TWI649725B - Smart home monitoring system and smart home monitoring method - Google Patents
Smart home monitoring system and smart home monitoring method Download PDFInfo
- Publication number
- TWI649725B TWI649725B TW106126431A TW106126431A TWI649725B TW I649725 B TWI649725 B TW I649725B TW 106126431 A TW106126431 A TW 106126431A TW 106126431 A TW106126431 A TW 106126431A TW I649725 B TWI649725 B TW I649725B
- Authority
- TW
- Taiwan
- Prior art keywords
- behavior
- time
- sensors
- smart home
- user
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims description 22
- 230000006399 behavior Effects 0.000 claims abstract description 104
- 230000000694 effects Effects 0.000 claims description 22
- 230000002159 abnormal effect Effects 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 5
- 230000001960 triggered effect Effects 0.000 claims description 5
- 230000003542 behavioural effect Effects 0.000 claims description 2
- 101150053844 APP1 gene Proteins 0.000 description 7
- 101100189105 Homo sapiens PABPC4 gene Proteins 0.000 description 7
- 102100039424 Polyadenylate-binding protein 4 Human genes 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 102100038359 Xaa-Pro aminopeptidase 3 Human genes 0.000 description 2
- 101710081949 Xaa-Pro aminopeptidase 3 Proteins 0.000 description 2
- 101100055496 Arabidopsis thaliana APP2 gene Proteins 0.000 description 1
- -1 PS18 Proteins 0.000 description 1
- 101000600488 Pinus strobus Putative phosphoglycerate kinase Proteins 0.000 description 1
- 101100016250 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GYL1 gene Proteins 0.000 description 1
- 102100038968 WAP four-disulfide core domain protein 1 Human genes 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Alarm Systems (AREA)
Abstract
一種智慧居家監控系統,包含感知模組與行為判斷模組。感知模組包含多個門框感知器,每一門框感知器設置於多個家電設備中對應的一個家電設備的門框,用以當對應的家電設備的門框呈開啟狀態時,對應地產生一開啟訊號。行為判斷模組包含學習單元及比較單元。學習單元用以接收第一時間區段內所產生的開啟訊號,以記錄且依據開啟訊號所對應的時間資訊及家電設備的類型,運算一預估行為模式。比較單元用以將第二時間區段的實際行為記錄與預估行為模式進行比較,且依據比較結果選擇性地發送第一提示訊息。A smart home monitoring system includes a sensing module and a behavior judgment module. The sensing module includes a plurality of door frame sensors, and each of the door frame sensors is disposed on a door frame of a corresponding one of the plurality of home appliances, and is configured to generate an opening signal correspondingly when the door frame of the corresponding home device is in an open state. . The behavior judgment module includes a learning unit and a comparison unit. The learning unit is configured to receive the open signal generated in the first time segment to record and calculate an estimated behavior mode according to the time information corresponding to the open signal and the type of the home appliance. The comparing unit is configured to compare the actual behavior record of the second time zone with the estimated behavior mode, and selectively send the first prompt message according to the comparison result.
Description
本發明關於一種智慧居家監控系統與智慧居家監控方法,特別是一種應用多種感知器的智慧居家監控系統與智慧居家監控方法。The invention relates to a smart home monitoring system and a smart home monitoring method, in particular to a smart home monitoring system and a smart home monitoring method using a plurality of sensors.
隨著社會人口結構趨向老化,高齡人口的比例不斷攀升,因此針對高齡者的智慧照護的系統越來越受到重視。此類的智慧照護系統主要係用來偵測高齡者的行為,藉以判斷高齡者是否發生危險或需要協助,以達到照護的目的。一些智慧照護系統需要使用監視系統的技術,然而一旦使用監視系統,可能造成高齡者的隱私侵犯的問題。As the social demographic structure tends to age, the proportion of the elderly population continues to rise, so the system of intelligent care for the elderly is getting more and more attention. Such intelligent care systems are mainly used to detect the behavior of elderly people, in order to determine whether the elderly are at risk or need assistance in order to achieve the purpose of care. Some smart care systems require the use of surveillance system technology, but once the surveillance system is used, it may cause privacy violations for older people.
另一些智慧照護系統則係需要搭配穿戴式標籤(tag),但是使用穿戴式標籤可能會造成生活上的不便且易造成身體上的不適應,故大部份的高齡者配戴穿戴式標籤的意願並不高。因此,如何研發一種不需要使用監視技術或是不需搭配穿戴式標籤便可偵測高齡者的行為的智慧照護系統係為本領域的一項重要課題。Other smart care systems need to be paired with wearable tags, but the use of wearable tags can cause inconvenience in life and cause physical discomfort, so most elderly people wear wearable tags. The will is not high. Therefore, how to develop a smart care system that does not require the use of surveillance technology or the need to wear wearable labels to detect the behavior of elderly people is an important topic in the field.
本發明提出一種智慧居家監控系統與智慧居家監控方法,可以藉由一或多種感知器所蒐集的資訊,以運算一預設行為模式,用以比較使用者的實際行為,進而判斷使用者行為是否異常,而達到照護的目的。The invention provides a smart home monitoring system and a smart home monitoring method, which can calculate a preset behavior pattern by using information collected by one or more perceptrons to compare the actual behavior of the user, thereby determining whether the user behavior is Abnormal, and achieve the purpose of care.
依據本發明之一實施例揭露一種智慧居家監控系統,其包含感知模組與行為判斷模組。感知模組包含多個門框感知器,每一門框感知器設置於多個家電設備中對應的一個家電設備的門框,用以當對應的家電設備的門框呈開啟狀態時,對應地產生一開啟訊號。行為判斷模組連接感知模組。行為判斷模組包含學習單元及比較單元。學習單元用以接收第一時間區段內所產生的開啟訊號,以記錄且依據開啟訊號所對應的時間資訊及家電設備的類型,運算一預估行為模式。比較單元用以將第二時間區段內的實際行為記錄與預估行為模式進行比較,且依據比較結果選擇性地發送第一提示訊息。According to an embodiment of the invention, a smart home monitoring system is disclosed, which comprises a sensing module and a behavior determining module. The sensing module includes a plurality of door frame sensors, and each of the door frame sensors is disposed on a door frame of a corresponding one of the plurality of home appliances, and is configured to generate an opening signal correspondingly when the door frame of the corresponding home device is in an open state. . The behavior judgment module is connected to the sensing module. The behavior judgment module includes a learning unit and a comparison unit. The learning unit is configured to receive the open signal generated in the first time segment to record and calculate an estimated behavior mode according to the time information corresponding to the open signal and the type of the home appliance. The comparing unit is configured to compare the actual behavior record in the second time segment with the estimated behavior mode, and selectively send the first prompt message according to the comparison result.
於一實施例中,所述的感知模組更包含多個動態感知器,每一動態感知器設置於多個區域中對應的一個區域,用以偵測對應的區域的人員活動狀態,據以產生活動狀態訊號。學習單元更依據第一時間區段內所產生之該些活動狀態訊號所對應的時間資訊及區域,運算關聯於使用者的預估行為模式,其中實際行為記錄關聯於第二時間區段內所產生的活動狀態訊號所對應的時間資訊及區域。In an embodiment, the sensing module further includes a plurality of dynamic sensors, and each dynamic sensor is disposed in a corresponding one of the plurality of regions, and is configured to detect a human activity state of the corresponding region. Generate an activity status signal. The learning unit further calculates an estimated behavior pattern associated with the user according to the time information and the region corresponding to the activity status signals generated in the first time segment, wherein the actual behavior record is associated with the second time segment The time information and area corresponding to the generated activity status signal.
於一實施例中,所述的感知模組更包含多個壓力感知器,每一壓力感知器設置於多個區域中對應的一個區域的地板下方,用以偵測使用者的行走頻率及軌跡,學習單元更依據第一時間區段內所產生之使用者的行走頻率及軌跡,運算關聯於該使用者的該預估行為模式,其中實際行為記錄關聯於第二時間區段內所產生的使用者的行走頻率及軌跡。In one embodiment, the sensing module further includes a plurality of pressure sensors, and each pressure sensor is disposed under the floor of a corresponding one of the plurality of regions to detect the walking frequency and the trajectory of the user. The learning unit further calculates the estimated behavior pattern associated with the user according to the walking frequency and the trajectory of the user generated in the first time segment, wherein the actual behavior record is associated with the second time segment The user's walking frequency and trajectory.
依據本發明之一實施例揭露一種智慧居家監控方法,包含以下步驟:接收多個門框感知器於第一時間區段內所分別產生的多個開啟訊號;記錄且依據每一開啟訊號所對應的時間資訊及家電設備的類型,運算關聯於使用者的預估行為模式;將第二時間區段內的實際行為記錄與預估行為模式進行比較,且依據比較結果選擇性地發送第一提示訊息。According to an embodiment of the present invention, a smart home monitoring method includes the following steps: receiving a plurality of open signals respectively generated by a plurality of door frame sensors in a first time zone; recording and corresponding to each open signal The time information and the type of the home appliance, the operation is associated with the estimated behavior pattern of the user; comparing the actual behavior record in the second time period with the estimated behavior pattern, and selectively transmitting the first prompt message according to the comparison result .
於一實施例中,所述的智慧居家監控方法更包含:以多個動態感知器於第一時間區段內偵測個別對應的區域的人員活動狀態,據以產生多個活動狀態訊號;依據第一時間區段內所產生之該些活動狀態訊號所對應的時間資訊及區域以及每一該開啟訊號所對應的時間資訊及家電設備的類型,運算關聯於該使用者的該預估行為模式;其中該實際行為記錄關聯於該第二時間區段內所產生的該些活動狀態訊號所對應的時間資訊及區域。In an embodiment, the smart home monitoring method further includes: detecting, by the plurality of dynamic sensors, the activity status of the individual corresponding regions in the first time segment, thereby generating a plurality of active state signals; The time information and area corresponding to the active status signals generated in the first time zone and the time information corresponding to each of the open signals and the type of the home appliance, and the estimated behavior mode associated with the user The actual behavior record is associated with time information and an area corresponding to the activity status signals generated in the second time zone.
綜上所述,於本發明的智慧居家監控系統與智慧居家監控方法,可藉由一或多種感知器先於一時間區段內取得使用者的多筆相關感知資訊,並依據該些相關感知資訊藉學習演算出使用者的一正常行為模式。接著,再藉由感知器記錄使用者於另一時段中的實際行為,並將該實際行為與正常行為模式進行比較,以判斷使用者的行為是否異常,進而決定是否發出提示訊息。如此,便可以再不使用穿戴式標籤情形下,達到智慧型照護的目的。In summary, in the smart home monitoring system and the smart home monitoring method of the present invention, the plurality of related sensing information of the user can be obtained by using one or more perceptrons in a time period, and according to the related sensing The information learns a normal behavior pattern of the user. Then, the actual behavior of the user in another time period is recorded by the perceptron, and the actual behavior is compared with the normal behavior mode to determine whether the behavior of the user is abnormal, and then whether to issue a prompt message. In this way, it is possible to achieve the purpose of intelligent care without using the wearable label.
以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the disclosure and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention, and to provide further explanation of the scope of the invention.
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.
請一併參照圖1與圖2,圖1係依據本發明之一實施例所繪示的智慧居家監控系統的功能方塊圖。圖2係依據本發明之一實施例所繪示的居家平面示意圖。如圖1所示,智慧居家監控系統1包含感知模組10以及與其連接之行為判斷模組12。感知模組10包含多個門框感知器DS1~DS4。所述的門框感知器DS1~DS4係分別設置於圖2中多個家電設備中對應的一個家電設備的門框。如圖2所示,居家平面分成四個區域AR1~AR4,每一個區域設置有對應的家電設備APP1~APP4,於此實施例中可例如是洗衣機、冰箱、洗碗機與烤箱。門框感知器DS1~DS4分別對應地設置於家電設備APP1~APP4的門框上。門框感知器DS1~DS4用以當對應的家電設備的門框呈開啟狀態時,對應地產生開啟訊號。Referring to FIG. 1 and FIG. 2 together, FIG. 1 is a functional block diagram of a smart home monitoring system according to an embodiment of the present invention. 2 is a schematic plan view of a home according to an embodiment of the invention. As shown in FIG. 1, the smart home monitoring system 1 includes a sensing module 10 and a behavior determining module 12 connected thereto. The sensing module 10 includes a plurality of door frame sensors DS1~DS4. The door frame sensors DS1 to DS4 are respectively disposed in the door frame of the corresponding one of the plurality of home appliances in FIG. 2 . As shown in FIG. 2, the home floor is divided into four areas AR1 to AR4, and each area is provided with a corresponding home appliance APP1~APP4. In this embodiment, for example, a washing machine, a refrigerator, a dishwasher and an oven can be used. The door frame sensors DS1 to DS4 are respectively disposed on the door frames of the home appliances APP1 to APP4. The door frame sensors DS1~DS4 are configured to generate an opening signal correspondingly when the door frame of the corresponding home appliance is turned on.
行為判斷模組12包含學習單元121與比較單元123。學習單元121用以接收第一時間區段內所產生的多個開啟訊號,以記錄且依據該些開啟訊號所對應的時間資訊及家電設備的類型,運算關聯於使用者的預估行為模式。於實務上,學習單元121可以係為具有學習演算功能的機器,可以藉由資料自動分析獲得規律,且透過該規律對未知資料進行預測。在此所述的第一時間區段可以是兩星期、一個月、兩個月等的時間區段,但本發明不以此為限。然,於實務上,若是第一時間區段越長,則學習單元121所獲取的學習資料越多,對應運算出的預估行為模式可更加精準。The behavior determination module 12 includes a learning unit 121 and a comparison unit 123. The learning unit 121 is configured to receive a plurality of open signals generated in the first time zone to record and calculate an estimated behavior mode associated with the user according to the time information corresponding to the open signals and the type of the home appliance. In practice, the learning unit 121 can be a machine with a learning calculus function, which can obtain a regularity by automatic data analysis, and predict unknown data through the law. The first time period described herein may be a time period of two weeks, one month, two months, etc., but the invention is not limited thereto. However, in practice, if the first time period is longer, the more learning data acquired by the learning unit 121, the more accurate the estimated behavior pattern calculated.
比較單元123用以將一第二時間區段內的實際行為記錄與預估行為模式進行比較,且依據比較結果選擇性地發送第一提示訊息。在此所述的第二時間區段可以是數個小時至數十小時的時間區段,但本發明不以此為限。於實際的操作上,當實際行為記錄與預估行為模式的比較結果有差異時,比較單元123會發送第一提示訊息至遠端裝置,例如智慧型手機或是保全的後台裝置。The comparing unit 123 is configured to compare the actual behavior record in a second time segment with the estimated behavior mode, and selectively send the first prompt message according to the comparison result. The second time period described herein may be a time period of several hours to several tens of hours, but the invention is not limited thereto. In actual operation, when there is a difference between the actual behavior record and the estimated behavior mode, the comparison unit 123 sends the first prompt message to the remote device, such as a smart phone or a secured background device.
具體來說,於本系統的前置作業中,一開始會先設定行為判斷模組12中的學習單元121使其依據門框感知器DS1~DS4所蒐集到的開啟訊號所對應的時間資訊及家電設備的類型以進行學習,進而推算使用者的預估行為模式。而該些時間資訊及家電設備的類型可以係由預設的一學習時段(例如前述的第一時間區段)內所蒐集到的資訊,此學習時段可例如為兩週或一個月的時段。以實際來說,假設使用者的平常作息模式係為:大約早上七點會到區域AR1使用家電設備APP1、大約早上八點半到區域AR2使用家電設備APP2、大約中午十二點會到區域AR3使用家電設備APP3、大約下午三點到區域AR4使用家電設備APP4。經過門框感知器DS1~DS4於一段時間(例如兩週)內所產生的多個開啟訊號所對應的時間資訊及家電設備的類型,學習單元121便可以推得使用者的預估行為模式,並將該使用者的預估行為模式傳送至比較單元123。Specifically, in the pre-operation of the system, the learning unit 121 in the behavior determining module 12 is first set to make time information and home appliances corresponding to the opening signals collected by the door frame sensors DS1 to DS4. The type of device is used to learn, and then the estimated behavior pattern of the user is estimated. The time information and the type of the home appliance may be collected by a preset learning period (for example, the aforementioned first time section), and the learning period may be, for example, a period of two weeks or one month. In practice, it is assumed that the user's normal work mode is: about 7:00 in the morning, the area AR1 will use the home appliance APP1, about 8:30 in the morning to the area AR2 to use the home appliance APP2, and about 12 noon will go to the area AR3. The home appliance APP4 is used, and the home appliance APP4 is used to the area AR4 at about 3 pm. After the time information corresponding to the plurality of open signals generated by the door frame sensor DS1~DS4 for a period of time (for example, two weeks) and the type of the home appliance, the learning unit 121 can derive the estimated behavior mode of the user, and The estimated behavior pattern of the user is transmitted to the comparison unit 123.
當透過學習單元121的學習而獲取使用者的行為模式後,接著,智慧居家監控系統便可開始進行智慧型監控。舉例來說,於某一天(例如為第二時間區段)的大約中午十二點的時段中,於區域AR3的門框感知器DS3並未偵測到使用者開啟家電設備APP3的門框,此時比較單元123可透過將該使用者的實際行為記錄(中午十二點的時段中未開啟家電設備APP3的門框)與其預估行為模式進行比較而得知使用者於該某一天的實際行為記錄與原本預估的行為模式不同。此時,比較單元123便會發出第一提示訊息,使該使用者的親友或是相關的保全業者可以對該名使用者的情況進行確認。於一個例子中,每個開啟訊號具有一辨識碼關聯於該些家電設備中對應的一個。而學習單元121可依據所述的辨識碼,判斷開啟訊號所對應的家電設備的種類係為何。舉例來說,家電設備APP1所產生的開啟訊號帶有識別碼X001,其預設係關聯於家電設備APP1。當學習單元121接收並辨識識別碼係為X001時,便可得知被開啟的家電設備係為家電設備APP1。After the user's behavior pattern is acquired through the learning of the learning unit 121, the smart home monitoring system can then begin intelligent monitoring. For example, in a period of about 12 noon on a certain day (for example, a second time period), the door frame sensor DS3 in the area AR3 does not detect that the user opens the door frame of the home appliance APP3. The comparison unit 123 can know the actual behavior record of the user on the certain day by comparing the actual behavior record of the user (the door frame of the home appliance APP3 is not turned on in the period of 12 noon) with the estimated behavior pattern. The original estimated behavior patterns are different. At this time, the comparison unit 123 issues a first prompt message, so that the user's relatives or friends or related security operators can confirm the situation of the user. In one example, each of the open signals has an identification code associated with a corresponding one of the home appliances. The learning unit 121 can determine, according to the identification code, the type of the home appliance corresponding to the activation signal. For example, the activation signal generated by the home appliance APP1 is provided with an identification code X001, which is preset to be associated with the home appliance APP1. When the learning unit 121 receives and recognizes that the identification code system is X001, it can be known that the home appliance that is turned on is the home appliance APP1.
請進一步參照圖3,圖3係依據本發明之另一實施例所繪示的智慧居家監控系統的功能方塊圖。如圖3所示,智慧居家監控系統1的感知模組更包含多個動態感知器MS1~MS4。動態感知器MS1~MS4分別設置於多個區域AR1~AR4。動態感知器MS1~MS4主要係用以偵測對應的區域的人員活動狀態,據以產生活動狀態訊號。具體來說,動態感知器MS1~MS4可設置於門邊,以偵測使用者於哪些時段進出哪些區域。舉例來說,使用者可能固定於每天下午一點左右會進入區域AR2午睡,直至下午兩點左右才會自區域AR2出來。該些活動情形均會被動態感知器MS2所偵測到並傳送至學習單元121。Please refer to FIG. 3 further. FIG. 3 is a functional block diagram of a smart home monitoring system according to another embodiment of the present invention. As shown in FIG. 3, the sensing module of the smart home monitoring system 1 further includes a plurality of dynamic sensors MS1 to MS4. The motion sensors MS1 to MS4 are respectively disposed in the plurality of areas AR1 to AR4. The dynamic sensors MS1~MS4 are mainly used to detect the activity status of the corresponding area, and generate an activity status signal accordingly. Specifically, the motion sensors MS1 to MS4 can be set at the door edge to detect which areas the user enters and exits at which time periods. For example, the user may be fixed at about one o'clock every afternoon to enter the area AR2 nap, until about two o'clock in the afternoon will come out from the area AR2. These activity situations are detected by the motion sensor MS2 and transmitted to the learning unit 121.
同樣地,藉由動態感知器MS1~MS4蒐集使用者於第一時間區段(例如兩週)的進出多個區域的多筆活動狀態訊號,學習單元121便可依據該時間區段內所產生之活動狀態訊號所對應的時間資訊及區域,並搭配前述的開啟訊號所對應的時間資訊及家電設備的類型以進行學習,從而運算關聯於使用者的預估行為模式。Similarly, the dynamic perceptrons MS1~MS4 collect the plurality of active status signals of the user in the first time zone (for example, two weeks), and the learning unit 121 can generate the multiple active status signals according to the time zone. The time information and area corresponding to the activity status signal are matched with the time information corresponding to the opening signal and the type of the home appliance to learn, thereby calculating the estimated behavior pattern associated with the user.
接著,於第二時間區段內,至少部分的動態感知器MS1~MS4偵測並產生多個活動狀態訊號,學習單元121將該些活動狀態訊號所對應的時間資訊及區域記錄為實際行為記錄。最後,再將使用者的預估行為模式比對於實際行為記錄,以決定是否發送第一提示訊息。換言之,本實施例除了應用門框感知器之外,更搭配了動態感知器,從而依據開啟訊號所對應的時間資訊及家電設備的類型以及活動狀態訊號所對應的時間資訊及區域,建立使用者的預估行為模式,從而實質地提升監控與照護的效果。Then, in the second time zone, at least some of the dynamic sensors MS1 - MS4 detect and generate a plurality of active status signals, and the learning unit 121 records the time information and the area corresponding to the active status signals as actual behavior records. . Finally, the user's estimated behavior pattern is compared to the actual behavior record to decide whether to send the first prompt message. In other words, in addition to the application of the door frame perceptron, the present embodiment is further equipped with a dynamic sensor, thereby establishing a user according to the time information corresponding to the activation signal, the type of the home appliance, and the time information and area corresponding to the activity status signal. Estimate behavior patterns to substantially enhance the effectiveness of surveillance and care.
於一實施例中,如圖3所示,感知模組更包含多個聲音感知器VS1~VS4,分別設置於多個區域AR1~AR4。聲音感知器VS1~VS4具有偵測環境中的聲音以產生聲音資訊的功能。更具體來說,聲音感知器VS1~VS4可以用於偵測具有異常音量的聲音,例如短促的巨大聲響等。而行為判斷模組包含有聲音資料庫125,其儲存有多筆情境聲音資訊。於實務上,聲音資料庫125所儲存的係為異常情境聲音資訊,例如人體撞擊地面之聲音或異常敲打的聲音等。In an embodiment, as shown in FIG. 3, the sensing module further includes a plurality of sound sensors VS1~VS4, which are respectively disposed in the plurality of areas AR1~AR4. The sound sensors VS1~VS4 have the function of detecting sounds in the environment to generate sound information. More specifically, the sound sensors VS1~VS4 can be used to detect sounds with abnormal volume, such as short loud sounds. The behavior judgment module includes a sound database 125, which stores a plurality of context sound information. In practice, the sound database 125 stores abnormal situation sound information, such as a human body hitting the ground sound or an abnormal tapping sound.
於此實施例中,行為判斷模組12用以將聲音感知器VS1~VS4所偵測到的聲音資訊分別與所述情境聲音資訊進行比對,以選擇性地發出一警示訊息。當多個聲音感知器VS1~VS4中任一個偵測到聲音資訊,且其聲音資訊所呈現的聲紋近似或相同於多筆情境聲音資訊的任一個的聲紋,則判斷使用者可能發生意外,行為判斷模組12據此發出一警示訊息。In this embodiment, the behavior determining module 12 is configured to compare the sound information detected by the sound sensors VS1 VS VS4 with the context sound information to selectively issue a warning message. When any of the plurality of sound sensors VS1 to VS4 detects the sound information, and the voiceprint of the sound information is similar to or the same as the voiceprint of any of the plurality of context sound information, it is determined that the user may have an accident. The behavior determination module 12 issues a warning message accordingly.
於圖1搭配圖2的實施例中,當預估行為模式與實際行為記錄相異時,會產生第一提示訊息,且該第一提示訊息可傳送至外部裝置,讓使用者可以得到即時的救助。然而,有時候使用者於單一時段的實際行為模式雖然與預估行為模式不同,但並非是使用者真的發生意外,而僅僅是因其他原因而未按照平常的行為模式活動。此時,若是依據單一時段的預估行為模式不相符的結果,就直接發送第一提示訊息,則可能會造成不必要之提示訊息的觸發。In the embodiment of FIG. 1 and FIG. 2, when the estimated behavior pattern is different from the actual behavior record, a first prompt message is generated, and the first prompt message can be transmitted to an external device, so that the user can get instant Rescue. However, sometimes the actual behavior pattern of the user in a single period of time is different from the estimated behavior pattern, but it is not that the user actually has an accident, but only for other reasons and does not follow the normal behavior pattern. At this time, if the first prompt message is directly sent according to the result of the inconsistent behavior mode of the single time period, the trigger message may be triggered.
有鑑於此,於一實施例中,除了比較前述的實際行為記錄以選擇性地發送第一提示訊息之外,比較單元123更用以將預估行為模式與第三時間區段內的另一實際行為記錄進行比較,且依據比較結果選擇性地發送第二提示訊息。所述的第三時間區段係為第二時間區段之後的時間區段。而智慧居家監控系統更包含後端設備14,其連接行為判斷模組12及救護單位2。於實務上,救護單位2可以係為使用者所處位置之鄰近的醫療單位的系統。後端設備14用以於接收到第一提示訊息且接收到第二提示訊息時,始通知救護單位2進行救援。In view of this, in an embodiment, in addition to comparing the foregoing actual behavior record to selectively send the first prompt message, the comparing unit 123 is further configured to use the estimated behavior mode and another one in the third time zone. The actual behavior records are compared, and the second prompt message is selectively sent based on the comparison result. The third time period is a time period after the second time period. The smart home monitoring system further includes a backend device 14 that connects the behavior determination module 12 and the rescue unit 2. In practice, the ambulance unit 2 can be a system of adjacent medical units where the user is located. The backend device 14 is configured to notify the rescue unit 2 to perform rescue when receiving the first prompt message and receiving the second prompt message.
換言之,於此實施例中,若後端設備14僅收到單一時間區段所發出的提示訊息時,不會向救護單位2發出救援的需求,而係在連續收到兩個時段所發出的提示訊息時,才會正式向救護單位2提出救援的需求。如此一來,可以避免僅依據單一提示訊息,便提出可能不必要之救援需求而浪費救護資源。於其他例子中,使用者可依據實際所需,將後端設備14設定為連續收到三個以上時段所發出的提示訊息時,才會通知救護單位2進行救援。當然,於一實施例中,若有需要的話,使用者亦可以將後端設備14設定為僅收到單一時間區段所發出的提示訊息,便直接向救護單位2提出救援的需求。In other words, in this embodiment, if the backend device 14 only receives the prompt message sent by the single time zone, the rescue request is not sent to the rescue unit 2, but is sent continuously in two periods. When the message is prompted, the rescue request will be formally presented to the rescue unit 2. In this way, it is possible to avoid wasting rescue resources based on a single prompt message, suggesting unnecessary rescue needs. In other examples, the user can set the backend device 14 to receive the prompt message sent by three or more time periods according to actual needs, and then notify the rescue unit 2 to perform the rescue. Of course, in an embodiment, if necessary, the user can also set the backend device 14 to receive the prompt message sent by the single time zone, and directly request the rescue unit 2 for the rescue.
請一併參照圖3與圖4,圖4係依據本發明之另一實施例所繪示的居家平面示意圖。於此實施例中,如圖3與圖4所示,感知模組10更包含多個壓力感知器PS1~PS25,且壓力感知器PS1~PS25設置於多個區域中對應的一個區域的地板下方,用以偵測使用者的行走頻率及軌跡。於實務上,當使用者行走於地面上時,會觸發壓力感知器PS1~PS25中一部份的壓力感知器。舉例來說,若使用者依據一特定行走速度循著軌跡TK由區域A3行走至AR4,則會一一地觸發壓力感知器PS15、PS18、PS20、PS21、PS22而使該些感知器產生感壓訊號而得到使用者的行走頻率及軌跡,且將其回傳至學習單元121。Please refer to FIG. 3 and FIG. 4 together. FIG. 4 is a schematic plan view of a home according to another embodiment of the present invention. In this embodiment, as shown in FIG. 3 and FIG. 4, the sensing module 10 further includes a plurality of pressure sensors PS1~PS25, and the pressure sensors PS1~PS25 are disposed under the floor of the corresponding one of the plurality of areas. Used to detect the user's walking frequency and trajectory. In practice, when the user walks on the ground, a pressure sensor of a part of the pressure sensors PS1~PS25 is triggered. For example, if the user walks from the area A3 to the AR4 according to the trajectory TK according to a specific walking speed, the pressure sensors PS15, PS18, PS20, PS21, and PS22 are triggered one by one to cause the sensors to generate pressure. The user's walking frequency and trajectory are obtained by the signal, and are transmitted back to the learning unit 121.
同樣地,於此實施例中,在一開始的前置作業階段,學習單元121會先接收並依據第一時間區段(例如兩週)內的至少部份壓力感知器所偵測得的使用者行走頻率與軌跡及其對應的時間資訊,運算關聯於使用者的預估行為模式。接著,在第二時間區段中,至少部份壓力感知器偵測使用者於該第二時間區段的實際行走頻率與軌跡及其對應的時間資訊,且學習單元121將其納入使用者的實際行為記錄。更具體來說,假設使用者平常大約於一特定時間會依據慣性的行走速度循著軌跡TK由區域A3移動至AR4。若是某天大約於該特定時間內,壓力感知器並未測得該行走記錄(包含行走頻率與軌跡),或是該行走記錄明顯有異(例如行走頻率突然變緩慢或軌跡停留於某一壓力感知器所處的地板上)時,則代表使用者可能發生意外。此時,系統便發出第一提示訊息,讓使用者的親友或是保全業者可以即時地確認使用者的情況,以避免錯過救援的機會。Similarly, in this embodiment, in the initial pre-operation phase, the learning unit 121 first receives and detects the use according to at least some of the pressure sensors in the first time segment (for example, two weeks). The walking frequency and trajectory and their corresponding time information are calculated in association with the user's estimated behavior pattern. Then, in the second time period, at least a part of the pressure sensor detects the actual walking frequency and the trajectory of the user in the second time zone and the corresponding time information, and the learning unit 121 incorporates the user into the user. Actual behavior record. More specifically, it is assumed that the user usually moves from the area A3 to the AR4 following the trajectory TK according to the inertial walking speed at about a certain time. If the day is about the specific time, the pressure sensor does not measure the walking record (including the walking frequency and the trajectory), or the walking record is obviously different (for example, the walking frequency suddenly becomes slow or the trajectory stays at a certain pressure) When the sensor is on the floor, it may cause an accident on behalf of the user. At this point, the system will send a first prompt message, so that the user's relatives or friends or the security practitioner can immediately confirm the user's situation to avoid the opportunity to miss the rescue.
簡言之,於前述的實施例中,預估行為模式同時包含第一時間區段的多個開啟訊號所對應的時間資訊及家電設備的類型以及使用者的行走頻率及軌跡及其對應的時間資訊。本發明的該實施例透過兩種類型的感知器所蒐集到的資訊運算出預估行為模式,從而達到更加精準的監控與照護的效果。In short, in the foregoing embodiment, the estimated behavior mode includes time information corresponding to the plurality of open signals of the first time zone, the type of the home appliance, the user's walking frequency and the trajectory, and the corresponding time. News. The embodiment of the present invention calculates the estimated behavior pattern through the information collected by the two types of perceptrons, thereby achieving more accurate monitoring and care effects.
考量到居家保全防盜的重要性,本系統除了照護功能之外,更可搭配有防盜監控的功能。於一實施例中,如圖2與圖3所示,感知模組10更包含多個防盜感知器SS1~SS4,分別設置於對應的區域。該些防盜感知器用以於智慧居家監控系統1被設定為保全監控模式時被啟用。更具體來說,當使用者在家時,智慧居家監控系統1係處於照護監控模式,門框感知器及該行為判斷模組處於運行狀態,但防盜感知器則處於禁能狀態。而當使用者準備外出時,可先將智慧居家監控系統1切換至保全監控模式使該些防盜感知器被啟用。當已啟用的該些防盜感知器偵測有人員進出或是異常聲音時,觸發保全裝置30的警報訊號以通知用戶端。於保全監控模式中,該些門框感知器及該行為判斷模組則自動切換為禁能狀態,以避免誤觸發提示訊息。Considering the importance of home security, the system can be equipped with anti-theft monitoring functions in addition to the care function. In an embodiment, as shown in FIG. 2 and FIG. 3, the sensing module 10 further includes a plurality of anti-theft sensors SS1 SS SS4, which are respectively disposed in corresponding regions. The anti-theft sensors are used when the smart home monitoring system 1 is set to the maintenance monitoring mode. More specifically, when the user is at home, the smart home monitoring system 1 is in the care monitoring mode, the door frame sensor and the behavior determining module are in the running state, but the anti-theft sensor is in the disabled state. When the user is ready to go out, the smart home monitoring system 1 can be switched to the security monitoring mode to enable the anti-theft sensors to be enabled. When the enabled anti-theft sensors detect that there is a person entering or exiting or an abnormal sound, the alarm signal of the security device 30 is triggered to notify the user. In the security monitoring mode, the door frame sensor and the behavior determining module are automatically switched to the disabled state to avoid false triggering of the prompt message.
請參照圖5,圖5係依據本發明之一實施例所繪示的智慧居家監控方法的方法流程圖,其適用於圖1的智慧居家監控系統。如圖5所示,該監控方法包含:於步驟S501中,學習單元121接收多個門框感知器DS1~DS4於第一時間區段內所分別產生的多個開啟訊號。接著,於步驟S503中,學習單元121記錄且依據每個開啟訊號所對應的時間資訊及家電設備的類型,運算關聯於使用者的預估行為模式。接著,於步驟S505中,比較單元123將第二時間區內的實際行為記錄與預估行為模式進行比較,且依據比較結果選擇性地發送第一提示訊息。於一實施例中,智慧居家監控方法,更包含以多個動態感知器MS1~MS4於所述的第一時間區段內偵測個別對應的區域的人員活動狀態,據以產生多個活動狀態訊號,接著再依據第一時間區段內所產生之活動狀態訊號所對應的時間資訊及區域以及前述的開啟訊號所對應的時間資訊及家電設備的類型,運算關聯於所述的使用者的預估行為模式。其中實際行為記錄係關聯於第二時間區段內所產生的活動狀態訊號所對應的時間資訊及區域。Please refer to FIG. 5. FIG. 5 is a flowchart of a method for a smart home monitoring method according to an embodiment of the present invention, which is applicable to the smart home monitoring system of FIG. 1. As shown in FIG. 5, the monitoring method includes: in step S501, the learning unit 121 receives a plurality of opening signals respectively generated by the plurality of door frame sensors DS1 DSDS4 in the first time zone. Next, in step S503, the learning unit 121 records and calculates an estimated behavior pattern associated with the user according to the time information corresponding to each of the activation signals and the type of the home appliance. Next, in step S505, the comparing unit 123 compares the actual behavior record in the second time zone with the estimated behavior mode, and selectively transmits the first prompt message according to the comparison result. In an embodiment, the smart home monitoring method further includes detecting, by the plurality of dynamic perceptrons MS1 MS MS4, the activity status of the individual corresponding regions in the first time segment, thereby generating a plurality of active states. The signal is then calculated according to the time information and the area corresponding to the activity status signal generated in the first time zone, and the time information corresponding to the opening signal and the type of the home appliance, and the pre-related to the user is calculated. Estimate behavior patterns. The actual behavior record is associated with the time information and area corresponding to the activity status signal generated in the second time zone.
請參照圖6,圖6係依據本發明之另一實施例所繪示的智慧居家監控方法的方法流程圖,其適用於圖3的智慧居家監控系統。如圖6所示之智慧居家監控方法的步驟S601~S605與圖5所示之智慧居家監控方法的步驟S501~S505相仿。惟圖6與圖5不同之處在於圖6中更包含:於步驟S607中,比較單元123更將第三時間區段內的另一實際行為記錄與所述的預估行為模式進行比較且依據比較結果選擇性地發送第二提示訊息,其中所述的第三時間區段係為第二時間區段之後的時間區段。接著,於步驟S609中,當後端設備14接收到第一提示訊息且接收到第二提示訊息時,通知救護單位20進行救援。Please refer to FIG. 6. FIG. 6 is a flowchart of a method for a smart home monitoring method according to another embodiment of the present invention, which is applicable to the smart home monitoring system of FIG. 3. Steps S601 to S605 of the smart home monitoring method shown in FIG. 6 are similar to steps S501 to S505 of the smart home monitoring method shown in FIG. 5. FIG. 6 is different from FIG. 5 in that FIG. 6 further includes: in step S607, the comparing unit 123 further compares another actual behavior record in the third time segment with the predicted behavior mode and according to The comparison result selectively transmits a second prompt message, wherein the third time zone is a time zone subsequent to the second time zone. Next, in step S609, when the backend device 14 receives the first prompt message and receives the second prompt message, the ambulance unit 20 is notified to perform the rescue.
綜上所述,於本發明的智慧居家監控系統與智慧居家監控方法,主要係透過多種感知器先於一學習時間區段內取得使用者的多筆相關感知資訊,並依據該些相關感知資訊,使用學習演算推得使用者的一正常行為模式。接著,再藉由感知器記錄使用者於另一時段中的實際行為,並將該實際行為與正常行為模式進行比較,以判斷使用者的行為於該另一時段中是否異常,進而決定是否發出提示訊息。如此,便可以再不使用穿戴式標籤或是不應用監視系統技術的情形下,就可達到有效智慧型照護的目的。In summary, the smart home monitoring system and the smart home monitoring method of the present invention mainly acquire a plurality of relevant perceptual information of a user in a learning time section through a plurality of perceptrons, and according to the related perceptual information. Use learning calculus to push a normal behavior pattern of the user. Then, the actual behavior of the user in another time period is recorded by the perceptron, and the actual behavior is compared with the normal behavior mode to determine whether the behavior of the user is abnormal in the other time period, thereby determining whether to issue Prompt message. In this way, effective smart care can be achieved without using wearable tags or without applying surveillance system technology.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.
1‧‧‧智慧居家監控系統1‧‧‧Smart home monitoring system
10‧‧‧感知模組10‧‧‧Sense module
12‧‧‧行為判斷模組12‧‧‧ Behavioral Judgment Module
121‧‧‧學習單元121‧‧‧Learning unit
123‧‧‧比較單元123‧‧‧Comparative unit
125‧‧‧聲音資料庫125‧‧‧Sound database
14‧‧‧後端設備14‧‧‧ Back-end equipment
20‧‧‧救護單位20‧‧‧ambulance unit
30‧‧‧保全裝置30‧‧‧Security device
AR1~AR4‧‧‧區域AR1~AR4‧‧‧Area
APP1~APP4‧‧‧家電設備APP1~APP4‧‧‧Home Appliances
DS1~DS4‧‧‧門框感知器DS1~DS4‧‧‧ Door Frame Sensor
MS1~MS4‧‧‧動態感知器MS1~MS4‧‧‧Dynamic Sensor
VS1~VS4‧‧‧聲音感知器VS1~VS4‧‧‧Sound Sensor
PS1~PS25‧‧‧壓力感知器PS1~PS25‧‧‧ Pressure Sensor
SS1~SS4‧‧‧防盜感知器SS1~SS4‧‧‧Anti-theft sensor
TK‧‧‧軌跡TK‧‧ track
圖1係依據本發明之一實施例所繪示的智慧居家監控系統的功能方塊圖。 圖2係依據本發明之一實施例所繪示的居家平面示意圖。 圖3係依據本發明之另一實施例所繪示的智慧居家監控系統的功能方塊圖。 圖4係依據本發明之另一實施例所繪示的居家平面示意圖。 圖5係依據本發明之一實施例所繪示的智慧居家監控方法的方法流程圖。 圖6係依據本發明之另一實施例所繪示的智慧居家監控方法的方法流程圖。FIG. 1 is a functional block diagram of a smart home monitoring system according to an embodiment of the invention. 2 is a schematic plan view of a home according to an embodiment of the invention. FIG. 3 is a functional block diagram of a smart home monitoring system according to another embodiment of the present invention. 4 is a schematic plan view of a home according to another embodiment of the present invention. FIG. 5 is a flow chart of a method for a smart home monitoring method according to an embodiment of the invention. FIG. 6 is a flow chart of a method for a smart home monitoring method according to another embodiment of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106126431A TWI649725B (en) | 2017-08-04 | 2017-08-04 | Smart home monitoring system and smart home monitoring method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106126431A TWI649725B (en) | 2017-08-04 | 2017-08-04 | Smart home monitoring system and smart home monitoring method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI649725B true TWI649725B (en) | 2019-02-01 |
| TW201911246A TW201911246A (en) | 2019-03-16 |
Family
ID=66213523
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW106126431A TWI649725B (en) | 2017-08-04 | 2017-08-04 | Smart home monitoring system and smart home monitoring method |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI649725B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200743062A (en) * | 2006-05-05 | 2007-11-16 | Univ Yuan Ze | Tele-homecare behavior module monitoring system and method thereof |
| JP2009043141A (en) * | 2007-08-10 | 2009-02-26 | Univ Nagoya | Resident's behavior / safety confirmation system |
| TW201020978A (en) * | 2008-11-26 | 2010-06-01 | Ind Tech Res Inst | Alarm method and system based on voice events, and building method on behavior trajectory thereof |
| CN103927847A (en) * | 2014-04-18 | 2014-07-16 | 深圳市丰泰瑞达实业有限公司 | Intelligent nursing system for old people |
-
2017
- 2017-08-04 TW TW106126431A patent/TWI649725B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200743062A (en) * | 2006-05-05 | 2007-11-16 | Univ Yuan Ze | Tele-homecare behavior module monitoring system and method thereof |
| JP2009043141A (en) * | 2007-08-10 | 2009-02-26 | Univ Nagoya | Resident's behavior / safety confirmation system |
| TW201020978A (en) * | 2008-11-26 | 2010-06-01 | Ind Tech Res Inst | Alarm method and system based on voice events, and building method on behavior trajectory thereof |
| CN103927847A (en) * | 2014-04-18 | 2014-07-16 | 深圳市丰泰瑞达实业有限公司 | Intelligent nursing system for old people |
Non-Patent Citations (1)
| Title |
|---|
| 王坤池,"可攜式遠距居家行為模式監測系統之研發",<http://designer.mech.yzu.edu.tw/articlesystem/article/compressedfile/(2005-04-01)%20可攜式遠距居家行為模式監測系統之研發.pdf>,元智大學,2005年3月29日 * |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201911246A (en) | 2019-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| El-Bendary et al. | Fall detection and prevention for the elderly: A review of trends and challenges | |
| US20200074840A1 (en) | Monitoring activity of an individual | |
| US7589637B2 (en) | Monitoring activity of an individual | |
| US20240065570A1 (en) | Sensor and system for monitoring | |
| US12042304B2 (en) | Determining reliability of vital signs of a monitored subject | |
| WO2005062267A2 (en) | Activity monitoring | |
| EP3563359B1 (en) | A method and a system for providing privacy enabled surveillance in a building | |
| Naranjo-Hernandez et al. | Personalization and adaptation to the medium and context in a fall detection system | |
| WO2015171072A1 (en) | Activity monitoring method and system | |
| AU2019200869B2 (en) | Alert System | |
| US12094313B2 (en) | Environment sensing for care systems | |
| CN106485877A (en) | The monitoring method of intelligence and system | |
| KR20200094953A (en) | Intelligent system for preventing lonely death and detecting intrusion | |
| US10013870B2 (en) | Activation method of an alarm for risk of aggression to a user and a device implementing said method | |
| TWI649725B (en) | Smart home monitoring system and smart home monitoring method | |
| CN119206915A (en) | Smart door lock alarm method, device, computer equipment and storage medium | |
| KR102157436B1 (en) | Method and apparatus for detecting emergency with wearable devices | |
| KR102190759B1 (en) | System and mehtod for monitering emergency situation | |
| EP3163546A1 (en) | Method and device for detecting anomalous behavior of a user | |
| AU2022268659B2 (en) | Monitoring system and method for recognizing the activity of determined persons | |
| US20180271457A1 (en) | System for supervising an occupant of a wheelchair | |
| Sidibé et al. | Privacy-Preserving Bathroom Monitoring for Elderly Emergencies Using PIR and LiDAR Sensors | |
| WO2025253130A1 (en) | Identifying further information about a detected person in an indoor environment | |
| WO2023139041A1 (en) | A method of controlling a fall detection system and a fall detection system | |
| JP2020190946A (en) | Information processing system and program |