TWI548235B - Network anomaly traffic monitoring system with normal distribution mode - Google Patents
Network anomaly traffic monitoring system with normal distribution mode Download PDFInfo
- Publication number
- TWI548235B TWI548235B TW103101230A TW103101230A TWI548235B TW I548235 B TWI548235 B TW I548235B TW 103101230 A TW103101230 A TW 103101230A TW 103101230 A TW103101230 A TW 103101230A TW I548235 B TWI548235 B TW I548235B
- Authority
- TW
- Taiwan
- Prior art keywords
- traffic
- monitoring
- threshold
- data
- network
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims description 94
- 238000009826 distribution Methods 0.000 title claims description 39
- 238000000034 method Methods 0.000 claims description 48
- 230000002159 abnormal effect Effects 0.000 claims description 46
- 230000005856 abnormality Effects 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 23
- 238000004458 analytical method Methods 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000007405 data analysis Methods 0.000 description 4
- 238000003070 Statistical process control Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
- Telephonic Communication Services (AREA)
Description
本發明係為一種網路異常訊務監測系統有關;具體而言,特別是關於一種常態分佈模式之網路異常訊務監測系統,根據網路訊務特性參考一般製造業裡技術成熟的統計製程管制(Statistical Process Control,SPC)方法,加上一般的網路訊務異常監測技術,應用在網路訊務管理領域內,所研發出的一種全新的監測系統。 The present invention relates to a network abnormal traffic monitoring system; in particular, a network abnormal traffic monitoring system for a normal distribution mode, and refers to a technically mature statistical process in a general manufacturing industry according to network traffic characteristics. The Statistical Process Control (SPC) method, combined with the general network traffic anomaly monitoring technology, is a new monitoring system developed in the field of network traffic management.
於專利前案整合網路訊務管理系統(公開日期:2003/11/01,專利申請號:560149),係以傳統電話的話務資料為其監測目標,本專利則以數據網路之傳送訊務為監測目標。兩者使者的行為模式在統計學內具有本質上的不同,因此所使用的監測方法也有明顯的差異。 In the pre-patent integration network communication management system (public date: 2003/11/01, patent application number: 560149), the traffic information of the traditional telephone is used as the monitoring target, and the patent is transmitted by the data network. Traffic is the monitoring target. The behavioral patterns of the two messengers are essentially different in statistics, so the monitoring methods used are also significantly different.
於專利前案用於網路資料分析之系統、設備與方法/SYSTEMS,APPARATUS,AND METHODS FOR NETWORK DATA ANALYSIS(公開日期:2012/10/01,專利公開號:201239665),係為前後資料之間的差異比較法(偏離分數),為 一種無母數的純數值比較法,使用時間序列的數值做前後比較。本發明則運用歷史資料配合移動式建模方式,建立比較基準。 System, device and method for network data analysis in the pre-patent case/SYSTEMS, APPARATUS, AND METHODS FOR NETWORK DATA ANALYSIS (publication date: 2012/10/01, patent publication number: 201239665), between before and after data Difference comparison method (offset score), A pure numerical comparison method without a parent number, using time-series values for comparison before and after. The present invention uses historical data in conjunction with a mobile modeling approach to establish a baseline.
由此可見,上述習用方式仍有諸多缺失,實非一良善之設計,而亟待加以改良。 It can be seen that there are still many shortcomings in the above-mentioned methods of use, which is not a good design, but needs to be improved.
本案發明人鑑於上述習用方式所衍生的各項缺點,乃亟思加以改良創新,並經多年苦心孤詣潛心研究後,終於成功研發完成本件發明。 In view of the shortcomings derived from the above-mentioned conventional methods, the inventor of the present invention has improved and innovated, and after years of painstaking research, he finally succeeded in researching and developing this invention.
有鑒於前案,本發明有別於先前專利在進步性上的優點,在於本發明提出更為創新的技術,本發明增加考量環境的變化對於訊務的影響,可減少誤判的情形,遇到非真正異常事件,例如:因大量用戶升速所造成的訊務增加等,亦提供人工的基準調整機制予以排除,且可使用於訊務量大具有一定穩定性的電路上,由於具有統計上的機率分佈模型做背景,所求得的判斷門檻,較相近專利具有學術上的理論依據,並考量環境的變化對於訊務的影響,可減少誤判的情形,遇到非正常的事件,亦提供人工手動的調整機制。 In view of the foregoing, the present invention is different from the advantages of the prior patents in that the present invention proposes a more innovative technology, and the present invention increases the influence of changes in the environment on the traffic, and can reduce the situation of misjudgment. Non-authentic anomalies, such as the increase in traffic caused by a large number of users, also provide a manual benchmarking mechanism to eliminate, and can be used on circuits with a certain amount of traffic, due to statistical The probability distribution model is used as the background, and the threshold of judgment obtained is similar to the patent. It has an academic theoretical basis and considers the impact of environmental changes on the traffic, which can reduce the misjudgment situation, and also provides abnormal events. Manual manual adjustment mechanism.
在所有可提供訊務傳送的網路上,無論是存取端(Access)電路或骨幹端的彙集電路,使用一電路的用戶數達一定數量時,該電路的訊務行為方式會越穩定,尤其是越接近骨幹端的彙集電路。且在固定時段的訊務量分布通常能符合統計學上的常態性(Normality)或對稱性(symmetry),此一特性剛好可用於進行訊務是否有異常的監測功能上,發掘出設備網管系統所無法監測出的異常狀況。 On all networks that can provide traffic transmission, whether it is an access circuit or a collection circuit of the backbone, when the number of users using a circuit reaches a certain number, the communication behavior of the circuit will be more stable, especially The closer to the collection circuit of the backbone end. And the traffic distribution in a fixed period of time can usually meet the statistical normality or symmetry. This feature can be used to detect whether there is abnormal monitoring function of the traffic, and discover the equipment network management system. Unusual conditions that cannot be monitored.
本發明係提出一種常態分佈模式之網路異常訊務監測系統,本發明的發想一方面來自於網路訊務,其中包括流量、用戶數、IP Pool數及其他在電路內流通的連續性資料,在一定時段內具有其穩定性及常態分布模式的觀察分析,另一方面得自於製造業的統計製程管制方法,將其原理和做法加以修正並運用於資通信業的網路訊務監測管理內。 The invention provides a network abnormal traffic monitoring system in a normal distribution mode. The invention is based on network traffic, including traffic, number of users, IP pool number and other continuity in the circuit. The data has observation and analysis of its stability and normal distribution patterns in a certain period of time. On the other hand, it is derived from the statistical process control method of the manufacturing industry, and its principles and practices are corrected and applied to the network communication of the telecommunications industry. Monitoring within management.
本發明所提供之技術特徵,與其他習用技術相互比較時,更具備下列優點: The technical features provided by the present invention have the following advantages when compared with other conventional technologies:
1.本發明可用於偵測網路異常訊務,即時產生告警訊息,通知網路管理人員,使其得以即時採取應變措施,迅速恢復網路服務品質,維護網路使用者權益。 1. The invention can be used for detecting network abnormal traffic, instantly generating an alarm message, and informing the network administrator to enable immediate response measures to quickly restore network service quality and maintain network user rights.
2.本發明可彌補設備網管的不足,將那些由設備網管系統無法監測到的異常訊務,或那些潛藏在背後的異常狀況發掘出來。 2. The invention can make up for the deficiencies of the equipment network management, and uncover abnormal traffic that cannot be monitored by the equipment network management system, or those abnormalities hidden behind the scenes.
3.本發明所提出的監測機制具有自我修正能力,讓系統能因應網路環境的變化而自動或人工的方式調整其監測模式,以減少誤發告警事件的問題。 3. The monitoring mechanism proposed by the invention has self-correcting capability, so that the system can adjust its monitoring mode automatically or manually according to the change of the network environment, so as to reduce the problem of false alarm events.
4.本發明除具有統計理論依據外,並參酌寬頻網路訊務管理的實務經驗,使其更能在寬頻網路的訊務監測上達成實作目的。 4. In addition to the statistical theoretical basis, the present invention takes into account the practical experience of broadband network traffic management, so that it can achieve practical purposes in the traffic monitoring of broadband networks.
5.過去的方法多使用訊務大幅度變化(陡升或陡降)的異常狀況進行監測,門檻值多為專家依據經驗而訂定,本發明突破該方法的不確定性,改以統計理論為基礎,使得監測的門檻有可遵循的方向,並讓未來的作業能精益求精,愈益完善。 5. The past methods mostly use the abnormal conditions of the large-scale change (sudden or steep) of the traffic to be monitored. The threshold value is mostly determined by the experts based on experience. The invention breaks the uncertainty of the method and changes to the statistical theory. Based on this, the threshold of monitoring can be followed and the future work can be improved and improved.
100‧‧‧訊務資料模組 100‧‧‧Information Data Module
200‧‧‧監測門檻建立與管理模組 200‧‧‧Monitoring threshold establishment and management module
300‧‧‧告警事件產生器 300‧‧‧Alarm Event Generator
400‧‧‧即時訊務監控模組 400‧‧‧ Instant Traffic Monitoring Module
500‧‧‧基準變更監控與管理模組 500‧‧‧Baseline Change Monitoring and Management Module
600‧‧‧資料庫 600‧‧‧Database
S710、S720~S724、S730、S740、S750、S760、S770~S772、S810、S820、S830‧‧‧流程步驟 S710, S720~S724, S730, S740, S750, S760, S770~S772, S810, S820, S830‧‧‧ process steps
S100、S101、S200、S201、S300、S301、S400、S500、S501、S503‧‧‧常態分佈模式之網路異常訊務監測方法流程步驟 S100, S101, S200, S201, S300, S301, S400, S500, S501, S503‧‧‧ normal distribution mode network abnormal traffic monitoring method flow steps
S210~S270‧‧‧建立與管理門檻值之流程步驟 S210~S270‧‧‧ Process steps for establishing and managing thresholds
S510~S530‧‧‧基準變更監看與管理之流程步驟 S510~S530‧‧‧Procedure change monitoring and management process steps
請參閱有關本發明之詳細說明及其附圖,將可進一步瞭解本發明之技術內容及其目的功效;有關附圖為: Please refer to the detailed description of the present invention and the accompanying drawings, and the technical contents of the present invention and its effects can be further understood; the related drawings are:
第1圖為本發明之常態分佈模式之網路異常訊務監測系統之示意圖。 FIG. 1 is a schematic diagram of a network abnormality traffic monitoring system in a normal distribution mode according to the present invention.
第2圖為本發明之常態分佈模式之網路異常訊務監測方法之流程圖。 FIG. 2 is a flow chart of a network abnormal traffic monitoring method according to the normal distribution mode of the present invention.
第3圖為本發明之常態分佈模式之網路異常訊務監測方法之另一流程圖。 FIG. 3 is another flow chart of the network abnormal traffic monitoring method in the normal distribution mode of the present invention.
第4圖為本發明之常態分佈模式之網路異常訊務監測方法之建立與管理門檻值之流程圖。 Figure 4 is a flow chart showing the establishment and management threshold of the network abnormal traffic monitoring method in the normal distribution mode of the present invention.
第5圖為本發明之常態分佈模式之網路異常訊務監測方法之基準變更監看與管理之流程圖。 Figure 5 is a flow chart showing the monitoring and management of the baseline change of the network abnormal traffic monitoring method in the normal distribution mode of the present invention.
第6圖為本發明之常態分佈模式之網路異常訊務監測系統之介面圖。 Figure 6 is an interface diagram of the network abnormality traffic monitoring system of the normal distribution mode of the present invention.
第7圖為本發明之常態分佈模式之網路異常訊務監測方法之實施例圖。 FIG. 7 is a diagram showing an embodiment of a network abnormal traffic monitoring method in a normal distribution mode according to the present invention.
為了使本發明的目的、技術方案及優點更加清楚明白,下面結合附圖及實施例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅用以解釋本發明,但並不用於限定本發明。 The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
以下,結合附圖對本發明進一步說明: Hereinafter, the present invention will be further described with reference to the accompanying drawings:
本發明提出之軟體授權方法,除了上述序號產生與檢驗方法外,包含結合上揭序號產生與檢驗方法之軟體授權方法,以解決軟體易遭破解者反編譯為原始碼,並且竄改檢驗授權程式片段再重新編譯,或者直接仿製序號產生器的問題。 The software authorization method proposed by the present invention, in addition to the above-mentioned serial number generation and verification method, includes a software authorization method combining the above-mentioned serial number generation and verification method, to solve the problem that the software vulnerable to being cracked is decompiled into the original code, and the verification authorization program fragment is falsified. Recompile, or directly imitate the issue of the sequencer generator.
請參閱第1圖,第1圖為本發明之常態分佈模式之網路異常訊務監測系統之示意圖。如第1圖所示,其至少包含訊務資料模組100、監測門檻建立與管理模組200、告警事件產生器300、即時訊務監控模組400、基準變更監控與管理模組500以及資料庫600。其中,該訊務資料模組100接收並傳送網路之訊務資料,將該些訊務資料傳送至各個模組與裝置,該監測門檻建立與管理模組200接收該訊務資料並統計該訊務資料之數據,建立並設定門檻值,之後透過該即時訊務監控模組400接收該些訊務資料與該些門檻值,並輸出該些訊務資料與該些門檻值於顯示裝置。該告警事件產生器300接收該訊務資料依據該門檻值將數據與該門檻值進行比對,若超出該門檻值設定之範圍,則產生一筆異常事件告警,顯示訊務資料異常,並將該些告警事件儲存於該資料庫之異常事件告警記錄表,而該基準變更監控與管理模組500接收該些告警事件,分析並判斷基準值。 Please refer to FIG. 1. FIG. 1 is a schematic diagram of a network abnormality traffic monitoring system in a normal distribution mode according to the present invention. As shown in FIG. 1 , it includes at least a traffic data module 100, a monitoring threshold establishment and management module 200, an alarm event generator 300, an instant traffic monitoring module 400, a baseline change monitoring and management module 500, and data. Library 600. The traffic data module 100 receives and transmits the network traffic data, and transmits the traffic data to each module and device. The monitoring threshold establishing and management module 200 receives the traffic data and collects the data. The data of the service data is set and set to a threshold value, and then the information and the threshold values are received by the instant messaging monitoring module 400, and the traffic data and the threshold values are outputted to the display device. The alarm event generator 300 receives the traffic data and compares the data with the threshold according to the threshold value. If the threshold value is exceeded, an abnormal event alarm is generated, indicating that the traffic data is abnormal, and the The alarm events are stored in the abnormal event alarm record table of the database, and the baseline change monitoring and management module 500 receives the alarm events, analyzes and determines the reference value.
請參閱第2圖,第2圖為本發明之常態分佈模式之網路異常訊務監測方法之流程圖。如第2圖所示,針對各類彙集電路,建立一網路訊務管制模式,以即時反應網路上所發生的異常訊務電路。然後,提供一訊務異常的判斷標準建立準則,例如:門檻值供訊務分析使用,主要排除異常訊務,提昇訊務資料的可靠性。接著,提供異常門檻建立標準程序。 Please refer to FIG. 2, which is a flow chart of the network abnormality monitoring method in the normal distribution mode of the present invention. As shown in Figure 2, a network traffic control mode is established for each type of aggregation circuit to instantly react to abnormal traffic circuits occurring on the network. Then, a criterion for establishing a criterion for the abnormality of the traffic is provided. For example, the threshold value is used for the analysis of the traffic, and the abnormal traffic is mainly excluded, and the reliability of the traffic data is improved. Next, provide an exception threshold to establish a standard procedure.
進一步說明該些步驟可包含: Further explaining that the steps may include:
S710透過網路進行訊務資料收集。 The S710 collects traffic data through the network.
S720對該些訊務資料進行穩定度分析,過多的離群值可判斷出該電路是處於不穩定的狀態。 The S720 performs stability analysis on the traffic data, and the excessive outliers can determine that the circuit is in an unstable state.
S730之後進行離群值分析並S740建立管制模式。 An outlier analysis is performed after S730 and a control mode is established in S740.
S750執行管制模式,監控網路異常訊務監測。 The S750 performs a policing mode to monitor network anomaly traffic monitoring.
而進一步說明,判斷S720穩定度分析,若網路訊務不穩定時,S721進行不穩定分析及判斷S722是否能進行修正恢復網路訊務運作,若是,S724改善穩定措施將該訊務資料回傳至S710,若否,執行S723週期性基本管制。而該週期性基本管制可依資料產生數選擇使用一周、雙周或是一個月份控管。 Further, to determine the stability analysis of S720, if the network traffic is unstable, S721 performs instability analysis and determines whether S722 can perform correction to restore network traffic operation. If so, S724 improves stability measures and returns the traffic information. Pass to S710, if not, perform S723 periodic basic control. The periodic basic control can be controlled by one week, two weeks or one month depending on the number of data generation.
此外,網路異常訊務監測因為外在原因或特殊原因發生異常,例如S810施工或活動資訊造成網路訊務不穩定,接著,S820基準狀態改變,列入該些原因重新計算基準值回到S710,或是不列為正常運作之基準值內回到S750執行管制。 In addition, the network abnormal traffic monitoring is abnormal due to external causes or special reasons. For example, the S810 construction or activity information causes the network traffic to be unstable. Then, the S820 reference status changes, and the reasons for recalculating the reference value are included. S710, or not listed as a normal operating reference value back to S750 implementation control.
而當S750執行管制發生網路異常訊務,判斷S760是否有異常值,若否回到S750執行管制,若是進行S770異常排除管理作業,包含S771異常原因分析與S772改善措施,排除異常。 When the S750 performs control to generate network abnormal traffic, it is determined whether the S760 has an abnormal value. If it is not returned to the S750 for execution control, if the S770 abnormality exclusion management operation is performed, the S771 abnormal cause analysis and the S772 improvement measure are included, and the abnormality is excluded.
請參閱第4圖,第4圖為本發明之常態分佈模式之網路異常訊務監測方法之建立與管理門檻值之流程圖。如第4圖所示,其本發明之主要技術特徵係為建立與管理門檻值之流 程,其步驟可至少包含下列 Please refer to FIG. 4, which is a flow chart of the establishment and management threshold of the network abnormality monitoring method in the normal distribution mode of the present invention. As shown in FIG. 4, the main technical feature of the present invention is to establish and manage the threshold value flow. The steps may include at least the following
S210採用盒鬚圖(box-and-whisker plot,Box Plot)法,並將訊務資料進行排列,於實際運作時可依時間分群後進行各群內排序。 The S210 uses a box-and-whisker plot (Box Plot) method and arranges the traffic data. In actual operation, the clusters can be sorted according to time and then sorted within each group.
S220進行四分位計算,分別計算Q1(1/4分位)、中位數(Median,Q2,½分位)、及Q3(3/4分位)。 S220 performs quartile calculations to calculate Q1 (1/4 quantile), median (Median, Q2, 1⁄2 quantile), and Q3 (3/4 quantile).
S230計算離群界線。 S230 calculates the outlier boundary.
IQR(四分位距)=Q3-Q2 IQR (interquartile range) = Q3-Q2
離群值上限UOL=Q3+IQR*2 Outlier limit UOL=Q3+IQR*2
離群值下限LOL=Q1-IQR*2 Outlier lower limit LOL=Q1-IQR*2
S240判斷離群值,大於離群值上限UOL,或是小於離群值下限LOL。 S240 determines the outlier value, which is greater than the outlier upper limit UOL, or less than the outlier lower limit LOL.
S260計算去除離群值(outlier)之平均值(average)和標準差(standard deviation),例如:(2*IQR)。 S260 calculates the average and standard deviation of the outliers, for example: (2*IQR).
S270計算管制界線,並可進行分級告警,亦可依電路特性分成工作日和休假日分別計算上下管制界線及進行管制。 S270 calculates the control boundary and can perform hierarchical alarms. It can also divide the upper and lower control boundaries and control according to the circuit characteristics, which are divided into working days and holidays.
UCL=平均值+k*標準差 UCL = average + k * standard deviation
LCL=平均值-k*標準差 LCL = average - k * standard deviation
K的大小視電路特性調整,越大表示出現的機率越小,越可能為異常值。 The size of K is adjusted according to the circuit characteristics. The larger the value, the smaller the probability of occurrence, and the more likely it is to be an abnormal value.
分成三個等級進行告警,如k=3者為第一級,k=4者為第二級,k=6者為第三級。 The alarm is divided into three levels, for example, k=3 is the first level, k=4 is the second level, and k=6 is the third level.
於實際運作時,請參閱第3圖及第6圖,第3圖為本發明之常態分佈模式之網路異常訊務監測方法之另一流程圖。第6圖為本發明之常態分佈模式之網路異常訊務監測系統之介面圖。如第3圖及第6圖所示,本發明之訊務資料主要來自於提供訊務服務的資通訊網路,這些網路內的設備及介面局情資訊由網路設備資源管理系統所納管,而訊務資料則由設備網管系統來提供。在進行訊務資料管理時,通常需經過如介面之「訊務資料剖析」功能將所取得之訊務資料剖析後存入訊務資料庫內供其他模組使用。這些運用訊務資料之模組於本實施例中可係為「門檻建立與管理」、「告警事件產生器」、「基準變更監看與管理」及「即時訊務監看」等主要模組內的實作機制。 In the actual operation, please refer to FIG. 3 and FIG. 6 , and FIG. 3 is another flow chart of the network abnormal traffic monitoring method in the normal distribution mode of the present invention. Figure 6 is an interface diagram of the network abnormality traffic monitoring system of the normal distribution mode of the present invention. As shown in FIG. 3 and FIG. 6, the traffic information of the present invention mainly comes from a communication network for providing a service service, and the device and interface information in these networks are managed by the network device resource management system. The traffic data is provided by the device network management system. In the management of the traffic data, it is usually necessary to analyze the acquired traffic data through the "Service Data Analysis" function of the interface and deposit it into the information database for use by other modules. The modules that use the traffic information in this example can be the main modules such as "Gate Establishment and Management", "Alarm Event Generator", "Base Change Monitoring and Management" and "Instant Traffic Monitoring". The implementation mechanism within.
請參閱第1圖及第6圖,該監測門檻建立與管理模組200顯示介面可係為門檻建立與管理,本發明主要揭露建立門檻值。依據過去一段時間,長短視網路及服務訊務的特性而定,於本實施例中以一個月的歷史資料進行說明,所收集到的訊務資料,以統計學上的推理統計法則,檢定數據在不同日期型態及時間點內的訊務資料數據是否符合常態分布或呈對稱性,如具有上述兩項特性,則可按照下列步驟進行異常訊務判斷所需的門檻值。 Referring to FIG. 1 and FIG. 6 , the display threshold of the monitoring threshold establishing and management module 200 can be established and managed as a threshold. The present invention mainly discloses establishing a threshold value. According to the characteristics of the long-term and short-sighted network and service services, in the present embodiment, the historical data of one month is used for description, and the collected traffic data is verified by statistical reasoning and statistical rules. Whether the data of the data in different date types and time points conforms to the normal distribution or symmetry. If the above two characteristics are available, the thresholds required for abnormal traffic judgment can be performed according to the following steps.
A1.按不同網管路拓樸位置、不同日期型態,例如:是否為工作日或休假日,以及不同時段,例如:24小時內同一小時或同一五分鐘的資料數據,檢定同一拓樸位置內的電路之各時段內的數據是否符合常態分布或具有對稱性。 A1. Verify the same topological position according to different network pipeline topological positions and different date types, for example, whether it is a working day or a holiday, and different time periods, for example, data of the same hour or the same five minutes within 24 hours. Whether the data in each period of the circuit within the circuit conforms to the normal distribution or has symmetry.
A2.如具上述兩項特性,則採用盒鬚圖(box-and-whisker plot, Box Plot)方法,將各組內的數據進行離群值分析,並去除離群值(outlier),留下正常數據。盒鬚圖的方法係為計算一數據的四分位數值,即排序後之總項目數的第1/4處數據值(Q1)、2/4處數值(Q2)、及3/4處的數據值(Q3),其中Q2即為數據中位數(Median),而Q3-Q1為位於中間的50%數據的範圍,稱為四分位差(IQR,Interquartile Range),當樣本數據內的數據小於Q1-1.5*IQR(也可用Q1-2*IQR),或大於Q3+1.5*IQR(或Q3+1.5*IQR)則該數據即為離群值。 A2. If you have the above two characteristics, use a box-and-whisker plot. The Box Plot method performs outlier analysis of the data within each group and removes outliers, leaving normal data. The method of box and whisker is to calculate the quartile value of a data, that is, the data value (Q1) at the 1/4th of the total number of items after sorting, the value (Q2) at 2/4, and the 3/4 Data value (Q3), where Q2 is the median (Median), and Q3-Q1 is the range of 50% of the data in the middle, called the interquartile range (IQR, Interquartile Range), within the sample data. The data is less than Q1-1.5*IQR (also available Q1-2*IQR), or greater than Q3+1.5*IQR (or Q3+1.5*IQR), the data is an outlier.
A3.以去離群值後的數據,檢定各條件,依據不同類別的電路、日期型態或時段之數據間是否具有相同的分布模式。把相同分布模式的條件視為同一組,即同一組可使用相同的分布模式計算其門檻值。 A3. Determine the conditions according to the data after the outliers, according to whether the data of different classes of circuits, date type or time period have the same distribution mode. Treat the conditions of the same distribution pattern as the same group, that is, the same group can calculate its threshold using the same distribution pattern.
A4.計算同一組內的數據,視為同一母體所取出的樣本之樣本平均數(average)和標準差(standard deviation),取平均數±n*標準差做為判斷是否為異常訊務的上下限門檻(upper/lower boundary limit或upper/lower base line),其中n至少需在3以上。為顯示異常的嚴重性,可依據電路的類別選擇不同的n值,建立不同的門檻值,n值越大,就越嚴重,因其發生的機率越低。 A4. Calculate the data in the same group, and consider the sample average and standard deviation of the samples taken by the same parent. Take the average ±n* standard deviation as the judgment of whether it is abnormal traffic. Upper/lower boundary limit or upper/lower base line, where n needs to be at least 3. In order to show the severity of the abnormality, different n values can be selected according to the type of the circuit, and different threshold values are established. The larger the value of n, the more serious, and the lower the probability of occurrence.
如第1圖及第6圖所示,該告警事件產生器300為一個為判斷機制的實作方法。將接收之訊務資料與所建立之門檻值進行比對。舉例說明若該數據小於下限門檻值或大於上限門檻值,則產生一筆告警事件記錄,並依據門檻值差距的大小,註記其嚴重等級,因此可設定訊務資料之異常程度進行分級。 As shown in FIGS. 1 and 6, the alarm event generator 300 is an implementation method for determining a mechanism. The received traffic data is compared to the established threshold. For example, if the data is less than the lower threshold or greater than the upper threshold, an alarm event record is generated, and the severity level is noted according to the difference of the threshold value, so the abnormality of the traffic data can be set for classification.
請參閱第7圖,第7圖為本發明之常態分佈模式之 網路異常訊務監測方法之實施例圖。如第1圖、第6圖及第7圖所示,該即時訊務監控模組400於顯示介面可係為即時訊務監看或稱為即時訊務管制圖。將接收之訊務資料,可按時間序,顯示在繪有上下限門檻值的統計圖,於本實施例可係為Line chart,折線圖內,由於每固定時段,本實施例以每一小時為例,為同一母體,因此各有其上下限門檻,並將結果輸出於顯示裝置,可供使用者即時觀看一電路的訊務是否超過門檻,也可供觀察訊務的發展或復原狀態,以便於網管人員能隨時掌握應變時機,如第7圖所示。 Please refer to FIG. 7 , which is a normal distribution mode of the present invention. A diagram of an embodiment of a network anomaly monitoring method. As shown in FIG. 1 , FIG. 6 and FIG. 7 , the instant messaging monitoring module 400 can be an instant messaging monitor or an instant messaging control map on the display interface. The received traffic data can be displayed in time series and displayed in the chart with the upper and lower thresholds. In this embodiment, it can be a line chart, in the line chart, because each fixed time period, this embodiment takes every hour. For example, the same parent, so each has its upper and lower thresholds, and the result is output to the display device, so that the user can immediately watch whether the signal of a circuit exceeds the threshold, and can also be used for observing the development or recovery state of the signal. So that the network administrator can grasp the timing of the strain at any time, as shown in Figure 7.
該基準變更監控與管理模組500於顯示介面可係為基準變更監看與管理,而基準值(base-line)可係為異常的門檻值。由於電路訊務會隨著網路使用環境的變化而改變,模式也會產生變化,其門檻值就會跟著改變,因此需要隨時去監看其基準是否變更了。我們所發明的系統採用例行性的自動變更及特殊性的個別變更兩種方法。例行性變更採多日移動平均,例如:每兩週,以前一個月的數據進行一次門檻值的重建等,如此可使用最新的數據進行監測。 The reference change monitoring and management module 500 can be used as a reference change monitoring and management on the display interface, and the base-line can be an abnormal threshold. Since the circuit information changes with the environment of the network, the mode will change, and the threshold will change. Therefore, it is necessary to monitor whether the benchmark has changed. The system we invented uses both routine automatic changes and individual changes in specificity. Routine changes take multi-day moving averages, for example: every two weeks, the previous month's data is re-established with a threshold, so that the latest data can be used for monitoring.
另一方式則為特殊狀況下的基準值管理,通常為個別電路訊務消長或特殊事件所造成的基準變更。請參閱第5圖,第5圖為本發明之常態分佈模式之網路異常訊務監測方法之基準變更監看與管理之流程圖。如第3圖所示,我們採用下列數項方式進行管理: The other method is the management of the reference value under special conditions, usually the reference change caused by individual circuit traffic growth or special events. Please refer to FIG. 5, which is a flow chart of the monitoring and management of the baseline change of the network abnormal traffic monitoring method in the normal distribution mode of the present invention. As shown in Figure 3, we manage in the following ways:
S510觀看最近一段時間,視資料收集狀況訂定,如一日、半日、或一小時所收集的訊務資料,是否有連續大於或小於平均值的情形,如有該現象即表示該資料已不符合原來的基準,需要重新計算。 S510 watched the recent period of time, depending on the data collection status, such as the day, half day, or one hour of the collected traffic information, whether there is continuous or greater than the average value, if this phenomenon indicates that the data has not met The original benchmark needs to be recalculated.
S520觀看同一群組的電路訊務,其超過門檻的異常事件數是否超過一定數量,如連續發生達10次以上,則代表該電路訊務已不再處於穩定狀態,需查明原因,進行修正。 S520 views the circuit information of the same group. If the number of abnormal events exceeding the threshold exceeds a certain number, if the number of consecutive occurrences exceeds 10 times, it means that the circuit communication is no longer in a stable state, and the cause needs to be ascertained and corrected. .
S530電路內部的使用結構是否有所變更?如使用該電路人數增加/減少、有特殊節日、公司政策性調整、或特殊季節等,例如:寒暑假,如有變更則需暫停使用該基準,待事件過後或新的穩定狀態形成後,再重新收集數據,重建監視門檻。 Has the internal structure of the S530 circuit been changed? If the number of people using the circuit increases/decreases, there are special holidays, company policy adjustments, or special seasons, such as: winter and summer vacations, if there is any change, the benchmark should be suspended, after the event or after a new stable state is formed, Re-collect the data and rebuild the monitoring threshold.
於實際運作時,請參閱第1圖及第3圖。第1圖與第3圖及實施例搭配進行說明,假設要監測一路以五分鐘週期收集訊務的電路,從過去一個月(30天)的資料分析來看,每日在同一小時所收集之訊務量具有常態分布模式,但在不同時段間經檢定後,判定具有顯著差異,因此可依據個別小時進行分組,經分析發現每一組的訊務資料具穩定性,因此如第3圖所示進行該電路之異常偵測,各元件的實施步驟說明如下: Please refer to Figures 1 and 3 for actual operation. Figure 1 is a combination of Figure 3 and the example. It is assumed that the circuit for collecting traffic in a five-minute cycle is monitored. From the data analysis of the past month (30 days), it is collected every day in the same hour. The traffic volume has a normal distribution mode, but after being verified in different time periods, the judgment has significant differences, so it can be grouped according to individual hours. After analysis, it is found that the traffic data of each group is stable, so as shown in Figure 3 The abnormality detection of the circuit is shown, and the implementation steps of each component are as follows:
1.該訊務資料模組100S100以每5分鐘的週期進行訊務資料收集及剖析,並S101訊務資料存入訊務資料庫的相關表格中。 1. The traffic data module 100S100 collects and analyzes the traffic data every 5 minutes, and the S101 traffic data is stored in the relevant table of the transaction database.
2.監測門檻建立與管理模組200執行S200建立與管理門檻值,將同一小時資料樣本,樣本數為12*30=360,計算其三個四分位值(Q1,Q2,Q3),計算離群值門檻,小於Q1-1.5*IQR或大於Q3+1.5*IQR,將離群值去除後,計算剩下數據的平均值和標準差。分別按公式【平均數±3*標準差】、【平均數±4*標準差】及【平均數±6*標準差】,建立三級監測的上下限門檻,存入資料庫的門檻資料表中,執 行S201監測門檻值。 2. The monitoring threshold establishment and management module 200 performs the S200 establishment and management threshold, and the same hour data sample, the sample number is 12*30=360, and the three quartile values (Q1, Q2, Q3) are calculated and calculated. The outlier threshold is less than Q1-1.5*IQR or greater than Q3+1.5*IQR. After the outliers are removed, the average and standard deviation of the remaining data are calculated. According to the formula [mean ± 3 * standard deviation], [mean ± 4 * standard deviation] and [mean ± 6 * standard deviation], establish the upper and lower thresholds of the three-level monitoring, and store the threshold data table of the database. In the middle Line S201 monitors the threshold value.
3.告警事件產生器300執行S300訊務流量監測,以每5分鐘週期讀取訊務資料,並與S201監測門檻相互比對,如有超過門檻者,則S301產生異常事件記錄存入資料庫中。 3. The alarm event generator 300 performs S300 traffic flow monitoring, reads the traffic data every 5 minutes, and compares with the S201 monitoring threshold. If there is more than the threshold, the S301 generates an abnormal event record and stores it in the database. in.
4.即時訊務監控模組400紙型S400即時訊務監看進行所讀取該些訊務資料是否在上下限之間,如有超過的門檻的情形,可觀察其發展狀況,做為因應參考。 4. Instant messaging monitoring module 400 paper type S400 real-time traffic monitoring to read whether the information is between the upper and lower limits. If there is a threshold, the development status can be observed as a response. reference.
5.基準變更監控與管理模組500持續S500對訊務資料進行分析以判斷其S501是否有偏離現行基準情形,如有偏離,則暫停目前的監測機制,改用基本的監測標準,如只監視訊務是否有陡降/陡升狀況或低於最小訊務或超過介面頻寬等,進行S503基本監測以避免在基準改變期間形成空窗期,造成嚴重異常無法監測到。 5. The benchmark change monitoring and management module 500 continues to analyze the traffic data by the S500 to determine whether the S501 deviates from the current baseline situation. If there is a deviation, the current monitoring mechanism is suspended and the basic monitoring standard is changed, such as monitoring only. Whether the traffic has a steep drop/steep rise condition or below the minimum traffic or exceeds the interface bandwidth, etc., basic monitoring of S503 is performed to avoid a window period during the baseline change, causing serious anomalies that cannot be detected.
應用於兩路以上同類電路合計訊務之監測,例如兩設備間有兩路互為備援或具有負荷平衡機制的電路系統,可將同一時間點上各電路的流量加總進行監測,如有訊務異常,則代表其前後各層次電路內必有電路異常發生,可供網管人員進行追蹤分析。 It is applied to the monitoring of the total communication of two or more similar circuits. For example, there are two circuits between the two devices that are mutually redundant or have a load balancing mechanism. The flow of each circuit at the same time point can be monitored for total. If the traffic is abnormal, it means that there must be a circuit abnormality in the circuit before and after it, which can be used by the network administrator for tracking analysis.
本發明在應用於此實施例之電信網路內,已說明可即時發現多種網路訊務的異常狀況,包括網路封包不轉送(packet loss forward)、設備障礙、及駭客攻擊(DDoS)等,發揮早發現早修復,減少損失,維護網路服務品質的目的。 The present invention has been described in the telecommunications network applied to this embodiment, and can immediately detect abnormal conditions of various network services, including packet loss forward, device obstacles, and hacking attacks (DDoS). Wait, play the role of early detection and early repair, reduce losses, and maintain the quality of network services.
上列詳細說明乃針對本發明之一可行實施例進行具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案 之專利範圍中。 The detailed description of the present invention is intended to be illustrative of a preferred embodiment of the invention, and is not intended to limit the scope of the invention. The case In the scope of patents.
綜上所述,本案不僅於技術思想上確屬創新,並具備習用之傳統方法所不及之上述多項功效,已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。 To sum up, this case is not only innovative in terms of technical thinking, but also has many of the above-mentioned functions that are not in the traditional methods of the past. It has fully complied with the statutory invention patent requirements of novelty and progressiveness, and applied for it according to law. Approved this invention patent application, in order to invent invention, to the sense of virtue.
S100、S101、S200、S201、S300、S301、S400、S500、S501、S503‧‧‧常態分佈模式之網路異常訊務監測方法流程步驟 S100, S101, S200, S201, S300, S301, S400, S500, S501, S503‧‧‧ normal distribution mode network abnormal traffic monitoring method flow steps
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW103101230A TWI548235B (en) | 2014-01-14 | 2014-01-14 | Network anomaly traffic monitoring system with normal distribution mode |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW103101230A TWI548235B (en) | 2014-01-14 | 2014-01-14 | Network anomaly traffic monitoring system with normal distribution mode |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201528725A TW201528725A (en) | 2015-07-16 |
| TWI548235B true TWI548235B (en) | 2016-09-01 |
Family
ID=54198476
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW103101230A TWI548235B (en) | 2014-01-14 | 2014-01-14 | Network anomaly traffic monitoring system with normal distribution mode |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI548235B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI672925B (en) * | 2017-11-24 | 2019-09-21 | 財團法人資訊工業策進會 | Network anomaly analysis apparatus, method, and computer program product thereof |
| TWI777804B (en) * | 2021-10-06 | 2022-09-11 | 中華電信股份有限公司 | Electronic device and method for determining cause of abnormal network service |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11042459B2 (en) | 2019-05-10 | 2021-06-22 | Silicon Motion Technology (Hong Kong) Limited | Method and computer storage node of shared storage system for abnormal behavior detection/analysis |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201007444A (en) * | 2008-08-15 | 2010-02-16 | Chi Mei Comm Systems Inc | Electronic device and method for memorizing stop error |
| TW201035913A (en) * | 2009-03-31 | 2010-10-01 | Topseed Technology Corp | Intelligent surveillance system and method for the same |
| TW201118564A (en) * | 2009-11-18 | 2011-06-01 | Aten Int Co Ltd | Server management system and method thereof |
-
2014
- 2014-01-14 TW TW103101230A patent/TWI548235B/en not_active IP Right Cessation
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201007444A (en) * | 2008-08-15 | 2010-02-16 | Chi Mei Comm Systems Inc | Electronic device and method for memorizing stop error |
| TW201035913A (en) * | 2009-03-31 | 2010-10-01 | Topseed Technology Corp | Intelligent surveillance system and method for the same |
| TW201118564A (en) * | 2009-11-18 | 2011-06-01 | Aten Int Co Ltd | Server management system and method thereof |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI672925B (en) * | 2017-11-24 | 2019-09-21 | 財團法人資訊工業策進會 | Network anomaly analysis apparatus, method, and computer program product thereof |
| TWI777804B (en) * | 2021-10-06 | 2022-09-11 | 中華電信股份有限公司 | Electronic device and method for determining cause of abnormal network service |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201528725A (en) | 2015-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2651098B1 (en) | Event processing system for an electrical power system | |
| CN103532940B (en) | network security detection method and device | |
| CN118487247B (en) | Relay protection method, relay protection system, computer equipment and storage medium | |
| JP2004348740A (en) | Self-learning method and system for detecting abnormality | |
| CN114167156A (en) | System and method for managing voltage event alerts in an electrical system | |
| CN106209856B (en) | Method for generating big data security posture map based on trusted computing | |
| CN104584483A (en) | Method and apparatus for automatically determining causes of quality of service degradation | |
| CN106656627A (en) | Performance monitoring and fault positioning method based on service | |
| KR101187023B1 (en) | A network abnormal traffic analysis system | |
| CN110650060A (en) | Processing method, equipment and storage medium for flow alarm | |
| US11665075B2 (en) | Techniques for detecting changes to circuit delays in telecommunications networks | |
| CN109034400A (en) | A kind of substation's exception metric data predicting platform system | |
| CN119155177B (en) | Construction method and system for realizing network server | |
| TWI548235B (en) | Network anomaly traffic monitoring system with normal distribution mode | |
| WO2014023245A1 (en) | Flow prediction method and system and flow monitoring method and system | |
| CN105656693A (en) | Regression-based information safety and anomaly detection method and system | |
| CN119276771A (en) | A method for application data interaction based on TCP-IP protocol | |
| CN118573606A (en) | BIM-based multi-target building construction data sharing transmission method and system | |
| CN101345656B (en) | global fault rate measuring method | |
| CN120995672A (en) | Busbar Trunking Lifecycle Health Management System Based on Digital Twin | |
| CN111044100A (en) | A sensor device and control method for power metering | |
| JP2008167484A (en) | Abnormal traffic detection method and apparatus | |
| CN115765860A (en) | Communication network fault processing method and device and electronic equipment | |
| CN121037119B (en) | Method for dispatching and optimizing metro network privacy protection computing migration tasks | |
| CN121000532B (en) | Dynamic authority management system, method and multi-source heterogeneous message middleware |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |