RU2443008C1 - FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT - Google Patents
FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT Download PDFInfo
- Publication number
- RU2443008C1 RU2443008C1 RU2010130857/08A RU2010130857A RU2443008C1 RU 2443008 C1 RU2443008 C1 RU 2443008C1 RU 2010130857/08 A RU2010130857/08 A RU 2010130857/08A RU 2010130857 A RU2010130857 A RU 2010130857A RU 2443008 C1 RU2443008 C1 RU 2443008C1
- Authority
- RU
- Russia
- Prior art keywords
- positional
- functional
- logical function
- sum
- preliminary
- Prior art date
Links
- 239000000654 additive Substances 0.000 title 1
- 230000000996 additive effect Effects 0.000 title 1
- 230000015572 biosynthetic process Effects 0.000 title 1
- 238000013178 mathematical model Methods 0.000 claims 2
- 238000010276 construction Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
Landscapes
- Error Detection And Correction (AREA)
- Complex Calculations (AREA)
Abstract
FIELD: computational engineering.
SUBSTANCE: construction arithmetic of devices and introduction of different arithmetic procedures on arguments with positional symbolic structure of analog signals arguments [ni]f(2n) and [mi]f(2n) using arithmetical axioms of ternary notation f(+1, 0, -1).
EFFECT: increased the summing-up speed as the variants of the structure are realized using logical elements NOT, AND, OR, AND -NOT, OR-NOT.
1 dwg
Description
Claims (2)
где «= & 1=» - логическая функция f1( & )-НЕ;
- логическая функция f1(&)-И; - логическая функция f1(})-ИЛИ;
- логическая функция f1(&)-И-НЕ; - логическая функция f1(}&)-ИЛИ-НЕ.1. The functional structure of the preliminary adder f Σ [n i ] & [m i ] (2 n ) of a parallel-series multiplier f Σ (Σ) of conditionally “i” category for summing the positional arguments of the terms [n i ] f (2 n ) and [m i ] f (2 n ) partial products using arithmetic axioms of the ternary number system f (+ 1,0, -1) and generating the resulting sum [S Σ ] f (2 n ) in a positional format that includes the logical functions f 1 (}) - OR, f 2 (}) - OR, f 3 (}) - OR, f 4 (}) - OR, f 5 (}) - OR, f 1 (} & ) - OR NOT, f 1 (&) - And, f 2 (&) - And, f 3 (&) - And, f 4 (&) - And, f 1 ( & ) -НЕ and the logical function f 1 ( & ) -И- NOT functional input connection which are functional input structure constraints for receiving arguments n i and m i, wherein the functional input connection logic function f 2 (k) - and a functional output coupled logic function f 1 (}) - OR, and functional input connection logic the functions f 3 (&) - AND are the functional output connections, respectively, of the logical function f 3 (}) - OR, f 4 (}) - OR, characterized in that additional logical functions f 2 ( & ) -НЕ, f 2 ( &) -and NOR f 3 (k) -and NOR f 4 (k) -and-NO 5 and f (k) -and-NO, wherein the functional linkages in trukture pre-adder are executed in accordance with the mathematical model of the form
where "= & 1 =" is the logical function f 1 ( & ) -НЕ;
- logical function f 1 (&) - And; - logical function f 1 (}) - OR;
- logical function f 1 ( & ) -AND-NOT; - logical function f 1 (} & ) -OR-NOT.
2. The functional structure of the preliminary adder f Σ [n i ] & [m i ] (2 n ) of a parallel-series multiplier f Σ (Σ) of conditionally “i” category for summing the positional arguments of the terms [n i ] f (2 n ) and [m i ] f (2 n ) partial products using arithmetic axioms of the ternary number system f (+ 1,0, -1) and generating the resulting sum [S Σ ] f (2 n ) in a positional format that includes the logical functions f 1 (}) - OR, f 2 (}) - OR, f 3 (}) - OR, f 1 (} & ) - OR NOT, f 1 (&) - AND, f 2 (&) - AND, f 3 (&) - AND, f 4 (&) - AND, f 1 ( & ) -НЕ and the logical function f 1 ( & ) -AND-NOT, the functional input connections to which are the functional input relationships of the structure for receiving the arguments n i and m i , while the functional input link of the logical function f 2 (&) - AND is the functional output link of the logical function f 1 (}) - OR, characterized in that additional logical functions f 2 ( & ) -НЕ, f 2 ( & ) -AND-NOT, f 3 ( & ) -AND NOT, f 4 ( & ) -AND NOT, f 5 ( & ) -AND NOT, f 6 ( & ) -I-NOT and f 7 ( & ) -I-NOT, while the functional relationships in the structure of the preliminary adder are made in accordance with a mathematical model of the form
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2010130857/08A RU2443008C1 (en) | 2010-07-22 | 2010-07-22 | FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2010130857/08A RU2443008C1 (en) | 2010-07-22 | 2010-07-22 | FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| RU2443008C1 true RU2443008C1 (en) | 2012-02-20 |
Family
ID=45854692
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| RU2010130857/08A RU2443008C1 (en) | 2010-07-22 | 2010-07-22 | FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT |
Country Status (1)
| Country | Link |
|---|---|
| RU (1) | RU2443008C1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2378682C2 (en) * | 2007-12-17 | 2010-01-10 | Лев Петрович Петренко | INPUT STRUCTURE FOR PARALLEL ADDER IN POSITION-SIGN CODES f(+/-)(VERSIONS) |
| RU2386162C2 (en) * | 2008-04-29 | 2010-04-10 | Лев Петрович Петренко | FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS) |
-
2010
- 2010-07-22 RU RU2010130857/08A patent/RU2443008C1/en active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2378682C2 (en) * | 2007-12-17 | 2010-01-10 | Лев Петрович Петренко | INPUT STRUCTURE FOR PARALLEL ADDER IN POSITION-SIGN CODES f(+/-)(VERSIONS) |
| RU2386162C2 (en) * | 2008-04-29 | 2010-04-10 | Лев Петрович Петренко | FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS) |
Non-Patent Citations (1)
| Title |
|---|
| УЭЙКЕРЛИ Дж. Проектирование цифровых устройств. - М.: Постмаркет, 2002, т.1, с. 508, рис. 5.91. * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2429522C1 (en) | FUNCTIONAL STRUCTURE OF ADDER fi(Σ) OF ARBITRARY "i" BIT FOR LOGIC-DYNAMIC PROCESS OF SUMMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) and [mi]f(2n) USING ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC) | |
| RU2443052C1 (en) | FUNCTIONAL STRUCTURE OF A TRANSFORMER OF POSITIONAL SYMBOLIC STRUCTURE OF ANALOG SIGNALS ARGUMENTS «±»[ni]f(-1\+1,0,…+1) "ADDITIONAL CODE" INTO FUNCTIONAL STRUCTURE OF CONDITIONALLY NEGATIVE ANALOG SINGALS ARGUMENTS «-»[ni]f(2n) USING ARITHMETICAL ACSIOMS OF TERNARY NOTATION f(+1,0,-1) (VARIANTS) | |
| RU2386162C2 (en) | FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS) | |
| RU2443008C1 (en) | FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT | |
| RU2378684C1 (en) | FUNCTIONAL INPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER OF POSITION-SIGN SYSTEM f(+/-) FORMAT | |
| RU2422881C1 (en) | FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS) | |
| RU2439658C1 (en) | FUNCTIONAL STRUCTURE OF PREVIOUS SUMMATOR fΣ([ni]&[ni,0]), CONDITIONALLY "i AND "i+1" DIGITS OF "k" GROUP OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) FOR POSITIONAL ARGUMENTS OF MULTIPLICAND [ni]f(2n) WITH APPLICATION OF ARITHMETICAL AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC) | |
| Borodin | An example of nonexistence of a Steiner point in a Banach space | |
| RU2450325C2 (en) | FUNCTIONAL STRUCTURE FOR LOGIC-DYNAMIC PROCESS OF SERIAL END-TO-END ACTIVATION OF INACTIVE ARGUMENTS "0" OF SECOND INTERMEDIATE SUM +[S2 i]f(&) -AND IN ADDER f(Σ) WITH TRANSFORMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) AND [mi]f(2n) (VERSIONS) | |
| RU2422880C1 (en) | FUNCTIONAL STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICANT [mj]f(2n) AND MULTIPLIER [ni]f(2n) WITH MINIMISED PROCEDURE OF FORMING FIRST LEVEL INTERMEDIATE SUMS f1..k[Sj+2] OF PARTIAL PRODUCTS, WHERE k IS NUMBER OF FIRST LEVEL INTERMEDIAT SUMS (VERSIONS) | |
| RU2424549C1 (en) | FUNCTIONAL STRUCTURE OF PRE-ADDER fΣ([mj]&[mj,0]) OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) WITH PROCEDURE FOR LOGIC DIFFERENTIATION d/dn OF FIRST INTERMEDIATE SUM [S1 Σ]f(})- OR STRUCTURE OF ACTIVE ARGUMENTS OF MULTIPLICAND [0,mj]f(2n) and [mj,0]f(2n) (VERSIONS) | |
| RU2422879C1 (en) | FUNCTIONAL STRUCTURE FOR PRE-ADDER OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) WITH MULTIPLICAND ARGUMENTS [mj]f(2n) AND MULTIPLIER ARGUMENTS [ni]f(2n) IN POSITION FORMAT (VERSIONS) | |
| RU2450326C2 (en) | FUNCTIONAL STRUCTURE FOR LOGIC-DYNAMIC PROCESS OF PARALLEL-SERIAL END-TO-END ACTIVATION OF fi(←«+1/-1»)k INACTIVE ARGUMENTS "0" OF SECOND INTERMEDIATE SUM [S2 i]f(2n) IN PROCEDURE FOR SUMMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) AND [mi]f(2n) (VERSIONS) | |
| RU2480817C1 (en) | FUNCTIONAL STRUCTURE OF ADDER f2(ΣCD) OF CONDITIONAL "k" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF INPUT STRUCTURES OF ARGUMENTS OF TERMS [1,2Sj h1]f(2n) AND [1,2Sj h2]f(2n) OF "COMPLEMENTARY CODE RU" POSITIONAL FORMAT BY APPLYING ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn OF ARGUMENTS IN COMBINED STRUCTURE THEREOF (VERSIONS OF RUSSIAN LOGIC) | |
| RU2445680C1 (en) | FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS) | |
| RU2586565C2 (en) | FUNCTIONAL STRUCTURE OF PRE-ADDER f1(ΣCD) OF CONDITIONAL "j" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF PARTIAL PRODUCTS WITH STRUCTURES OF ARGUMENTS OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) IN POSITION FORMAT OF "ADDITIONAL CODE" AND FORMATION OF INTERMEDIATE SUM [1,2Sjh1]f(2n) IN POSITION FORMAT OF "ADDITIONAL CODE RU" (RUSSIAN LOGIC VERSIONS) | |
| RU2429564C1 (en) | FUNCTIONAL STRUCTURE OF PROCEDURE OF CONVERTING POSITION CONDITIONALLY NEGATIVE ARGUMENTS «-»[ni]f(2n) INTO STRUCTURE OF ARGUMENTS "COMPLEMENTARY CODE" OF POSITION-SIGN FORMAT USING ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS) | |
| RU2424550C1 (en) | FUNCTIONAL STRUCTURE OF SERIAL RIPPLE CARRIES fj+1(←←)+ and fj(←←)+ OF CONDITIONAL "I" FORMATION ZONE FOR CORRECTING RESULTANT SUM OF PRESUMMATION OF ACTIVE ARGUMENTS OF MULTIPLICANT [mj]f(2n) OF POSITIONAL FORMAT IN PARALLEL-SERIAL MULTIPLIER fΣ(Σ) (VERSIONS) | |
| Ibrahim et al. | Power series inequalities related to Young's inequality and applications | |
| RU2439660C2 (en) | FUNCTIONAL STRUCTURE OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) | |
| RU2517245C9 (en) | f3 ADDER FUNCTIONAL STRUCTURE (ΣCD) OF ARBITRARY "g" DIGIT IMPLEMENTING DECODING PROCEDURE FOR ARGUMENTS OF SUMMANDS [1,2Sg h1]f(2n) AND [1,2Sg h2]f(2n) OF POSITION FORMAT "EXTRA CODE RU" BY ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1,0,-1) AND DOUBLE LOGICAL DIFFERENTIATION d1,2/dn → f1,2(+←↓-)d/dn OF ACTIVE ARGUMENTS OF "LEVEL 2" AND REMOVAL OF ACTIVE LOGICAL ZEROES "+1""-1"→"0" IN "LEVEL 1" (VERSIONS OF RUSSIAN LOGIC) | |
| RU2480814C1 (en) | FUNCTIONAL OUTPUT STRUCTURE OF CONDITIONAL BIT "j" OF ADDER fCD(Σ)RU WITH MAXIMALLY MINIMISED PROCESS CYCLE ∆tΣ FOR ARGUMENTS OF TERMS OF INTERMEDIATE ARGUMENTS (2Sj)2 d1/dn "LEVEL 2" AND (1Sj)2 d1/dn "LEVEL 1" OF SECOND TERM AND INTERMEDIATE ARGUMENTS (2Sj)1 d1/dn "LEVEL 2" AND (1Sj)1 d1/dn "LEVEL 1" OF FIRST TERM OF "COMPLENTARY CODE RU" FORMAT WITH GENERATION OF RESULTANT ARGUMENTS OF SUM (2Sj)f(2n) "LEVEL 2" AND (1Sj)f(2n) "LEVEL 1" IN SAME FORMAT (VERSIONS OF RUSSIAN LOGIC) | |
| RU2437142C2 (en) | METHOD OF PARALLEL-SERIAL MULTIPLICATION OF POSITIONAL ARGUMENTS OF ANALOGUE SIGNALS OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) | |
| RU2427028C2 (en) | FUNCTIONAL INPUT STRUCTURE WITH LOGIC DIFFERENTIATION PROCEDURE d/dn OF FIRST INTERMEDIATE SUM OF MINIMISED ARGUMENTS OF TERMS ±[ni]f(+/-)min AND ±[mi]f(+/-)min (VERSIONS OF RUSSIAN LOGIC) | |
| RU2439659C1 (en) | METHOD OF LOGIC-DYNAMIC PROCESS OF SUMMATION OF POSITIONAL ARGUMENTS OF ANALOGUE SIGNALS [ni]f(2n) AND [mi]f(2n) WITH APPLICATION OF ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND GENERATION OF RESULTING SUM OF ANALOGUE SIGNALS [Sj]f(2n) IN POSITIONAL FORMAT (RUSSIAN LOGIC) |