaction data related to the buildings within the predetermined geographic range, the historical transactions The data is divided into multiple groups that are related to these geographic areas; and based on the construction data contained in each group's historical transaction data, reference data related to the corresponding geographic area is generated, and the reference data is stored in the storage module and located In a storage location corresponding to the index assigned to the corresponding geographic area.

Description

利用二元空間分割的資料處理方法及系統Data processing method and system using binary space division

本發明是有關於資料處理,特別是指一種利用二元空間分割的資料處理方法及系統。The present invention relates to data processing, and in particular to a data processing method and system using binary space division.

目前,銀行機構已利用現有線上房貸試算方式來提供房貸額度試算服務,此線上房貸試算方式可藉由例如銀行機構所提供的後台伺服器來實施。此後台伺服器可根據相關於抵押建物的輸入資訊(例如可包含建物地址、建物型態(公寓、華廈)等),並可利用例如現有不動產自動估價模型(Automated Valuation Models, AVM),執行例如複迴歸(multiple regression)演算法、空間迴歸(spatial regression)演算法等來處理資料,以估算出此抵押建物的價值。於是,此抵押建物的估算價值可作為是否以此抵押建物申請房貸的評估。然而,現有不動產自動估價模型所採用的複迴歸演算法、空間迴歸演算法在處理資料上是相對耗時。At present, banking institutions have used the existing online mortgage loan trial calculation method to provide mortgage loan trial calculation service. This online mortgage loan trial calculation method can be implemented by, for example, a back-end server provided by a banking institution. This background server can be based on the input information related to the mortgaged building (for example, it can include the building address, building type (apartment, Huaxia), etc.), and can use, for example, the existing real estate automatic valuation model (Automated Valuation Models, AVM) to execute For example, multiple regression algorithm, spatial regression algorithm, etc. to process data to estimate the value of the mortgaged building. Therefore, the estimated value of the mortgaged building can be used as an evaluation of whether to apply for mortgage with this mortgaged building. However, the complex regression algorithm and spatial regression algorithm used in existing real estate automatic valuation models are relatively time-consuming in processing data.

為解決上述耗時問題,遂想出根據大量的歷史建物交易資料,例如交易建物的實價登陸資料來估算抵押建物的價值。然而,如何以高效率且相對精確的方式來處理如此龐大的歷史建物交易資料以便獲得可快速地應用於建物估價的參考資料將成為一重要課題。In order to solve the above time-consuming problem, we came up with an estimate of the value of the mortgaged building based on a large amount of historical building transaction data, such as the transaction log-in log-in data. However, how to process such huge historical building transaction data in an efficient and relatively accurate manner so as to obtain reference materials that can be quickly applied to building valuation will become an important issue.

因此,本發明的一目的,即在提供一種資料處理方法,其能以高效率且相對精確的方式來處理交易建物的歷史交易資料。Therefore, an object of the present invention is to provide a data processing method that can process historical transaction data of transaction buildings in an efficient and relatively accurate manner.

於是,本發明提供了一種資料處理方法,其用於處理M筆相關於一預定地理範圍內的所有曾交易過之建物的歷史交易資料,並藉由一包含一處理單元及一儲存模組的電腦執行,其中M≧2且每筆歷史交易資料包含對應於該等建物其中一對應建物之地址的地理座標,以及指示出該對應建物的總面積、建物型態、屋齡及交易價格的建物資料。該資料處理方法包含以下步驟:(A)獲得P筆分別相關於該預定地理範圍內所含的P個不同的參考劃分物件的地理位置資料及該預定地理範圍的地理範圍資料,其中P≧1;(B)根據該P筆地理位置資料及該地理範圍資料並利用二元空間分割方式,將該預定地理範圍劃分Q個地理區域,其中Q≧2且該Q個地理區域是由該P個參考劃分物件所劃分出;(C)將該P筆地理位置資料及Q個彼此不同且分別指派給該Q個地理區域的索引儲存於一具有P個非終端節點及Q個葉節點的二元樹,其中該二元樹被儲存於該儲存模組,並且該P個非終端節點分別儲存有該P筆地理位置資料及該Q個葉節點分別儲存有該Q個索引;(D)根據儲存於該儲存模組的該二元樹及該M筆歷史交易資料的M個地理座標,將該M筆歷史交易資料分成分別相關於該Q個地理區域的Q組,其中M=

Figure 02_image001
,m i代表該M筆歷史交易資料其中被分到第i組的歷史交易資料的筆數,且該m i筆歷史交易資料其中每一者所含的該地理座標位於第i個地理區域;及(E)根據第i組的m i筆歷史交易資料所含的建物資料,產生相關於該第i個地理區域的參考資料,並將該參考資料儲存於該儲存模組且位在一唯一對應於指派給該第i個地理區域的索引的儲存位置,其中i=1,2,…,Q。 Therefore, the present invention provides a data processing method for processing M transaction historical transaction data related to all buildings that have been traded within a predetermined geographic range, and through a processing unit and a storage module Computer execution, where M≧2 and each historical transaction data includes the geographic coordinates corresponding to the address of one of the buildings, and the building indicating the total area, building type, age of the building, and transaction price of the corresponding building data. The data processing method includes the following steps: (A) Obtaining P geographic location data related to P different reference division objects contained in the predetermined geographic range and geographic range data of the predetermined geographic range, where P≧1 (B) According to the P geographic location data and the geographic range data and using the binary space division method, the predetermined geographic range is divided into Q geographic regions, where Q≧2 and the Q geographic regions are composed of the P geographic regions Refer to the divided objects; (C) store the P geographical location data and Q indexes that are different from each other and are assigned to the Q geographical regions, respectively, in a binary tree with P non-terminal nodes and Q leaf nodes , Where the binary tree is stored in the storage module, and the P non-terminal nodes store the P geographic location data and the Q leaf nodes store the Q indexes, respectively; (D) according to the storage in the The binary tree of the storage module and the M geographic coordinates of the M historical transaction data divide the M historical transaction data into Q groups respectively related to the Q geographic regions, where M=
Figure 02_image001
, M i represents the number of historical transaction data in the M group of historical transaction data, and the geographical coordinates contained in each of the mi historical transaction data are located in the i-th geographical region; And (E) generate reference data related to the i-th geographical area based on the building data contained in the mi historical transaction data of the i group, and store the reference data in the storage module in a unique Corresponds to the storage location of the index assigned to the i-th geographic area, where i = 1, 2, ..., Q.

因此,本發明之另一目的,即在提供一種資料處理系統,其能以高效率且相對精確的方式來處理交易建物的歷史交易資料。Therefore, another object of the present invention is to provide a data processing system that can process historical transaction data of transaction buildings in an efficient and relatively accurate manner.

於是,本發明提供了一種資料處理系統,其用於處理M筆相關於一預定地理範圍內的所有曾交易過之建物的歷史交易資料,其中M≧2且每筆歷史交易資料包含對應於該等建物其中一對應建物之地址的地理座標,以及指示出該對應建物的總面積、建物型態、屋齡及交易價格的建物資料。該資料處理系統包含一儲存模組、及一電連接該儲存模組的處理單元。Therefore, the present invention provides a data processing system for processing M pieces of historical transaction data related to all buildings that have been traded within a predetermined geographic range, where M≧2 and each piece of historical transaction data contains data corresponding to the The geographical coordinates of one of the corresponding buildings and the address of the building, and the building data indicating the total area, building type, age of the building and transaction price of the corresponding building. The data processing system includes a storage module and a processing unit electrically connected to the storage module.

當該處理單元接收到該M筆歷史交易資料、P筆分別相關於該預定地理範圍內所含的P個不同的參考劃分物件的地理位置資料、及該預定地理範圍的地理範圍資料後,其中P≧1,該處理單元根據該P筆地理位置資料及該地理範圍資料並利用二元空間分割方式,將該預定地理範圍劃分Q個地理區域,其中Q≧2且該Q個地理區域是由該P個參考劃分物件所劃分出;該處理單元將該P筆地理位置資料及Q個彼此不同且分別指派給該Q個地理區域的索引儲存於一具有P個非終端節點及Q個葉節點的二元樹,其中該二元樹被儲存於該儲存模組,並且該P個非終端節點分別儲存有該P筆地理位置資料及該Q個葉節點分別儲存有該Q個索引;該處理單元根據儲存於該儲存模組的該二元樹及該M筆歷史交易資料的M個地理座標,將該M筆歷史交易資料分成分別相關於該Q個地理區域的Q組,其中M=

Figure 02_image001
,m i代表該M筆歷史交易資料其中被分到第i組的歷史交易資料的筆數,且該m i筆歷史交易資料其中每一者所含的該地理座標位於第i個地理區域;及該處理單元根據第i組的m i筆歷史交易資料所含的建物資料,產生相關於該第i個地理區域的參考資料,並將該參考資料儲存於該儲存模組且位在一唯一對應於指派給該第i個地理區域的索引的儲存位置,其中i=1,2,…,Q。 When the processing unit receives the M pieces of historical transaction data and P pieces of geographical location data related to P different reference partitioned objects contained in the predetermined geographical range, and the geographical range data of the predetermined geographical range, of which P≧1, the processing unit divides the predetermined geographic range into Q geographic regions based on the P geographic location data and the geographic range data and using a binary space segmentation method, where Q≧2 and the Q geographic regions are composed of The P reference division objects are divided; the processing unit stores the P geographical location data and Q indexes that are different from each other and are assigned to the Q geographical regions, respectively, in an index with P non-terminal nodes and Q leaf nodes Binary tree, wherein the binary tree is stored in the storage module, and the P non-terminal nodes store the P geographical location data and the Q leaf nodes store the Q indexes, respectively; the processing unit is based on The binary tree stored in the storage module and the M geographic coordinates of the M historical transaction data divide the M historical transaction data into Q groups respectively related to the Q geographic regions, where M=
Figure 02_image001
, M i represents the number of historical transaction data in the M group of historical transaction data, and the geographical coordinates contained in each of the mi historical transaction data are located in the i-th geographical region; And the processing unit generates reference data related to the i-th geographical area according to the building data contained in the i i historical transaction data of the i group, and stores the reference data in the storage module in a unique Corresponds to the storage location of the index assigned to the i-th geographic area, where i = 1, 2, ..., Q.

本發明的功效在於:該處理單元利用所儲存的二元樹能以高效率且相對精確的方式將大量筆歷史交易資料分組,並根據每組的歷史交易資料所含的建物資料產生相關於對應地理區域的參考資料。在對於一目標建物的估價應用時,該處理單元利用所儲存的二元樹可快速獲得指派給該目標建物所在之地理區域的索引,繼而自該儲存模組讀取出位在該索引所對應的儲存位置的參考資料。The effect of the present invention is that the processing unit can use the stored binary tree to group a large number of historical transaction data in a highly efficient and relatively accurate manner, and generate correlations based on the building material data contained in each group of historical transaction data. References for geographic areas. In the evaluation of a target building, the processing unit can quickly obtain the index assigned to the geographical area where the target building is located by using the stored binary tree, and then read from the storage module corresponding to the index Reference for storage location.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numbers.

參閱圖1,本發明資料處理系統1的一實施例係適用於處理M(M≧2)筆相關於一預定地理範圍內的所有曾交易過之建物的歷史交易資料。在本實施例中,該預定地理範圍較佳地可為例如一城市區域,但不在此限,而實際上,M例如可代表一龐大數量,但不在此限。在其他實施例中,該預定地理範圍可根據實際應用情況而定。此外,每筆歷史交易資料例如包含對應於該等建物其中一對應建物之地址的地理座標,以及指示出該對應建物的總面積、建物型態(例如透天厝、大廈或公寓,但不在此限)、屋齡及交易價格的建物資料,其中該地理座標為一二維地理座標,例如經緯度座標。該資料處理系統1例如可實施成一可連網的電腦,並包含一儲存模組11、及一電連接該儲存模組的處理單元12,但不在此限。該處理單元12在經由執行例如一預存於該儲存模組11且相關於一資料處理方法的程式(圖未示)來處理該M筆歷史交易資料後,可獲得並儲存一二元樹111及多筆參考資料112。Referring to FIG. 1, an embodiment of the data processing system 1 of the present invention is suitable for processing M (M≧2) historical transaction data related to all buildings that have been traded within a predetermined geographic range. In this embodiment, the predetermined geographic range may preferably be, for example, an urban area, but not within this limit, and in fact, M may represent a large number, but not within this limit. In other embodiments, the predetermined geographic range may be determined according to actual applications. In addition, each historical transaction data includes, for example, the geographic coordinates corresponding to the address of one of the buildings, and indicates the total area of the corresponding building, the type of the building (such as the sky, building, or apartment, but not here Limit), building age and transaction price of building materials, where the geographic coordinates are a two-dimensional geographic coordinates, such as latitude and longitude coordinates. The data processing system 1 may be implemented as a networkable computer, for example, and includes a storage module 11 and a processing unit 12 electrically connected to the storage module, but not limited to this. After processing the M historical transaction data by executing, for example, a program (not shown) stored in the storage module 11 and related to a data processing method, the processing unit 12 can obtain and store a binary tree 111 and Multiple references 112.

以下,將參閱圖1及圖2來示例地說明該資料處理系統1如何執行該資料處理方法來處理該M筆歷史交易資料。該資料處理方法包含以下步驟S21~S26。Hereinafter, referring to FIG. 1 and FIG. 2, an example will be described to explain how the data processing system 1 executes the data processing method to process the M historical transaction data. The data processing method includes the following steps S21-S26.

首先,在步驟S21中,該處理單元獲得來自外部或經由人為輸入操作而產生的P(P≧1)筆分別相關於該預定地理範圍內所含的P個不同的參考劃分物件的地理位置資料及該預定地理範圍的地理範圍資料。在本實施例中,每一參考劃分物件可為一至少選自鐵路、街道、高架道路、河流、公園及綠地等的地理特徵物件或一地理劃分線,並且每筆地理位置資料例如包含一組或多組指示出該P個地理特徵物件其中一對應者之輪廓的二維座標向量。相似地,該地理範圍資料可包含多組定義出該預定地理範圍的二維座標向量。First, in step S21, the processing unit obtains P (P≧1) pens generated from outside or through human input operations, which are respectively related to the geographic location data of P different reference partitioned objects contained in the predetermined geographic range And the geographical range information of the predetermined geographical range. In this embodiment, each reference division object may be a geographical feature object or a geographic division line selected from at least railways, streets, elevated roads, rivers, parks, and green spaces, and each geographic location data includes, for example, a group Or more sets of two-dimensional coordinate vectors indicating the contour of one of the P geographic feature objects. Similarly, the geographic range data may include multiple sets of two-dimensional coordinate vectors that define the predetermined geographic range.

接著,在步驟S22中,該處理單元12根據該P筆地理位置資料及該地理範圍資料並利用二元空間分割(Binary Space Partitioning; BSP)方式,將該預定地理範圍劃分Q(Q≧2)個地理區域。也就是說,該Q個地理區域是由該P個參考劃分物件所劃分出。Next, in step S22, the processing unit 12 divides the predetermined geographic range into Q (Q≧2) using the Binary Space Partitioning (BSP) method based on the P geographic location data and the geographic range data Geographic regions. That is, the Q geographic regions are divided by the P reference division objects.

舉例來說,於圖3所示的範例,該預定地理範圍所含有例如9(P=9)個參考劃分物件L 1~L 9,其中該參考劃分物件L 1~L 3,L 8例如分別為鐵路、河流、河流及綠地的地理特徵物件,而其他參考劃分物件L 4~L 7,L 9例如為所欲的地理劃分線。值得注意的是,此等地理劃分線並不限於直線及橫線,在其他態樣中亦可為斜線。更詳細地說,該處理單元12先根據對應於該參考劃分物件L 1(鐵路)的該地理位置資料D1及該地理範圍資料將該預定地理範圍劃分成左側的第一子範圍及第右側第二子範圍。然後,該處理單元12根據對應於該參考劃分物件L 2(河流)的該地理位置資料D2、該地理範圍資料及該地理位置資料D1將該第一子範圍劃分成左下的第三子範圍及左上的第四子範圍;並且根據對應於該參考劃分物件L 3(河流)的該地理位置資料D3、該地理範圍資料及該地理位置資料D1將該第二子範圍劃分成右下的第五子範圍及右上的第六子範圍。接著,該處理單元12根據對應於該參考劃分物件L 4的該地理位置資料D4、該地理範圍資料、及該等地理位置資料D1,D2將該第三子範圍劃分成左側的第七子範圍及右側的地理區域33;根據對應於該參考劃分物件L 5的該地理位置資料D5、該地理範圍資料、及該等地理位置資料D1,D2將該第四子範圍劃分成左側的地理區域34及右側的地理區域35;根據對應於該參考劃分物件L 6的該地理位置資料D6、該地理範圍資料、及該等地理位置資料D1,D3將該第五子範圍劃分成左側的第八子範圍及右側的地理區域38;及根據對應於該參考劃分物件L 7的該地理位置資料D7、該地理範圍資料、及該等地理位置資料D1,D3將該第六子範圍劃分成左側的地理區域39及右側的地理區域40。最後,該處理單元12根據對應於該參考劃分物件L 8(綠地)的該地理位置資料D8、該地理範圍資料、及該等地理位置資料D2,D4將該第七子範圍劃分成下側的地理區域31及上側的地理區域32(在此例中,該地理區域32與該參考劃分物件L 8具有相同的區域範圍,即圖3中的斜線區域範圍);及根據對應於該參考劃分物件L 9的該地理位置資料D9、該地理範圍資料、及該等地理位置資料D3,D6將該第八子範圍劃分成下側的地理區域36及上側的地理區域37。於是,該處理單元12將該預定地理範圍劃分成該等地理區域31~40(即,Q=10)。以下,該等地理區域31~40分別被稱作第一至第十個地理區域。 For example, in the example shown in FIG. 3, the predetermined geographic range contains, for example, 9 (P=9) reference division objects L 1 ~L 9 , where the reference division objects L 1 ~L 3 , L 8 are, for example, respectively These are the geographical features of railways, rivers, rivers and green areas, and the other reference divisions L 4 ~ L 7 , L 9 are, for example, the desired geographic division lines. It is worth noting that these geographical division lines are not limited to straight lines and horizontal lines, but may be diagonal lines in other forms. In more detail, the processing unit 12 first divides the predetermined geographic range into a first sub-range on the left and a third on the right based on the geographic location data D1 and the geographic range data corresponding to the reference division object L 1 (railway) Two sub-ranges. Then, the processing unit 12 divides the first sub-range into the lower left third sub-range and the first sub-range according to the geographical position data D2, the geographical range data and the geographical position data D1 corresponding to the reference division object L 2 (river) The fourth sub-range on the upper left; and the second sub-range is divided into the fifth on the lower right based on the geographic location data D3, the geographic range data and the geographic location data D1 corresponding to the reference division object L 3 (river) The sub-range and the sixth sub-range on the upper right. Next, the processing unit 12 corresponding to the divided object reference data D4 4 L of the location, the geographical range information, and the location of such data D1, D2 the third sub-range is divided into a seventh sub-range to the left And the geographic area 33 on the right; the fourth sub-range is divided into the geographic area 34 on the left according to the geographic location data D5 corresponding to the reference division object L 5 , the geographic range data, and the geographic location data D1, D2 And the geographic area 35 on the right; according to the geographic location data D6 corresponding to the reference division object L 6 , the geographic range data, and the geographic location data D1, D3 divide the fifth sub-range into the eighth sub-unit on the left The range and the geographical area 38 on the right; and the sixth sub-range is divided into the geographical area on the left according to the geographical location data D7 corresponding to the reference division object L 7 , the geographical range data, and the geographical location data D1, D3 Area 39 and the geographic area 40 on the right. Finally, the processing unit 12 divides the seventh sub-range into the lower side according to the geographic location data D8 corresponding to the reference division object L 8 (green space), the geographic range data, and the geographic location data D2, D4 The geographic area 31 and the upper geographic area 32 (in this example, the geographic area 32 and the reference division object L 8 have the same area range, that is, the slash area range in FIG. 3); and the object is divided according to the reference the geographic data D9 9 L, which is the geographical range information, and the location of such data D3, D6 eighth sub range is divided into the geographic region of the lower side 36 and upper side 37 of the geographical area. Therefore, the processing unit 12 divides the predetermined geographic range into the geographic regions 31-40 (ie, Q=10). Hereinafter, these geographic areas 31 to 40 are referred to as the first to tenth geographic areas, respectively.

然後,在步驟S23中,該處理單元12將該P筆地理位置資料及Q個彼此不同且分別指派給該Q個地理區域的索引儲存於具有P個非終端節點及Q個葉節點的二元樹111,並且該二元樹111被儲存於該儲存模組2。值得注意的是,該P個非終端節點分別儲存有該P筆地理位置資料及該Q個葉節點分別儲存有該Q個索引。Then, in step S23, the processing unit 12 stores the P geographical location data and Q indexes different from each other and assigned to the Q geographical regions, respectively, in a binary tree with P non-terminal nodes and Q leaf nodes 111, and the binary tree 111 is stored in the storage module 2. It is worth noting that the P non-terminal nodes store the P geographic location data and the Q leaf nodes store the Q indexes, respectively.

舉例來說,沿用圖3的範例,該處理單元12例如已先將10(Q=10)個索引P1~P10分別指派給該第一至第十個地理區域31~40。於是,參考圖4,該處理單元12所儲存的該二元樹111具有9(P=9)個非終端節點411~419及10個葉節點421~430,並且該等非終端節點411~419分別儲存有該第一至第九地理位置資料D1~D9For example, following the example of FIG. 3, the processing unit 12 has first assigned 10 (Q=10) indexes P1 to P10 to the first to tenth geographic regions 31 to 40, respectively. Therefore, referring to FIG. 4, the binary tree 111 stored by the processing unit 12 has 9 (P=9) non-terminal nodes 411 to 419 and 10 leaf nodes 421 to 430, and the non-terminal nodes 411 to 419 are stored respectively There are the first to ninth geographic data D1~D9

之後,在步驟S24中,該處理單元12在經由例如網路下載而獲得該M筆歷史交易資料後,根據儲存於該儲存模組11的該二元樹111及該M筆歷史交易資料的M個地理座標,將該M筆歷史交易資料分成分別相關於該Q個地理區域的Q組,其中M=

Figure 02_image001
,m i代表該M筆歷史交易資料其中被分到第i組的歷史交易資料的筆數,且該m i筆歷史交易資料其中每一者所含的該地理座標位於第i個地理區域。更明確地說,該處理單元12藉由將每筆歷史交易資料所含的該二維地理座標以逐層方式與該儲存模組11所儲存的該二元樹111的該P個非終端節點所儲存的該P筆地理位置資料其中的部份相關者比對,如此可經由該二分樹111追蹤至其中一個葉節點(及該Q個葉節點其中的一者),以致該筆歷史交易資料會被分到該Q組中相關於指派有該葉節點所儲存的該索引的該地理區域的一組。 Afterwards, in step S24, the processing unit 12 obtains the M historical transaction data through, for example, downloading from the Internet, according to the binary tree 111 stored in the storage module 11 and the M historical transaction data M Geographic coordinates, divide the M historical transaction data into Q groups related to the Q geographic regions, where M=
Figure 02_image001
, M i represents the number of historical transaction data in the M group of historical transaction data, and the geographical coordinates contained in each of the mi historical transaction data are located in the i-th geographical area. More specifically, the processing unit 12 determines the two non-terminal nodes of the binary tree 111 stored in the storage module 11 by layer-by-layer with the two-dimensional geographic coordinates contained in each historical transaction data. Some of the related data in the P geographical location data stored are compared, so that it can be traced to one of the leaf nodes (and one of the Q leaf nodes) through the binary tree 111, so that the historical transaction data will be A group in the Q group that is related to the geographic area to which the index stored by the leaf node is assigned.

舉例來說,沿用圖3及圖4的範例,若一筆歷史交易資料所含的該地理座標逐層地先後與該等非終端節點411,413,417所儲存的該第一、第三及第七地理位置資料D1,D3,D7比對後而追蹤至該葉節點429時,則該筆歷史交易資料將會被分到相關於指派有該葉節點429所儲存的索引P 9的該第九個地理區域39的一組。 For example, following the example of FIG. 3 and FIG. 4, if the geographical coordinates contained in a piece of historical transaction data are successively layered with the non-terminal nodes 411, 413, 417, the first, third, and seventh When the geographic location data D1, D3, and D7 are compared and tracked to the leaf node 429, the historical transaction data will be assigned to the ninth related to the index P 9 assigned to the leaf node 429. A group of geographical areas 39.

最後,在步驟S25中,該處理單元12根據第i組的m i筆歷史交易資料所含的建物資料,產生相關於該第i個地理區域的參考資料112,並將該參考資料112儲存於該儲存模組11且位在一唯一對應於指派給該第i個地理區域的索引的儲存位置,其中i=1,2,…,Q。於是,一共有Q筆分別對應於該Q個地理區域的參考資料112被該處理單元12儲存於該儲存模組11且在Q個不同儲存位置。值得注意的是,在本實施例中,每筆參考資料112包含指示出一個或多個分別對應於一個或多個彼此不同之參考建物型態(例如,透天厝、公寓及華夏等其中至少一者,但不在此限)的單位面積參考價格(例如,每坪的價格,但不在此限)、及多個分別相關於多個不同屋齡範圍的參考折舊係數。舉例來說,對於每筆參考資料112而言,每一參考建物型態的該單位面積參考價格例如是對應組的該等筆歷史交易資料中相關於該參考建物型態的所有單位面積價格(交易價格/總面積)的平均值,但不以此為限;而該等參考折舊係數可根據例如彼此不同的第一及第二參考折舊係數並利用內插方式而產生,但不以此為限。例如,該第一參考折舊係數可藉由將該對應組的該等筆歷史交易資料中所有屋齡小於5年的單位面積價格之總和的平均值除以該對應組的該等筆歷史交易資料中所有單位面積價格的平均值而獲得,並且該第二參考折舊係數可藉由將該對應組的該等筆歷史交易資料中所有屋齡大於30年的單位面積價格的平均值除以該對應組的該等筆歷史交易資料中所有單位面積價格的平均值而獲得,但不以此為限。 Finally, in step S25, the processing unit 12 according to the constructional information m i pen historical transaction data contained in the group i, to generate a correlation of the i-th reference geographic area 112, and 112 stored in the reference The storage module 11 is located at a storage location uniquely corresponding to the index assigned to the i-th geographic area, where i = 1, 2, ..., Q. Therefore, a total of Q pens corresponding to the reference data 112 of the Q geographic regions are stored by the processing unit 12 in the storage module 11 and in Q different storage locations. It is worth noting that, in this embodiment, each reference material 112 includes one or more reference building types corresponding to one or more different reference buildings (e.g. One, but not limited to) the reference price per unit area (for example, the price per ping, but not limited to this), and a number of reference depreciation coefficients that are related to a number of different housing age ranges. For example, for each reference data 112, the reference price per unit area of each reference building type is, for example, the price per unit area related to the reference building type in the historical transaction data of the corresponding group ( Transaction price/total area), but not limited to this; and these reference depreciation coefficients can be generated based on, for example, different first and second reference depreciation coefficients and using interpolation, but not as limit. For example, the first reference depreciation coefficient can be obtained by dividing the average value of the sum of all unit prices in the corresponding group's historical transactions data whose house age is less than 5 years by the corresponding group's historical transaction data The average value of all unit area prices in is obtained, and the second reference depreciation coefficient can be obtained by dividing the average value of all unit area prices in the corresponding group of historical transaction data that are older than 30 years by the corresponding The average value of all unit area prices in the historical transaction data of the group is obtained, but not limited to this.

至此,該處理單元12執行完該資料處理方法。值得注意的是,由於在劃分該等地理區域時已考量該預定地理範圍所含的地理特徵,因此該資料處理系統1所產生的該等筆參考資料112可相對精確地反應出該等地理區域在建物價格上的特性,例如,鄰近鐵路的建物的價格相對較低,鄰近公園或綠地的建物的價格相對較高等之特性。So far, the processing unit 12 has finished executing the data processing method. It is worth noting that, since the geographical features included in the predetermined geographical range have been taken into consideration when dividing the geographical areas, the reference data 112 generated by the data processing system 1 can relatively accurately reflect the geographical areas The characteristics of the price of buildings, for example, the price of buildings adjacent to railways is relatively low, and the price of buildings adjacent to parks or green spaces is relatively high.

當該資料處理系統3被應用來對於一座落於該預定地理範圍之目標建物的估價時,該處理單元12在獲得該目標建物的地址、建物型態、總面積及屋齡等的資料後,先將該地址轉換成一目標二維地理座標,且根據該目標二維地理座標,可快速地經由該二元樹111追蹤到一目標葉節點,繼而可根據該目標葉節點所儲存的索引自該儲存模組11取得儲存在對應於該索引的儲存位置的參考資料112,於是便可從該參考資料112獲得匹配於該建物型態的單位面積參考價格、及匹配於該屋齡的參考折價係數,並根據該單位面積參考價格、總面積及該參考折價係數估算出該目標建物的價格。由於如何計算該目標建物的價格之細節並非本發明之特徵,故在此不再贅述。When the data processing system 3 is applied to the valuation of a target building falling within the predetermined geographic range, after the processing unit 12 obtains the data of the target building's address, building type, total area and age of the house, etc., The address is first converted into a target two-dimensional geographic coordinate, and according to the target two-dimensional geographic coordinate, a target leaf node can be quickly tracked through the binary tree 111, and then from the target leaf node according to the stored index from the The storage module 11 obtains the reference data 112 stored in the storage location corresponding to the index, so that the reference price per unit area matching the building type and the reference discount coefficient matching the age of the house can be obtained from the reference data 112 , And estimate the price of the target building based on the unit area reference price, total area and the reference discount factor. Since the details of how to calculate the price of the target building is not a feature of the present invention, it will not be repeated here.

綜上所述,本發明該資料處理系統1利用所儲存的該二元樹111能以高效率且相對精確的方式將大量筆歷史交易資料分組,並根據每組的歷史交易資料所含的建物資料產生相關於對應地理區域的參考資料112。特別是,由於在劃分該等地理區域時已考量該預定地理範圍所含的地理特徵,每筆參考資料112可充分反應出相關地理區域在建物價格上的特性。另一方面,在對於目標建物的估價應用時,該資料處理系統1利用所儲存的該二元樹111可快速地獲得指派給該目標建物所在之地理區域的索引,繼而自該儲存模組11讀取出位在該索引所對應的儲存位置的參考資料112。於是,該目標建物的價格便可根據讀取出的參考資料112及該目標建物的相關資料而迅速地估算出。如此對比於上述習知技藝所採用來執行估算處理但相對耗時的複迴歸演算法、空間迴歸演算法。故確實能達成本發明的目的。In summary, the data processing system 1 of the present invention can use the stored binary tree 111 to group a large number of historical transaction data in an efficient and relatively accurate manner, and according to the buildings contained in each group of historical transaction data The data generates reference material 112 related to the corresponding geographic area. In particular, since the geographical features included in the predetermined geographical range have been taken into consideration when dividing the geographical areas, each reference material 112 can fully reflect the characteristics of the relevant geographical areas in terms of building prices. On the other hand, when evaluating the target building, the data processing system 1 can quickly obtain the index assigned to the geographical area where the target building is located by using the stored binary tree 111, and then from the storage module 11 The reference data 112 located at the storage location corresponding to the index is read. Therefore, the price of the target building can be quickly estimated based on the read reference data 112 and related data of the target building. This contrasts with the relatively time-consuming complex regression algorithm and spatial regression algorithm used by the above-mentioned conventional techniques to perform the estimation process. Therefore, the purpose of cost invention can indeed be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention, and the scope of implementation of the present invention cannot be limited by this, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still classified as Within the scope of the invention patent.

1‧‧‧資料處理系統1‧‧‧Data processing system

11‧‧‧儲存模組11‧‧‧Storage module

111‧‧‧二元樹111‧‧‧ Binary tree

112‧‧‧參考資料112‧‧‧Reference

12‧‧‧處理單元12‧‧‧Processing unit

L1~L9‧‧‧參考劃分物件L 1 ~L 9 ‧‧‧Reference division object

31~40‧‧‧(第一至第十個)地理區域31~40‧‧‧ (first to tenth) geographic area

411~419‧‧‧非終端節點411~419‧‧‧non-terminal node

421~430‧‧‧葉節點421~430‧‧‧leaf node

P1~P10‧‧‧索引P 1 ~P 10 ‧‧‧Index

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,示例地說明本發明建物估價系統的一實施例; 圖2是一流程圖,示例地說明該實施例如何對於多筆相關於一預定地理範圍內的所有曾交易過之建物的歷史交易資料執行一資料處理方法; 圖3是一示意圖,示例地繪示該實施例如何將該預定地理範圍劃分成十個地理區域的範例;及 圖4是一示意圖,示例地繪示該實施例所儲存且對應於如圖3所示劃分有十個地理區域的二元樹。Other features and functions of the present invention will be clearly presented in the embodiment with reference to the drawings, in which: FIG. 1 is a block diagram illustrating an embodiment of the building evaluation system of the present invention; FIG. 2 is a flowchart , Exemplarily illustrates how this embodiment performs a data processing method on multiple historical transaction data related to all buildings that have been traded within a predetermined geographic range; FIG. 3 is a schematic diagram that exemplarily shows how this embodiment will An example of dividing the predetermined geographic range into ten geographic regions; and FIG. 4 is a schematic diagram illustrating a binary tree stored in this embodiment and corresponding to the ten geographic regions divided as shown in FIG. 3.

1‧‧‧資料處理系統 1‧‧‧Data processing system

11‧‧‧儲存模組 11‧‧‧Storage module

111‧‧‧二元樹 111‧‧‧ Binary tree

112‧‧‧參考資料 112‧‧‧Reference

12‧‧‧處理單元 12‧‧‧Processing unit

Claims (6)

一種資料處理方法,用於處理M筆相關於一預定地理範圍內的所有曾交易過之建物的歷史交易資料,並藉由一包含一處理單元及一儲存模組的電腦執行,其中M≧2且每筆歷史交易資料包含對應於該等建物其中一對應建物之地址的地理座標,以及指示出該對應建物的總面積、建物型態、屋齡及交易價格的建物資料,該資料處理方法包含以下步驟:(A)獲得P筆分別相關於該預定地理範圍內所含的P個不同的參考劃分物件的地理位置資料及該預定地理範圍的地理範圍資料,其中P≧1;(B)根據該P筆地理位置資料及該地理範圍資料並利用二元空間分割方式,將該預定地理範圍劃分Q個地理區域,其中Q≧2且該Q個地理區域是由該P個參考劃分物件所劃分出;(C)將該P筆地理位置資料及Q個彼此不同且分別指派給該Q個地理區域的索引儲存於一具有P個非終端節點及Q個葉節點的二元樹,其中該二元樹被儲存於該儲存模組,並且該P個非終端節點分別儲存有該P筆地理位置資料及該Q個葉節點分別儲存有該Q個索引;(D)根據儲存於該儲存模組的該二元樹及該M筆歷史交易資料的M個地理座標,將該M筆歷史交易資料分成分別相關於該Q個地理區域的Q組,其中
Figure 107139862-A0305-02-0015-1
,mi代表該 M筆歷史交易資料其中被分到第i組的歷史交易資料的筆數,且該mi筆歷史交易資料其中每一者所含的該地理座標位於第i個地理區域;及(E)根據第i組的mi筆歷史交易資料所含的建物資料,產生相關於該第i個地理區域且包含指示出一個或多個分別對應於一個或多個彼此不同之參考建物型態的單位面積參考價格、及多個分別相關於多個不同屋齡範圍的參考折舊係數的參考資料,並將該參考資料儲存於該儲存模組且位在一唯一對應於指派給該第i個地理區域的索引的儲存位置,其中i=1,2,...,Q。
A data processing method for processing M historical transaction data related to all buildings that have been traded within a predetermined geographic range, and is executed by a computer including a processing unit and a storage module, where M≧2 And each historical transaction data includes the geographical coordinates corresponding to the address of one of the buildings, and the building data indicating the total area, building type, house age, and transaction price of the corresponding building. The data processing method includes The following steps: (A) Obtain the P geographic location data related to P different reference division objects contained in the predetermined geographic range and the geographic range data of the predetermined geographic range, where P≧1; (B) According to The P geographic location data and the geographic range data are divided into Q geographic regions using a binary space division method, where Q≧2 and the Q geographic regions are divided by the P reference division objects Out; (C) store the P geographical location data and Q indexes that are different from each other and are assigned to the Q geographical regions, respectively, in a binary tree with P non-terminal nodes and Q leaf nodes, where the binary The tree is stored in the storage module, and the P non-terminal nodes store the P geographic location data and the Q leaf nodes store the Q indexes, respectively; (D) according to the stored in the storage module The binary tree and the M geographic coordinates of the M historical transaction data divide the M historical transaction data into Q groups that are related to the Q geographic regions, where
Figure 107139862-A0305-02-0015-1
, M i represents the number of historical transaction data in the M group of historical transaction data, and the geographical coordinates contained in each of the mi historical transaction data are located in the i-th geographical region; and (E) were built according to the historical transaction data T i m i-th group of data included in generating the i-th related to the geographic region and comprising indicating one or more or a plurality respectively corresponding to each other is different from the reference buildings Type of unit area reference price, and multiple reference data related to multiple reference depreciation coefficients of different house age ranges, and the reference data is stored in the storage module and is uniquely assigned to the first The storage location of the index of i geographic regions, where i=1,2,...,Q.
如請求項1所述的資料處理方法,每一參考劃分物件為一至少選自鐵路、街道、高架道路、河流、公園及綠地的地理特徵物件或一地理劃分線,其中,在步驟(A)中,每筆地理位置資料包含至少一組指示出該P個地理特徵物件其中一對應者之輪廓的二維座標向量。 According to the data processing method of claim 1, each reference division object is a geographical feature object or a geographic division line selected from at least a railway, a street, an elevated road, a river, a park, and a green space, wherein, in step (A) In, each geographic location data includes at least one set of two-dimensional coordinate vectors indicating the contour of one of the P geographic feature objects. 如請求項2所述的資料處理方法,每筆歷史交易資料所含的該地理座標為一二維地理座標,其中,在步驟(D)中,該處理單元根據每筆歷史交易資料所含的該二維地理座標經由該儲存模組所儲存的該二分樹追蹤至其中一個葉節點,以致該筆歷史交易資料被分到該Q組中相關於指派有該葉節點所儲存的該索引的該地理區域的一組。 According to the data processing method described in claim 2, the geographical coordinates contained in each historical transaction data are a two-dimensional geographical coordinate, wherein, in step (D), the processing unit is based on the data contained in each historical transaction data The two-dimensional geographic coordinates are tracked to one of the leaf nodes through the binary tree stored by the storage module, so that the historical transaction data is divided into the Q group related to the index assigned to the index stored by the leaf node A group of geographic areas. 一種資料處理系統,用處理M筆相關於一預定地理範圍內的所有曾交易過之建物的歷史交易資料,其中M≧2且每筆歷史交易資料包含對應於該等建物其中一對應建物之 地址的地理座標,以及指示出該對應建物的總面積、建物型態、屋齡及交易價格的建物資料,該資料處理系統包含:一儲存模組;及一處理單元,電連接該儲存模組;其中,當該處理單元接收到該M筆歷史交易資料、P筆分別相關於該預定地理範圍內所含的P個不同的參考劃分物件的地理位置資料、及該預定地理範圍的地理範圍資料後,其中P≧1,該處理單元根據該P筆地理位置資料及該地理範圍資料並利用二元空間分割方式,將該預定地理範圍劃分Q個地理區域,其中Q≧2且該Q個地理區域是由該P個參考劃分物件所劃分出,將該P筆地理位置資料及Q個彼此不同且分別指派給該Q個地理區域的索引儲存於一具有P個非終端節點及Q個葉節點的二元樹,其中該二元樹被儲存於該儲存模組,並且該P個非終端節點分別儲存有該P筆地理位置資料及該Q個葉節點分別儲存有該Q個索引,根據儲存於該儲存模組的該二元樹及該M筆歷史交易資料的M個地理座標,將該M筆歷史交易資料分成分 別相關於該Q個地理區域的Q組,其中
Figure 107139862-A0305-02-0017-2
,mi代表該M筆歷史交易資料其中被分到第i組的歷史交易資料的筆數,且該mi筆歷史交易資料其中每一者所含的該地理座標位於第i個地理區域,及 根據第i組的mi筆歷史交易資料所含的建物資料,產生相關於該第i個地理區域且包含指示出一個或多個分別對應於一個或多個彼此不同之參考建物型態的單位面積參考價格、及多個分別相關於多個不同屋齡範圍的參考折舊係數的參考資料,並將該參考資料儲存於該儲存模組且位在一唯一對應於指派給該第i個地理區域的索引的儲存位置,其中i=1,2,...,Q。
A data processing system for processing M historical data related to all buildings that have been traded within a predetermined geographic range, where M≧2 and each historical transaction data includes an address corresponding to one of the buildings The geographic coordinates of and the building data indicating the total area of the corresponding building, the type of building, the age of the house and the transaction price. The data processing system includes: a storage module; and a processing unit electrically connected to the storage module; Wherein, when the processing unit receives the M historical transaction data and P pen related geographic location data of P different reference division objects contained in the predetermined geographic range, and geographic range data of the predetermined geographic range , Where P≧1, the processing unit divides the predetermined geographic range into Q geographic regions based on the P geographic location data and the geographic range data and using a binary space segmentation method, where Q≧2 and the Q geographic regions Is divided by the P reference division objects, and the P geographical location data and the Q indexes that are different from each other and assigned to the Q geographical regions are stored in a two with P non-terminal nodes and Q leaf nodes Meta tree, wherein the binary tree is stored in the storage module, and the P non-terminal nodes store the P geographical location data and the Q leaf nodes store the Q indexes, respectively, according to the storage in the storage The binary tree of the module and the M geographic coordinates of the M historical transaction data divide the M historical transaction data into Q groups that are respectively related to the Q geographic regions, where
Figure 107139862-A0305-02-0017-2
, M i represents the number of historical transaction data in the M group of historical transaction data, and the geographical coordinates contained in each of the mi historical transaction data are located in the i-th geographical region, And based on the building data contained in the i-th group of m i historical transaction data, generate the one corresponding to the i-th geographical area and containing one or more reference building types corresponding to one or more different reference building types respectively Reference price per unit area, and multiple reference data related to multiple reference depreciation coefficients of different age ranges, and store the reference data in the storage module in a unique correspondence to the i-th geographic location The storage location of the index of the area, where i=1,2,...,Q.
如請求項4所述的資料處理系統,每一參考劃分物件為一至少選自鐵路、街道、高架道路、河流、公園及綠地的地理特徵物件或一地理劃分線,其中,每筆地理位置資料包含至少一組指示出該P個地理特徵物件其中一對應者之輪廓的二維座標向量。 According to the data processing system described in claim 4, each reference division object is a geographic feature object or a geographic division line selected from at least railways, streets, elevated roads, rivers, parks and green spaces, where each geographic location data Contains at least one set of two-dimensional coordinate vectors indicating the contour of one of the P geographical feature objects. 如請求項5所述的資料處理系統,每筆歷史交易資料所含的該地理座標為一二維地理座標,其中,該處理單元根據每筆歷史交易資料所含的該二維地理座標經由該儲存模組所儲存的該二分樹追蹤至其中一個葉節點,以致該筆歷史交易資料被分到該Q組中相關於指派有該葉節點所儲存的該索引的該地理區域的一組。According to the data processing system of claim 5, the geographic coordinates contained in each historical transaction data are a two-dimensional geographic coordinate, wherein the processing unit passes the two-dimensional geographic coordinates included in each historical transaction data via the The binary tree stored by the storage module is tracked to one of the leaf nodes, so that the historical transaction data is divided into a group in the Q group related to the geographic area assigned with the index stored by the leaf node.
TW107139862A 2018-11-09 2018-11-09 Data processing method and system using binary space division TWI683321B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107139862A TWI683321B (en) 2018-11-09 2018-11-09 Data processing method and system using binary space division

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107139862A TWI683321B (en) 2018-11-09 2018-11-09 Data processing method and system using binary space division

Publications (2)

Publication Number Publication Date
TWI683321B true TWI683321B (en) 2020-01-21
TW202018732A TW202018732A (en) 2020-05-16

Family

ID=69942591

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107139862A TWI683321B (en) 2018-11-09 2018-11-09 Data processing method and system using binary space division

Country Status (1)

Country Link
TW (1) TWI683321B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222793A (en) * 2015-10-23 2016-01-06 华中科技大学 A kind of city stratification region partitioning method based on map vector data model
TWM554206U (en) * 2017-09-08 2018-01-11 Liu shao huan House price and area information evaluation system
TW201810170A (en) * 2016-07-13 2018-03-16 林璟輝 A method applied for a real estate transaction information providing system
TWM563040U (en) * 2018-03-31 2018-07-01 中國信託商業銀行股份有限公司 Real estate valuation system combined with digital geographic information
TWM576679U (en) * 2018-11-09 2019-04-11 第一商業銀行股份有限公司 Binary space division data processing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222793A (en) * 2015-10-23 2016-01-06 华中科技大学 A kind of city stratification region partitioning method based on map vector data model
TW201810170A (en) * 2016-07-13 2018-03-16 林璟輝 A method applied for a real estate transaction information providing system
TWM554206U (en) * 2017-09-08 2018-01-11 Liu shao huan House price and area information evaluation system
TWM563040U (en) * 2018-03-31 2018-07-01 中國信託商業銀行股份有限公司 Real estate valuation system combined with digital geographic information
TWM576679U (en) * 2018-11-09 2019-04-11 第一商業銀行股份有限公司 Binary space division data processing system

Also Published As

Publication number Publication date
TW202018732A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
O'Sullivan et al. A surface‐based approach to measuring spatial segregation
KR101773911B1 (en) Apparatus for estimating market price of real estate using market price and officially assessed price and method thereof
JP7210086B2 (en) AREA DIVISION METHOD AND DEVICE, ELECTRONIC DEVICE AND PROGRAM
Getis et al. Spatial analysis and modeling in a GIS environment
CN111881573B (en) Population space distribution simulation method and device based on urban inland inundation risk assessment
US20210279752A1 (en) Methods for spatially relative apportionment of geospatial data in distributed computing systems, and related systems and apparatus
CN110399569A (en) A kind of method and assessment device based on big data assessment land values
CN117576324B (en) Method and system for constructing urban three-dimensional spatial model based on digital twin
Sommerlot et al. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet
Zong et al. An innovative approach for equitable urban green space allocation through population demand and accessibility modeling
CN108647261A (en) Global isoplethes drawing method based on meteorological data discrete point gridding processing
d’Amato A brief outline of AVM models and standards evolutions
Wang et al. Generative AI for Urban Planning: Synthesizing Satellite Imagery via Diffusion Models
Sleeter Dasymetric mapping techniques for the San Francisco Bay region, California
CN110263250B (en) Recommendation model generation method and device
TWI683321B (en) Data processing method and system using binary space division
Melanda et al. Identification of locational influence on real property values using data mining methods
Calka et al. The Application of Geoinformation Theory in Housing Mass Appraisal
Dell’Anna et al. Geographically weighted regression models to investigate urban infrastructures impacts
US20250292291A1 (en) Listing price-based home valuation models
TWM576679U (en) Binary space division data processing system
CN117251520B (en) Method and device for identifying biodiversity key region and electronic equipment
Alaguero et al. The virtual reconstruction of a small medieval town: the case of Briviesca (Spain)
CN116542692A (en) Site selection method, site selection device, electronic equipment and computer readable storage medium
Oud GIS based property valuation: objectifying the value of view