Claims (1)
1309371 年、/月 t 日修正/ΐ^τιΐ^Γ 十、申請專利範圍: 1. 一種調適性去雜訊系統,包括·· 移動偵測裝置,用以偵測一晝面中各個畫素的移動狀態; 邊緣偵測裝置,用以偵測該畫面中各個晝素的邊緣狀態; 雜訊預估裝置,根據該移動偵測裝置、該邊緣偵測裝置偵測 的移動、邊緣狀態,用以預估產生該畫面之一適性雜訊位階,其 中,該雜訊位階回授至該移動偵測裝置、該邊緣偵測裝置;及 去雜訊濾波裝置,根據該移動偵測裝置、該邊緣偵測裝置偵 測的移動、邊緣狀態及該雜訊位階進行各個畫素之雜訊補償運 算,以得到一去雜訊晝面。 2. 如申請專利範圍第1項所述之調適性去雜訊系統,其中上述之 移動偵測裝置更用以產生該畫面各個畫素及其鄰近晝素與鄰近晝 面對應畫素間的差異加權總和及代表各個畫素移動狀態的移動旗 標。 3. 如申請專利範圍第2項所述之調適性去雜訊系統,其中上述之 邊緣偵測裝置更用以產生該畫面各個畫素及其鄰近畫素與前一圖 場之對應晝素間的平均差異值及代表各個畫素邊緣狀態的邊緣旗 標0 17 1309371 f年、>月‘日修正/更责 4. 如申請專利範圍第3項所述之調適性去雜訊系統,其中上述之 雜訊預估裝置係根據代表各個晝素移動狀態的移動旗標、各個畫 素及其鄰近晝素與前一圖場之對應畫素間的平均差異值,以及代 表各個畫素邊緣狀態的邊緣旗標,因而預估產生該適性的雜訊位 階。 5. 如申請專利範圍第3項所述之調適性去雜訊系統,其中上述之 去雜訊濾波裝置,更依據該畫面各個晝素及其鄰近晝素與鄰近畫 面對應晝素的差異加權總和、代表各個畫素移動狀態的移動旗 標、各個晝素及其鄰近畫素與前一圖場之對應畫素間的平均差異 值,以及代表各個畫素邊緣狀態的邊緣旗標,以進行雜訊補償運 I 算。 i 6. 如申請專利範圍第1項所述之調適性去雜訊系統,其中上述之 去雜訊濾波裝置係進行一空間域雜訊補償運算及一時間域雜訊補 償運算。 7. 如申請專利範圍第3項所述之調適性去雜訊系統,其中上述代 表各個畫素移動狀態的移動旗標,係將各個畫素及其鄰近晝素與 鄰近晝面對應畫素間的差異加權總和與一移動臨限值作比較所產 生的。 18 1309371 A月‘曰修正/更 8.如申請專利範圍第7項所述之調適性去雜訊系統,其中上述代 表各個晝素邊緣狀態的邊緣旗標,係將各個晝素及其鄰近畫素與 前一圖場之對應畫素間的平均差異值與一邊緣臨限值作比較所產 生的。 9. 如申請專利範圍第8項所述之調適性去雜訊系統,其中上述之 移動臨限值及邊緣臨限值係隨著該雜訊位階的大小而作適性的調 整。 10. 一種調適性去雜訊方法,包括: 偵測一畫面中各個晝素的移動狀態; i 偵測該晝面中各個畫素的邊緣狀態; 根據該移動狀態及該邊丨緣狀態,預估產生該畫面之一適性雜 訊位階,其中,該雜訊位階回授以調整該移動臨限值及該邊緣臨 限值;及 根據該移動狀態、該邊緣狀態及該雜訊位階,進行各個畫素 之雜訊補償運算,以得到一去雜訊晝面。 11. 如申請專利範圍第10項所述之調適性去雜訊方法,其中該移 動狀態偵測步驟包括: 19 1309371 打年…月‘曰 計算該晝面各個晝素及其鄰近晝素與鄰近晝面對應畫素間之 差異加權總和,藉以得到該畫面各個晝素之一晝素移動量;及 判斷該晝素移動量是否大於一移動臨限值,藉以得到該晝面 各個晝素之一移動旗標。; 12. 如申請專利範圍第10項所述之調適性去雜訊方法,其中該邊 緣狀態偵測步驟包括: 計算該晝面各個畫素與鄰近晝素及前一圖場之對應畫素間的 平均差異值,藉以得到一變異數;及 判斷該變異數是否大於該邊緣臨限值,藉以得到一邊緣旗標。 I 13. 如申請專利範圍第10:項所述之調適性去雜訊方法,其中該適 性雜訊位階預估步驟包括: 在一晝面中根據該移動狀態及該邊緣狀態,判斷該畫素是否 屬於靜態且平滑之區域; 在屬於靜態且平滑之區域中,累加各個晝素之變異數;及 正規化該累加變異數以得到該雜訊位階。 14. 如申請專利範圍第13項所述之調適性去雜訊方法,其中該去 雜訊步驟包括一空間域的雜訊補償運算及一時間域的雜訊補償運 算。 20 1309371 15. 如申請專利範圍第14項所述之調適性去雜訊方法,其中該空 間域雜訊補償運算步驟包括: 在屬於靜態且平滑之區域中,設定各個畫素之畫素值為鄰近 晝素之平均晝素值; 在非屬靜態且平滑之區域中,對於非邊緣畫素,依照各個晝 素之變異數,將各個晝素之晝素值設定為各個晝素之晝素值與鄰 近畫素之平均畫素值之加權總和;以及 在非屬靜態且平滑之區域中,對於邊緣晝素,維持各個晝素 之畫素值。 16. 如申請專利範圍第14項所述之調適性去雜訊方法,其中該時 間域雜訊補償運算步驟,根據該空間域比較結果與鄰近畫面的對 應晝素值,進行加權計算。—— 21 1309371十一、圖式: f '-' ¾ X,,· li 1 雲塵I ΙΑ 铖丨麗 rad^—fl»ll Local Motionlflag Msiosls 言 JLo-'cavar Edige—flag Motionlflag Is 癱議 2ο·55·ά」ίτ>,<61 in命 B 22 1309371 牝年《日修正/更·1309371, / t-day correction / ΐ ^ τιΐ ^ Γ 10, the scope of application for patents: 1. An adaptive de-noise system, including · · mobile detection device to detect the pixels in a face The edge detecting device is configured to detect an edge state of each element in the picture; the noise estimating device is used according to the motion detecting device, the motion detected by the edge detecting device, and the edge state. Estimating a modest noise level of the picture, wherein the noise level is fed back to the motion detection device, the edge detection device, and the noise removal filter device, according to the motion detection device, the edge detection The motion detection, the edge state, and the noise level detected by the measuring device perform a noise compensation operation of each pixel to obtain a de-noising surface. 2. The adaptive denoising system according to claim 1, wherein the motion detecting device is further configured to generate a difference between each pixel of the picture and a pixel corresponding to the adjacent pixel and the adjacent pixel. The weighted sum and the moving flag representing the moving state of each pixel. 3. The adaptive denoising system according to claim 2, wherein the edge detecting device is further configured to generate each pixel of the picture and a corresponding pixel between the adjacent pixel and the previous field. The average difference value and the edge flag representing the edge state of each pixel 0 17 1309371 f year, > month 'day correction / more responsibility 4. As described in claim 3, the adaptive de-noise system, wherein The above-mentioned noise estimation device is based on the average difference value between the moving flag representing the movement state of each element, the respective pixels and the neighboring pixels and the corresponding pixels of the previous field, and the edge state of each pixel. The edge flag is thus estimated to produce this adaptive noise level. 5. The adaptive denoising system according to claim 3, wherein the denoising filtering device is further based on a difference weighted sum of the pixels of the picture and the neighboring pixels and adjacent pictures. a moving flag representing the moving state of each pixel, an average difference between each pixel and its neighboring pixels and a corresponding pixel of the previous field, and an edge flag representing the edge state of each pixel to perform miscellaneous The compensation compensation is calculated. i 6. The adaptive denoising system according to claim 1, wherein the de-noising filtering device performs a spatial domain noise compensation operation and a time domain noise compensation operation. 7. The adaptive denoising system according to claim 3, wherein the moving flag representing the moving state of each pixel is a pixel between each pixel and its neighboring pixels. The difference weighted sum is generated as compared to a moving threshold. 18 1309371 A month '曰 Amendment/More 8. The adaptive de-noising system described in claim 7 of the patent application, wherein the above-mentioned edge flag representing the edge state of each element is a picture of each element and its neighbors. The average difference between the prime and the corresponding pixel of the previous field is compared with an edge threshold. 9. The adaptive de-noising system of claim 8, wherein the mobile threshold and the edge threshold are adaptively adjusted according to the size of the noise level. 10. An adaptive de-noising method, comprising: detecting a moving state of each element in a picture; i detecting an edge state of each pixel in the picture; according to the moving state and the edge state of the edge, Estimating an adaptive noise level of the picture, wherein the noise level feedback is used to adjust the moving threshold and the edge threshold; and performing each according to the moving state, the edge state, and the noise level The noise compensation operation of the pixel is obtained to obtain a noise removal surface. 11. The adaptive denoising method according to claim 10, wherein the moving state detecting step comprises: 19 1309371 playing the year ... month '曰 calculating each element of the face and its neighboring pixels and neighbors The weighted sum of the differences between the pixels corresponding to the pixels, so as to obtain the amount of elementary movement of each element of the picture; and determining whether the amount of movement of the element is greater than a moving threshold, thereby obtaining one of the elements of the element Move the flag. 12. The adaptive denoising method according to claim 10, wherein the edge state detecting step comprises: calculating between the pixels of the face and the neighboring pixels and the corresponding pixels of the previous field; The average difference value is used to obtain a variance number; and whether the variance number is greater than the edge threshold value, thereby obtaining an edge flag. I. 13. The adaptive noise removal method according to claim 10, wherein the adaptive noise level estimation step comprises: determining the pixel according to the movement state and the edge state in a plane Whether it is a static and smooth region; in a static and smooth region, accumulate the variance of each pixel; and normalize the accumulated variance to obtain the noise level. 14. The adaptive denoising method of claim 13, wherein the de-noising step comprises a spatial domain noise compensation operation and a time domain noise compensation operation. 20 1309371 15. The adaptive denoising method according to claim 14, wherein the spatial domain noise compensation operation step comprises: setting a pixel value of each pixel in a static and smooth region The average pixel value of adjacent pixels; in non-static and smooth regions, for non-marginal pixels, the pixel values of each element are set to the pixel values of each element according to the variation of each element. The weighted sum of the average pixel values of the neighboring pixels; and in the non-static and smooth regions, for the edge elements, the pixel values of the individual pixels are maintained. 16. The adaptive denoising method according to claim 14, wherein the time domain noise compensation operation step performs weighting calculation according to the spatial domain comparison result and the corresponding pixel value of the adjacent picture. —— 21 1309371 十一,图: f '-' 3⁄4 X,,· li 1 云尘 I ΙΑ 铖丨 rad^—fl»ll Local Motionlflag Msiosls JLo-'cavar Edige—flag Motionlflag Is 2 2ο ·55·ά”ίτ>,<61 in life B 22 1309371
23 1309371 卿〆月义日修正/23 1309371 Qing Yiyue Yiri Correction /
24 130937124 1309371
曰修正, m m m ,: a4 of >qS tal b穸 varl=abs(bl*8-( b2+b3+a4+a5+a6+b7+b8+b9)); var2=aba(b2*8-(bl+ b3+a4+a5+ae+b7+b8+b9)); mrnFMki (b3*8-( bl+b2f var 4=abs (a4*8- (bl+b2+b3+ ia5+a6+b7fb8+ii9)); var5=abe(a5*8-(bl+b2+b3+a4+ a6+b7+b8+b9)); var6=al>e (a6«t-(bl+l>m34ii4^a5+ 、_伟職 ν^Γ7=β^β(ΐτ7*®-(ΐ^^^3^4+β|τΝ||+ bS+M)>; vaf 8=abs (b8*8- (bl+b2+b3+a4+a5+a6+b7+ b9)); var9=abs 〇>9*8- (bl+b2+b3+a4+a5+a6+b7+b8 )); lpcaIyar^sum=varlHhmr2^af34lraf|4vaf5^ai6^ar7#yar#+Tr»rSi l acal var=Loca i if (Iticalvar^dge-th) edge_f 1 agL«5sl \ else ejjg0jflag_j*5s:0i local 第三A鶴 25 1309371 躺 3JSS曰Correct, mmm,: a4 of >qS tal b穸varl=abs(bl*8-( b2+b3+a4+a5+a6+b7+b8+b9)); var2=aba(b2*8-( Bl+ b3+a4+a5+ae+b7+b8+b9)); mrnFMki (b3*8-( bl+b2f var 4=abs (a4*8- (bl+b2+b3+ ia5+a6+b7fb8+ii9) ); var5=abe(a5*8-(bl+b2+b3+a4+ a6+b7+b8+b9)); var6=al>e (a6«t-(bl+l>m34ii4^a5+, _Wei ν^Γ7=β^β(ΐτ7*®-(ΐ^^^3^4+β|τΝ||bS+M)>; vaf 8=abs (b8*8- (bl+b2+b3+ A4+a5+a6+b7+ b9)); var9=abs 〇>9*8- (bl+b2+b3+a4+a5+a6+b7+b8 )); lpcaIyar^sum=varlHhmr2^af34lraf|4vaf5^ Ai6^ar7#yar#+Tr»rSi l acal var=Loca i if (Iticalvar^dge-th) edge_f 1 agL«5sl \ else ejjg0jflag_j*5s:0i local third A crane 25 1309371 lying 3JSS
26 130937126 1309371
edgejQag If((lmotion ilag)&^(i〇〇〇〇Q total var sum+^localvar, rnmt- emm. · total_var_coimt-H-;edgejQag If((lmotion ilag)&^(i〇〇〇〇Q total var sum+^localvar, rnmt- emm. · total_var_coimt-H-;
local·Local·
第四A讀 27 1309371 厂年11 k fiB 麵Fourth A reading 27 1309371 Factory year 11 k fiB surface
28 1309371 6曰修正28 1309371 6曰Revised
第直A爾 c8 Ιοί m m α7 α8 α9 nmsejflag loealltoF (Βΐ+ΐΜ)_13伟 1麵5+^89)/8; xf職 LEVmi«»lVar]; y=MOTON_LEVEL[m^0n_stt]; efejElag ^ motioii一flag ‘ ifi[noise一flag) a8’=localMcan; else 成 ledge一flag) β8·=(χ*α8-Κ16- x)*localMemi)/16; else aS^aS; localVar ‘ motion一sun > aSHy*aSH<16^fc 賴; 第五B爾 29 1309371The first straight A8 c8 Ιοί mm α7 α8 α9 nmsejflag loealltoF (Βΐ+ΐΜ)_13 Wei 1 face 5+^89)/8; xf job LEVmi«»lVar]; y=MOTON_LEVEL[m^0n_stt]; efejElag ^ motioii one Flag ' ifi[noise-flag) a8'=localMcan; else into ledge-flag) β8·=(χ*α8-Κ16- x)*localMemi)/16; else aS^aS; localVar 'motion one sun > aSHy *aSH<16^fc Lai; Fifth Boer 29 1309371
3030