[go: up one dir, main page]

RU2443008C1 - FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT - Google Patents

FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT Download PDF

Info

Publication number
RU2443008C1
RU2443008C1 RU2010130857/08A RU2010130857A RU2443008C1 RU 2443008 C1 RU2443008 C1 RU 2443008C1 RU 2010130857/08 A RU2010130857/08 A RU 2010130857/08A RU 2010130857 A RU2010130857 A RU 2010130857A RU 2443008 C1 RU2443008 C1 RU 2443008C1
Authority
RU
Russia
Prior art keywords
positional
functional
logical function
sum
preliminary
Prior art date
Application number
RU2010130857/08A
Other languages
Russian (ru)
Inventor
Лев Петрович Петренко (UA)
Лев Петрович Петренко
Original Assignee
Лев Петрович Петренко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лев Петрович Петренко filed Critical Лев Петрович Петренко
Priority to RU2010130857/08A priority Critical patent/RU2443008C1/en
Application granted granted Critical
Publication of RU2443008C1 publication Critical patent/RU2443008C1/en

Links

Landscapes

  • Error Detection And Correction (AREA)
  • Complex Calculations (AREA)

Abstract

FIELD: computational engineering.
SUBSTANCE: construction arithmetic of devices and introduction of different arithmetic procedures on arguments with positional symbolic structure of analog signals arguments [ni]f(2n) and [mi]f(2n) using arithmetical axioms of ternary notation f(+1, 0, -1).
EFFECT: increased the summing-up speed as the variants of the structure are realized using logical elements NOT, AND, OR, AND -NOT, OR-NOT.
1 dwg

Description

Текст описания приведен в факсимильном виде.

Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079
Figure 00000080
Figure 00000081
Figure 00000082
Figure 00000083
Figure 00000084
Figure 00000085
Figure 00000086
Figure 00000087
Figure 00000088
Figure 00000089
Figure 00000090
Figure 00000091
Figure 00000092
Figure 00000093
Figure 00000094
Figure 00000095
Figure 00000096
Figure 00000097
Figure 00000098
The text of the description is given in facsimile form.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079
Figure 00000080
Figure 00000081
Figure 00000082
Figure 00000083
Figure 00000084
Figure 00000085
Figure 00000086
Figure 00000087
Figure 00000088
Figure 00000089
Figure 00000090
Figure 00000091
Figure 00000092
Figure 00000093
Figure 00000094
Figure 00000095
Figure 00000096
Figure 00000097
Figure 00000098

Claims (2)

1. Функциональная структура предварительного сумматора fΣ [ni]&[mi](2n) параллельно-последовательного умножителя fΣ (Σ) условно «i» разряда для суммирования позиционных аргументов слагаемых [ni]f(2n) и [mi]f(2n) частичных произведений с применением арифметических аксиом троичной системы счисления f(+1,0,-1) и формированием результирующей суммы [SΣ]f(2n) в позиционном формате, которая включает логические функции f1(})-ИЛИ, f2(})-ИЛИ, f3(})-ИЛИ, f4(})-ИЛИ, f5(})-ИЛИ, f1(}&)-ИЛИ-НЕ, f1(&)-И, f2(&)-И, f3(&)-И, f4(&)-И, f1( & )-НЕ и логическую функцию f1(&)-И-НЕ, функциональные входные связи которой являются функциональными входными связями структуры для приема аргументов ni и mi, при этом функциональная входная связь логической функции f2(&)-И является функциональной выходной связью логической функции f1(})-ИЛИ, а функциональные входные связи логической функции f3(&)-И являются функциональными выходными связями соответственно логической функции f3(})-ИЛИ, f4(})-ИЛИ, отличающаяся тем, что введены дополнительные логические функции f2( & )-НЕ, f2(&)-И-НЕ, f3(&)-И-НЕ, f4(&)-И-НЕ и f5(&)-И-НЕ, при этом функциональные связи в структуре предварительного сумматора выполнены в соответствии с математической моделью вида
Figure 00000099

где «= & 1=» - логическая функция f1( & )-НЕ;
Figure 00000100
- логическая функция f1(&)-И;
Figure 00000101
- логическая функция f1(})-ИЛИ;
Figure 00000102
- логическая функция f1(&)-И-НЕ;
Figure 00000103
- логическая функция f1(}&)-ИЛИ-НЕ.
1. The functional structure of the preliminary adder f Σ [n i ] & [m i ] (2 n ) of a parallel-series multiplier f Σ (Σ) of conditionally “i” category for summing the positional arguments of the terms [n i ] f (2 n ) and [m i ] f (2 n ) partial products using arithmetic axioms of the ternary number system f (+ 1,0, -1) and generating the resulting sum [S Σ ] f (2 n ) in a positional format that includes the logical functions f 1 (}) - OR, f 2 (}) - OR, f 3 (}) - OR, f 4 (}) - OR, f 5 (}) - OR, f 1 (} & ) - OR NOT, f 1 (&) - And, f 2 (&) - And, f 3 (&) - And, f 4 (&) - And, f 1 ( & ) -НЕ and the logical function f 1 ( & ) -И- NOT functional input connection which are functional input structure constraints for receiving arguments n i and m i, wherein the functional input connection logic function f 2 (k) - and a functional output coupled logic function f 1 (}) - OR, and functional input connection logic the functions f 3 (&) - AND are the functional output connections, respectively, of the logical function f 3 (}) - OR, f 4 (}) - OR, characterized in that additional logical functions f 2 ( & ) -НЕ, f 2 ( &) -and NOR f 3 (k) -and NOR f 4 (k) -and-NO 5 and f (k) -and-NO, wherein the functional linkages in trukture pre-adder are executed in accordance with the mathematical model of the form
Figure 00000099

where "= & 1 =" is the logical function f 1 ( & ) -НЕ;
Figure 00000100
- logical function f 1 (&) - And;
Figure 00000101
- logical function f 1 (}) - OR;
Figure 00000102
- logical function f 1 ( & ) -AND-NOT;
Figure 00000103
- logical function f 1 (} & ) -OR-NOT.
2. Функциональная структура предварительного сумматора fΣ [ni]&[mi](2n) параллельно-последовательного умножителя fΣ (Σ) условно «i» разряда для суммирования позиционных аргументов слагаемых [ni]f(2n) и [mi]f(2n) частичных произведений с применением арифметических аксиом троичной системы счисления f(+1,0,-1) и формированием результирующей суммы [SΣ]f(2n) в позиционном формате, которая включает логические функции f1(})-ИЛИ, f2(})-ИЛИ, f3(})-ИЛИ, f1(}&)-ИЛИ-НЕ, f1(&)-И, f2(&)-И, f3(&)-И, f4(&)-И, f1( & )-НЕ и логическую функцию f1(&)-И-НЕ, функциональные входные связи которой являются функциональными входными связями структуры для приема аргументов ni и mi, при этом функциональная входная связь логической функции f2(&)-И является функциональной выходной связью логической функции f1(})-ИЛИ, отличающаяся тем, что введены дополнительные логические функции f2( & )-НЕ, f2(&)-И-НЕ, f3(&)-И-НЕ, f4(&)-И-НЕ, f5(&)-И-НЕ, f6(&)-И-НЕ и f7(&)-И-НЕ, при этом функциональные связи в структуре предварительного сумматора выполнены в соответствии с математической моделью вида
Figure 00000104
2. The functional structure of the preliminary adder f Σ [n i ] & [m i ] (2 n ) of a parallel-series multiplier f Σ (Σ) of conditionally “i” category for summing the positional arguments of the terms [n i ] f (2 n ) and [m i ] f (2 n ) partial products using arithmetic axioms of the ternary number system f (+ 1,0, -1) and generating the resulting sum [S Σ ] f (2 n ) in a positional format that includes the logical functions f 1 (}) - OR, f 2 (}) - OR, f 3 (}) - OR, f 1 (} & ) - OR NOT, f 1 (&) - AND, f 2 (&) - AND, f 3 (&) - AND, f 4 (&) - AND, f 1 ( & ) -НЕ and the logical function f 1 ( & ) -AND-NOT, the functional input connections to which are the functional input relationships of the structure for receiving the arguments n i and m i , while the functional input link of the logical function f 2 (&) - AND is the functional output link of the logical function f 1 (}) - OR, characterized in that additional logical functions f 2 ( & ) -НЕ, f 2 ( & ) -AND-NOT, f 3 ( & ) -AND NOT, f 4 ( & ) -AND NOT, f 5 ( & ) -AND NOT, f 6 ( & ) -I-NOT and f 7 ( & ) -I-NOT, while the functional relationships in the structure of the preliminary adder are made in accordance with a mathematical model of the form
Figure 00000104
RU2010130857/08A 2010-07-22 2010-07-22 FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT RU2443008C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010130857/08A RU2443008C1 (en) 2010-07-22 2010-07-22 FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010130857/08A RU2443008C1 (en) 2010-07-22 2010-07-22 FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT

Publications (1)

Publication Number Publication Date
RU2443008C1 true RU2443008C1 (en) 2012-02-20

Family

ID=45854692

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010130857/08A RU2443008C1 (en) 2010-07-22 2010-07-22 FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT

Country Status (1)

Country Link
RU (1) RU2443008C1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2378682C2 (en) * 2007-12-17 2010-01-10 Лев Петрович Петренко INPUT STRUCTURE FOR PARALLEL ADDER IN POSITION-SIGN CODES f(+/-)(VERSIONS)
RU2386162C2 (en) * 2008-04-29 2010-04-10 Лев Петрович Петренко FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2378682C2 (en) * 2007-12-17 2010-01-10 Лев Петрович Петренко INPUT STRUCTURE FOR PARALLEL ADDER IN POSITION-SIGN CODES f(+/-)(VERSIONS)
RU2386162C2 (en) * 2008-04-29 2010-04-10 Лев Петрович Петренко FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
УЭЙКЕРЛИ Дж. Проектирование цифровых устройств. - М.: Постмаркет, 2002, т.1, с. 508, рис. 5.91. *

Similar Documents

Publication Publication Date Title
RU2429522C1 (en) FUNCTIONAL STRUCTURE OF ADDER fi(Σ) OF ARBITRARY "i" BIT FOR LOGIC-DYNAMIC PROCESS OF SUMMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) and [mi]f(2n) USING ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC)
RU2443052C1 (en) FUNCTIONAL STRUCTURE OF A TRANSFORMER OF POSITIONAL SYMBOLIC STRUCTURE OF ANALOG SIGNALS ARGUMENTS «±»[ni]f(-1\+1,0,…+1) "ADDITIONAL CODE" INTO FUNCTIONAL STRUCTURE OF CONDITIONALLY NEGATIVE ANALOG SINGALS ARGUMENTS «-»[ni]f(2n) USING ARITHMETICAL ACSIOMS OF TERNARY NOTATION f(+1,0,-1) (VARIANTS)
RU2386162C2 (en) FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS)
RU2443008C1 (en) FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT
RU2378684C1 (en) FUNCTIONAL INPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER OF POSITION-SIGN SYSTEM f(+/-) FORMAT
RU2422881C1 (en) FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS)
RU2439658C1 (en) FUNCTIONAL STRUCTURE OF PREVIOUS SUMMATOR fΣ([ni]&[ni,0]), CONDITIONALLY "i AND "i+1" DIGITS OF "k" GROUP OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) FOR POSITIONAL ARGUMENTS OF MULTIPLICAND [ni]f(2n) WITH APPLICATION OF ARITHMETICAL AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC)
Borodin An example of nonexistence of a Steiner point in a Banach space
RU2450325C2 (en) FUNCTIONAL STRUCTURE FOR LOGIC-DYNAMIC PROCESS OF SERIAL END-TO-END ACTIVATION OF INACTIVE ARGUMENTS "0" OF SECOND INTERMEDIATE SUM +[S2 i]f(&) -AND IN ADDER f(Σ) WITH TRANSFORMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) AND [mi]f(2n) (VERSIONS)
RU2422880C1 (en) FUNCTIONAL STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICANT [mj]f(2n) AND MULTIPLIER [ni]f(2n) WITH MINIMISED PROCEDURE OF FORMING FIRST LEVEL INTERMEDIATE SUMS f1..k[Sj+2] OF PARTIAL PRODUCTS, WHERE k IS NUMBER OF FIRST LEVEL INTERMEDIAT SUMS (VERSIONS)
RU2424549C1 (en) FUNCTIONAL STRUCTURE OF PRE-ADDER fΣ([mj]&[mj,0]) OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) WITH PROCEDURE FOR LOGIC DIFFERENTIATION d/dn OF FIRST INTERMEDIATE SUM [S1 Σ]f(})- OR STRUCTURE OF ACTIVE ARGUMENTS OF MULTIPLICAND [0,mj]f(2n) and [mj,0]f(2n) (VERSIONS)
RU2422879C1 (en) FUNCTIONAL STRUCTURE FOR PRE-ADDER OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) WITH MULTIPLICAND ARGUMENTS [mj]f(2n) AND MULTIPLIER ARGUMENTS [ni]f(2n) IN POSITION FORMAT (VERSIONS)
RU2450326C2 (en) FUNCTIONAL STRUCTURE FOR LOGIC-DYNAMIC PROCESS OF PARALLEL-SERIAL END-TO-END ACTIVATION OF fi(←«+1/-1»)k INACTIVE ARGUMENTS "0" OF SECOND INTERMEDIATE SUM [S2 i]f(2n) IN PROCEDURE FOR SUMMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) AND [mi]f(2n) (VERSIONS)
RU2480817C1 (en) FUNCTIONAL STRUCTURE OF ADDER f2(ΣCD) OF CONDITIONAL "k" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF INPUT STRUCTURES OF ARGUMENTS OF TERMS [1,2Sj h1]f(2n) AND [1,2Sj h2]f(2n) OF "COMPLEMENTARY CODE RU" POSITIONAL FORMAT BY APPLYING ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn OF ARGUMENTS IN COMBINED STRUCTURE THEREOF (VERSIONS OF RUSSIAN LOGIC)
RU2445680C1 (en) FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS)
RU2586565C2 (en) FUNCTIONAL STRUCTURE OF PRE-ADDER f1(ΣCD) OF CONDITIONAL "j" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF PARTIAL PRODUCTS WITH STRUCTURES OF ARGUMENTS OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) IN POSITION FORMAT OF "ADDITIONAL CODE" AND FORMATION OF INTERMEDIATE SUM [1,2Sjh1]f(2n) IN POSITION FORMAT OF "ADDITIONAL CODE RU" (RUSSIAN LOGIC VERSIONS)
RU2429564C1 (en) FUNCTIONAL STRUCTURE OF PROCEDURE OF CONVERTING POSITION CONDITIONALLY NEGATIVE ARGUMENTS «-»[ni]f(2n) INTO STRUCTURE OF ARGUMENTS "COMPLEMENTARY CODE" OF POSITION-SIGN FORMAT USING ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS)
RU2424550C1 (en) FUNCTIONAL STRUCTURE OF SERIAL RIPPLE CARRIES fj+1(←←)+ and fj(←←)+ OF CONDITIONAL "I" FORMATION ZONE FOR CORRECTING RESULTANT SUM OF PRESUMMATION OF ACTIVE ARGUMENTS OF MULTIPLICANT [mj]f(2n) OF POSITIONAL FORMAT IN PARALLEL-SERIAL MULTIPLIER fΣ(Σ) (VERSIONS)
Ibrahim et al. Power series inequalities related to Young's inequality and applications
RU2439660C2 (en) FUNCTIONAL STRUCTURE OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n)
RU2517245C9 (en) f3 ADDER FUNCTIONAL STRUCTURE (ΣCD) OF ARBITRARY "g" DIGIT IMPLEMENTING DECODING PROCEDURE FOR ARGUMENTS OF SUMMANDS [1,2Sg h1]f(2n) AND [1,2Sg h2]f(2n) OF POSITION FORMAT "EXTRA CODE RU" BY ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1,0,-1) AND DOUBLE LOGICAL DIFFERENTIATION d1,2/dn → f1,2(+←↓-)d/dn OF ACTIVE ARGUMENTS OF "LEVEL 2" AND REMOVAL OF ACTIVE LOGICAL ZEROES "+1""-1"→"0" IN "LEVEL 1" (VERSIONS OF RUSSIAN LOGIC)
RU2480814C1 (en) FUNCTIONAL OUTPUT STRUCTURE OF CONDITIONAL BIT "j" OF ADDER fCD(Σ)RU WITH MAXIMALLY MINIMISED PROCESS CYCLE ∆tΣ FOR ARGUMENTS OF TERMS OF INTERMEDIATE ARGUMENTS (2Sj)2 d1/dn "LEVEL 2" AND (1Sj)2 d1/dn "LEVEL 1" OF SECOND TERM AND INTERMEDIATE ARGUMENTS (2Sj)1 d1/dn "LEVEL 2" AND (1Sj)1 d1/dn "LEVEL 1" OF FIRST TERM OF "COMPLENTARY CODE RU" FORMAT WITH GENERATION OF RESULTANT ARGUMENTS OF SUM (2Sj)f(2n) "LEVEL 2" AND (1Sj)f(2n) "LEVEL 1" IN SAME FORMAT (VERSIONS OF RUSSIAN LOGIC)
RU2437142C2 (en) METHOD OF PARALLEL-SERIAL MULTIPLICATION OF POSITIONAL ARGUMENTS OF ANALOGUE SIGNALS OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n)
RU2427028C2 (en) FUNCTIONAL INPUT STRUCTURE WITH LOGIC DIFFERENTIATION PROCEDURE d/dn OF FIRST INTERMEDIATE SUM OF MINIMISED ARGUMENTS OF TERMS ±[ni]f(+/-)min AND ±[mi]f(+/-)min (VERSIONS OF RUSSIAN LOGIC)
RU2439659C1 (en) METHOD OF LOGIC-DYNAMIC PROCESS OF SUMMATION OF POSITIONAL ARGUMENTS OF ANALOGUE SIGNALS [ni]f(2n) AND [mi]f(2n) WITH APPLICATION OF ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND GENERATION OF RESULTING SUM OF ANALOGUE SIGNALS [Sj]f(2n) IN POSITIONAL FORMAT (RUSSIAN LOGIC)