[go: up one dir, main page]

JP7589391B2 - Information processing device, determination method, and determination program - Google Patents

Information processing device, determination method, and determination program Download PDF

Info

Publication number
JP7589391B2
JP7589391B2 JP2024507113A JP2024507113A JP7589391B2 JP 7589391 B2 JP7589391 B2 JP 7589391B2 JP 2024507113 A JP2024507113 A JP 2024507113A JP 2024507113 A JP2024507113 A JP 2024507113A JP 7589391 B2 JP7589391 B2 JP 7589391B2
Authority
JP
Japan
Prior art keywords
policy
user
budget
unit
information indicating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024507113A
Other languages
Japanese (ja)
Other versions
JPWO2024042627A5 (en
JPWO2024042627A1 (en
Inventor
大心 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2024042627A1 publication Critical patent/JPWO2024042627A1/ja
Publication of JPWO2024042627A5 publication Critical patent/JPWO2024042627A5/ja
Application granted granted Critical
Publication of JP7589391B2 publication Critical patent/JP7589391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0207Discounts or incentives, e.g. coupons or rebates

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Finance (AREA)
  • Marketing (AREA)
  • Accounting & Taxation (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Human Resources & Organizations (AREA)
  • Educational Administration (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本開示は、情報処理装置、決定方法、及び決定プログラムに関する。 The present disclosure relates to an information processing device, a decision method, and a decision program.

収益を向上させるための施策が行われている。例えば、クーポンが、ユーザに提供される。そして、ユーザは、店舗に来店し、クーポンを使いながら多くの品物を購入する。これにより、収益が向上する。しかし、来店予定のユーザにクーポンが提供された場合、単なる値下げになり、施策の効果が低い。そこで、ユーザにインセンティブを付与する技術が提案されている(特許文献1を参照)。特許文献1の情報処理装置は、複数のユーザの行動履歴及び素性情報に基づいて、ユーザにインセンティブを付与する。 Measures are being taken to increase revenue. For example, coupons are provided to users. The users then visit a store and purchase many items using the coupons. This increases revenue. However, if a coupon is provided to a user who is planning to visit the store, it simply results in a price reduction, and the effect of the measure is low. Therefore, a technology has been proposed for granting incentives to users (see Patent Document 1). The information processing device of Patent Document 1 grants incentives to users based on the behavioral history and background information of multiple users.

特許6899350号公報Patent No. 6899350

ところで、施策によっては、不平等が生じる場合がある。施策の不平等は、サービスに対する不信感を与えると考えられる。However, inequality may arise depending on the policy. Inequality in policies is thought to lead to distrust in the services.

本開示の目的は、施策の不平等を解消することである。 The purpose of this disclosure is to eliminate inequalities in policies.

本開示の一態様に係る情報処理装置が提供される。情報処理装置は、学習済モデル、ユーザ毎の行動特徴を示す行動特徴情報、前記ユーザ毎の属性を示す属性情報、前記各ユーザに対して行うクーポンの提供又はノベルティの提供の施策の候補を示す施策候補情報、施策の不平等を緩和するための値である施策スコア、及び予算を示す予算情報を取得する取得部と、前記行動特徴情報、前記属性情報、及び前記施策候補情報に基づいて、データを生成する生成部と、生成された前記データと前記学習済モデルとに基づいて、施策を行ったときの売上又は来店増加回数を予測する予測部と、前記予測の結果である予測結果と前記施策スコアとを用いて、前記予算内で最適化計算を行い、前記ユーザ毎の施策を決定する決定部と、を有する。 An information processing device according to an aspect of the present disclosure is provided. The information processing device includes an acquisition unit that acquires a trained model, behavioral feature information indicating behavioral features of each user, attribute information indicating attributes of each user, policy candidate information indicating candidates for policies such as providing coupons or novelties to each user , a policy score that is a value for alleviating inequality in policies, and budget information indicating a budget, a generation unit that generates data based on the behavioral feature information, the attribute information, and the policy candidate information, a prediction unit that predicts sales or an increase in the number of store visits when a policy is implemented based on the generated data and the trained model, and a determination unit that performs optimization calculation within the budget using the prediction result that is a result of the prediction and the policy score to determine a policy for each user.

本開示によれば、施策の不平等を解消することができる。 This disclosure will help eliminate inequalities in policies.

通信システムを示す図である。FIG. 1 illustrates a communication system. 情報処理装置が有するハードウェアを示す図である。FIG. 2 is a diagram illustrating hardware included in an information processing device. 情報処理装置の機能を示すブロック図である。FIG. 2 is a block diagram showing functions of the information processing device. 行動履歴テーブルの例を示す図である。FIG. 13 is a diagram illustrating an example of a behavior history table. 行動特徴テーブルの例を示す図である。FIG. 13 is a diagram illustrating an example of a behavioral characteristic table. 属性テーブルの例を示す図である。FIG. 13 is a diagram illustrating an example of an attribute table. 施策結果テーブルの例を示す図である。FIG. 13 is a diagram illustrating an example of a policy result table. 学習データの例を示す図である。FIG. 11 is a diagram illustrating an example of learning data. 学習部が実行する処理の例を示すフローチャートである。13 is a flowchart illustrating an example of a process executed by a learning unit. 施策候補テーブルの例を示す図である。FIG. 13 is a diagram illustrating an example of a policy candidate table. 生成されるデータの例を示す図である。FIG. 11 is a diagram illustrating an example of generated data. 予測結果の例を示す図である。FIG. 13 is a diagram illustrating an example of a prediction result. (A),(B)は、施策スコアの算出方法の例を示す図(その1)である。13A and 13B are diagrams (part 1) showing an example of a method for calculating a policy score. 施策スコアの算出方法の例を示す図(その2)である。FIG. 2 is a diagram (part 2) showing an example of a method for calculating a policy score. 決定部が実行する処理の具体例を示す図である。FIG. 11 is a diagram illustrating a specific example of a process executed by a determination unit. ユーザ毎の施策の例を示す図である。FIG. 13 is a diagram showing an example of a measure for each user. 情報処理装置が実行する処理の例を示すフローチャートである。11 is a flowchart illustrating an example of a process executed by an information processing device.

以下、図面を参照しながら実施の形態を説明する。以下の実施の形態は、例にすぎず、本開示の範囲内で種々の変更が可能である。 The following describes an embodiment with reference to the drawings. The following embodiment is merely an example, and various modifications are possible within the scope of this disclosure.

実施の形態.
図1は、通信システムを示す図である。通信システムは、情報処理装置100と端末装置200とを含む。情報処理装置100と端末装置200とは、ネットワークを介して、通信する。
情報処理装置100は、決定方法を実行する装置である。例えば、情報処理装置100は、サーバである。また、情報処理装置100は、パーソナルコンピュータ、スマートフォン、タブレット端末などでもよい。
端末装置200は、ユーザが使用する装置である。例えば、端末装置200は、スマートフォン、タブレット端末などである。図1には、1つの端末装置が描かれている。端末装置の数は、2つ以上でもよい。
Embodiment
1 is a diagram showing a communication system. The communication system includes an information processing device 100 and a terminal device 200. The information processing device 100 and the terminal device 200 communicate with each other via a network.
The information processing device 100 is a device that executes the determination method. For example, the information processing device 100 is a server. The information processing device 100 may also be a personal computer, a smartphone, a tablet terminal, or the like.
The terminal device 200 is a device used by a user. For example, the terminal device 200 is a smartphone, a tablet terminal, etc. One terminal device is illustrated in Fig. 1. The number of terminal devices may be two or more.

次に、情報処理装置100が有するハードウェアを説明する。
図2は、情報処理装置が有するハードウェアを示す図である。情報処理装置100は、プロセッサ101、揮発性記憶装置102、不揮発性記憶装置103、及び通信インタフェース104を有する。
Next, the hardware of the information processing device 100 will be described.
2 is a diagram showing hardware included in the information processing apparatus 100. The information processing apparatus 100 includes a processor 101, a volatile storage device 102, a non-volatile storage device 103, and a communication interface 104.

プロセッサ101は、情報処理装置100全体を制御する。例えば、プロセッサ101は、CPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)などである。プロセッサ101は、マルチプロセッサでもよい。また、情報処理装置100は、処理回路を有してもよい。さらに、情報処理装置100は、マイクロコンピュータ、又はSoC(System on Chip)を有してもよい。The processor 101 controls the entire information processing device 100. For example, the processor 101 is a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), etc. The processor 101 may be a multiprocessor. The information processing device 100 may also have a processing circuit. Furthermore, the information processing device 100 may have a microcomputer or a SoC (System on Chip).

揮発性記憶装置102は、情報処理装置100の主記憶装置である。例えば、揮発性記憶装置102は、RAM(Random Access Memory)である。不揮発性記憶装置103は、情報処理装置100の補助記憶装置である。例えば、不揮発性記憶装置103は、ROM(Read Only Memory)、HDD(Hard Disk Drive)、又はSSD(Solid State Drive)である。
通信インタフェース104は、端末装置200と通信する。
The volatile storage device 102 is a main storage device of the information processing device 100. For example, the volatile storage device 102 is a random access memory (RAM). The non-volatile storage device 103 is an auxiliary storage device of the information processing device 100. For example, the non-volatile storage device 103 is a read only memory (ROM), a hard disk drive (HDD), or a solid state drive (SSD).
The communication interface 104 communicates with the terminal device 200 .

次に、情報処理装置100が有する機能を説明する。
図3は、情報処理装置の機能を示すブロック図である。情報処理装置100は、記憶部110、学習部120、取得部130、生成部140、予測部150、決定部160、及び出力部170を有する。
Next, functions of the information processing device 100 will be described.
3 is a block diagram showing the functions of the information processing device 100. The information processing device 100 includes a storage unit 110, a learning unit 120, an acquisition unit 130, a generation unit 140, a prediction unit 150, a determination unit 160, and an output unit 170.

記憶部110は、揮発性記憶装置102又は不揮発性記憶装置103に確保した記憶領域として実現してもよい。
学習部120、取得部130、生成部140、予測部150、決定部160、及び出力部170の一部又は全部は、処理回路によって実現してもよい。また、学習部120、取得部130、生成部140、予測部150、決定部160、及び出力部170の一部又は全部は、プロセッサ101が実行するプログラムのモジュールとして実現してもよい。例えば、プロセッサ101が実行するプログラムは、決定プログラムとも言う。例えば、決定プログラムは、記録媒体に記録されている。
The storage unit 110 may be realized as a storage area secured in the volatile storage device 102 or the non-volatile storage device 103 .
A part or all of the learning unit 120, the acquisition unit 130, the generation unit 140, the prediction unit 150, the determination unit 160, and the output unit 170 may be realized by a processing circuit. Also, a part or all of the learning unit 120, the acquisition unit 130, the generation unit 140, the prediction unit 150, the determination unit 160, and the output unit 170 may be realized as a module of a program executed by the processor 101. For example, the program executed by the processor 101 is also referred to as a determination program. For example, the determination program is recorded on a recording medium.

記憶部110は、行動履歴テーブル111、行動特徴テーブル112、属性テーブル113、施策結果テーブル114、学習済モデル115、及び施策候補テーブル116を記憶してもよい。行動履歴テーブル111、行動特徴テーブル112、属性テーブル113、施策結果テーブル114、学習済モデル115、及び施策候補テーブル116については、後で説明する。The memory unit 110 may store a behavior history table 111, a behavior feature table 112, an attribute table 113, a policy result table 114, a trained model 115, and a policy candidate table 116. The behavior history table 111, the behavior feature table 112, the attribute table 113, the policy result table 114, the trained model 115, and the policy candidate table 116 will be described later.

<学習フェーズ>
学習部120は、学習済モデル115を生成する。学習部120の機能を詳細に説明する。
学習部120は、行動履歴テーブル111を取得する。行動履歴テーブル111を示す。
<Learning Phase>
The learning unit 120 generates the learned model 115. The function of the learning unit 120 will be described in detail.
The learning unit 120 acquires the behavior history table 111. The behavior history table 111 is shown below.

図4は、行動履歴テーブルの例を示す図である。行動履歴テーブル111は、ユーザの行動履歴を示す。行動履歴テーブル111は、ユーザID(identifier)、日時、及び滞在エリアの項目を有する。また、行動履歴テーブル111は、GPS(Global Positioning System)データ、改札入退場履歴を含んでもよい。 Figure 4 is a diagram showing an example of a behavior history table. The behavior history table 111 shows the behavior history of a user. The behavior history table 111 has items such as a user ID (identifier), date and time, and area of stay. The behavior history table 111 may also include GPS (Global Positioning System) data and ticket gate entry and exit history.

学習部120は、行動履歴テーブル111に基づいて、ユーザの行動特徴を抽出する。学習部120は、行動特徴を行動特徴テーブル112に登録する。行動特徴テーブル112を示す。The learning unit 120 extracts behavioral characteristics of the user based on the behavior history table 111. The learning unit 120 registers the behavioral characteristics in the behavioral characteristics table 112. The behavioral characteristics table 112 is shown below.

図5は、行動特徴テーブルの例を示す図である。行動特徴テーブル112は、ユーザ毎の行動特徴を示す。行動特徴テーブル112は、ユーザID、平均来店頻度、及び平均来店時刻の項目を有する。
学習部120は、ユーザがよく利用する施設、よく移動する時間を行動特徴として、抽出してもよい。また、学習部120は、休日及び平日の行動パターンを行動特徴として、抽出してもよい。
5 is a diagram showing an example of a behavioral characteristic table 112. The behavioral characteristic table 112 shows behavioral characteristics for each user. The behavioral characteristic table 112 has fields for user ID, average store visit frequency, and average store visit time.
The learning unit 120 may extract, as the behavioral characteristics, facilities that the user frequently uses and times when the user frequently travels. The learning unit 120 may also extract, as the behavioral characteristics, behavioral patterns on holidays and weekdays.

学習部120は、属性テーブル113を取得する。属性テーブル113を示す。The learning unit 120 acquires the attribute table 113. The attribute table 113 is shown.

図6は、属性テーブルの例を示す図である。属性テーブル113は、ユーザ毎の属性を示す。属性テーブル113は、ユーザID、年齢、性別、住所などの項目を有する。 Figure 6 is a diagram showing an example of an attribute table. The attribute table 113 shows attributes for each user. The attribute table 113 has items such as user ID, age, gender, and address.

学習部120は、施策結果テーブル114を取得する。施策結果テーブル114を示す。The learning unit 120 acquires the policy result table 114. The policy result table 114 is shown below.

図7は、施策結果テーブルの例を示す図である。施策結果テーブル114は、過去に行われた施策の結果を示す。例えば、施策結果テーブル114は、ユーザID“00001”のユーザが100円クーポンをAストアで使い、かつ当該ユーザがAストアに1500円を支払ったことを示す。なお、1500円は、Aストアの売上と表現してもよい。また、施策結果テーブル114は、来店増加回数を含んでもよい。 Figure 7 is a diagram showing an example of a policy result table. The policy result table 114 shows the results of policies implemented in the past. For example, the policy result table 114 shows that a user with user ID "00001" used a 100 yen coupon at Store A, and paid 1,500 yen to Store A. The 1,500 yen may also be expressed as sales for Store A. The policy result table 114 may also include an increase in the number of visits.

学習部120は、行動特徴テーブル112、属性テーブル113、及び施策結果テーブル114に基づいて、学習データを生成する。学習データを示す。The learning unit 120 generates learning data based on the behavioral characteristics table 112, the attribute table 113, and the policy result table 114. The learning data is shown below.

図8は、学習データの例を示す図である。学習データ300は、学習部120に生成されたデータである。
学習部120は、学習データ300を用いて、学習済モデル115を生成する。学習済モデル115の生成では、重回帰分析が用いられてもよい。例えば、学習部120は、式(1)を用いて、重回帰分析を行う。
8 is a diagram showing an example of training data 300. Training data 300 is data generated by the training unit 120.
The learning unit 120 generates the trained model 115 by using the training data 300. A multiple regression analysis may be used in generating the trained model 115. For example, the learning unit 120 performs the multiple regression analysis by using the formula (1).

Figure 0007589391000001
Figure 0007589391000001

なお、yは、目的変数である。行動特徴テーブル112及び属性テーブル113に基づく値は、x1~xiである。施策結果テーブル114に基づく値は、z1~zjである。Tは、施策有無情報である。α1~αi、及びβ1~βjは、補正係数である。γは、定数項である。また、施策効果は、式(2)を用いて算出されてもよい。 Note that y is the objective variable. The values based on the behavioral characteristics table 112 and the attribute table 113 are x1 to xi. The values based on the policy result table 114 are z1 to zj. T is policy presence/absence information. α1 to αi and β1 to βj are correction coefficients. γ is a constant term. The policy effect may also be calculated using equation (2).

Figure 0007589391000002
Figure 0007589391000002

なお、施策ありの場合とは、Tに“1”が入力された場合である。施策なしの場合とは、Tに“0”が入力された場合である。 Note that a policy is in place when "1" is entered into T. A policy is not in place when "0" is entered into T.

また、学習済モデル115の生成では、公知の方法が用いられてもよい。例えば、学習済モデル115の生成では、サポートベクターマシン(SVM)、勾配ブースティング決定木(GBDT)、S-Leaner、T-LeanerなどのMeta-Learner手法、Causal Tree、Causal ForestなどのCausal Tree手法などが用いられてもよい。 A known method may be used to generate the trained model 115. For example, a meta-learner method such as a support vector machine (SVM), a gradient boosting decision tree (GBDT), S-Leaner, or T-Leaner, or a causal tree method such as a causal tree or causal forest may be used to generate the trained model 115.

このように、学習済モデル115は、生成される。学習済モデル115は、売上又は来店増加回数を予測するモデルである。学習部120は、記憶部110又は情報処理装置100に接続可能な外部装置に、学習済モデル115を格納する。なお、当該外部装置の図は、省略されている。In this manner, the trained model 115 is generated. The trained model 115 is a model that predicts an increase in sales or number of visits to the store. The learning unit 120 stores the trained model 115 in an external device that can be connected to the memory unit 110 or the information processing device 100. Note that a diagram of the external device is omitted.

次に、学習部120が実行する処理を、フローチャートを用いて説明する。
図9は、学習部が実行する処理の例を示すフローチャートである。
(ステップS11)学習部120は、行動履歴テーブル111に基づいて、ユーザの行動特徴を抽出する。
(ステップS12)学習部120は、行動特徴テーブル112、属性テーブル113、及び施策結果テーブル114を記憶部110から取得する。
(ステップS13)学習部120は、行動特徴テーブル112、属性テーブル113、及び施策結果テーブル114に基づいて、学習データを生成する。
(ステップS14)学習部120は、学習データを用いて、学習済モデル115を生成する。
(ステップS15)学習部120は、学習済モデル115を記憶部110に格納する。
Next, the process executed by the learning unit 120 will be described with reference to a flowchart.
FIG. 9 is a flowchart illustrating an example of a process executed by the learning unit.
(Step S<b>11 ) The learning unit 120 extracts behavioral features of the user based on the behavior history table 111 .
(Step S<b>12 ) The learning unit 120 acquires the behavioral features table 112 , the attribute table 113 , and the policy result table 114 from the storage unit 110 .
(Step S13) The learning unit 120 generates learning data based on the behavioral features table 112, the attribute table 113, and the policy result table 114.
(Step S14) The learning unit 120 generates a trained model 115 using the training data.
(Step S15) The learning unit 120 stores the learned model 115 in the memory unit 110.

上記の説明では、情報処理装置100が学習済モデル115を生成する場合を説明した。学習済モデル115は、情報処理装置100以外の学習装置が生成してもよい。In the above explanation, the case where the information processing device 100 generates the trained model 115 has been described. The trained model 115 may be generated by a learning device other than the information processing device 100.

<活用フェーズ>
図3に戻って、取得部130などの機能を説明する。
取得部130は、学習済モデル115を取得する。例えば、取得部130は、記憶部110又は外部装置から学習済モデル115を取得する。
<Utilization phase>
Returning to FIG. 3, the functions of the acquisition unit 130 and the like will be described.
The acquisition unit 130 acquires the trained model 115. For example, the acquisition unit 130 acquires the trained model 115 from the storage unit 110 or an external device.

取得部130は、行動特徴テーブル112及び属性テーブル113を取得する。例えば、取得部130は、行動特徴テーブル112及び属性テーブル113を記憶部110又は外部装置から取得する。ここで、行動特徴テーブル112は、行動特徴情報とも言う。属性テーブル113は、属性情報とも言う。
また、取得部130は、施策候補テーブル116を取得する。例えば、取得部130は、施策候補テーブル116を記憶部110又は外部装置から取得する。施策候補テーブル116を示す。
The acquiring unit 130 acquires the behavior characteristic table 112 and the attribute table 113. For example, the acquiring unit 130 acquires the behavior characteristic table 112 and the attribute table 113 from the storage unit 110 or an external device. Here, the behavior characteristic table 112 is also referred to as behavior characteristic information, and the attribute table 113 is also referred to as attribute information.
Furthermore, the acquiring unit 130 acquires the policy candidate table 116. For example, the acquiring unit 130 acquires the policy candidate table 116 from the storage unit 110 or an external device. The policy candidate table 116 is shown below.

図10は、施策候補テーブルの例を示す図である。施策候補テーブル116は、施策の候補を示す。施策候補テーブル116は、複数のユーザに行う施策の候補を示す情報と表現してもよい。施策候補テーブル116は、施策候補情報とも言う。
図10の施策候補テーブル116は、9つの施策を示している。例えば、施策No.1は、Aストアの100円クーポンを提供することを示す。例えば、施策No.2は、Bストアの100円クーポンを提供することを示す。
10 is a diagram showing an example of a policy candidate table. The policy candidate table 116 shows policy candidates. The policy candidate table 116 may be expressed as information showing policy candidates to be implemented on a plurality of users. The policy candidate table 116 is also referred to as policy candidate information.
10 shows nine policies. For example, policy No. 1 indicates that a 100 yen coupon for store A is provided. For example, policy No. 2 indicates that a 100 yen coupon for store B is provided.

生成部140は、行動特徴テーブル112、属性テーブル113、及び施策候補テーブル116に基づいて、データを生成する。当該データは、学習済モデル115に入力されるデータである。生成されるデータを示す。The generation unit 140 generates data based on the behavioral characteristics table 112, the attribute table 113, and the policy candidate table 116. The data is input to the trained model 115. The data to be generated is shown.

図11は、生成されるデータの例を示す図である。生成部140は、ユーザID“00001”の行動特徴、属性、及び9つの施策に基づいて、9つのデータを生成する。生成部140は、同様に、ユーザID“00002”などの全てのユーザに対応するデータを生成する。 Figure 11 is a diagram showing an example of generated data. The generation unit 140 generates nine pieces of data based on the behavioral characteristics, attributes, and nine measures of the user ID "00001." The generation unit 140 similarly generates data corresponding to all users such as the user ID "00002."

予測部150は、生成部140により生成されたデータと学習済モデル115とに基づいて、施策を行ったときの売上又は来店増加回数を予測する。詳細には、予測部150が当該データを学習済モデル115に入力することで、学習済モデル115は、施策を行ったときの売上又は来店増加回数を出力する。予測結果を示す。The prediction unit 150 predicts the increase in sales or the number of visits to the store when a measure is implemented based on the data generated by the generation unit 140 and the trained model 115. In detail, the prediction unit 150 inputs the data to the trained model 115, and the trained model 115 outputs the increase in sales or the number of visits to the store when a measure is implemented. The prediction result is shown.

図12は、予測結果の例を示す図である。図12の予測結果は、来店増加回数を示す。例えば、予測結果“1.2”は、ユーザID“00001”のユーザにAストアの100円クーポンを提供した場合、当該ユーザの来店回数が“1.2”回に増えることを示す。 Figure 12 is a diagram showing an example of a prediction result. The prediction result in Figure 12 indicates an increase in the number of visits to the store. For example, the prediction result "1.2" indicates that if a 100 yen coupon for Store A is provided to a user with user ID "00001", the number of visits by that user will increase to "1.2".

取得部130は、施策の不平等を緩和するための値である施策スコアを取得する。例えば、取得部130は、記憶部110又は外部装置から施策スコアを取得する。ここで、施策スコアの算出方法を説明する。The acquisition unit 130 acquires a policy score, which is a value for mitigating inequality in a policy. For example, the acquisition unit 130 acquires the policy score from the storage unit 110 or an external device. Here, a method for calculating the policy score will be described.

図13(A),(B)は、施策スコアの算出方法の例を示す図(その1)である。図13(A)は、前日と今日で異なるユーザが施策を受けることを評価する施策スコアを示す。図13(A)の式が示す“Coef”は、ユーザが設定してもよい。また、“Coef”は、自動で設定されてもよい。図13(A)の式の中の“i”には、“0”又は“1”が設定される。“0”は、施策を受けないことを示す。“1”は、施策を受けることを示す。前日と今日で異なるユーザが施策を受けることを評価する施策スコアを算出する場合、図13(A)の表における前日と案2とが参照される。そして、施策スコアは、前日と案2とに基づく内積と、“Coef”とを用いて、算出される。 13(A) and (B) are diagrams (part 1) showing an example of a method for calculating a policy score. FIG. 13(A) shows a policy score evaluating whether different users receive a policy on the previous day and today. "Coef 1 " shown in the formula of FIG. 13(A) may be set by a user. Also, "Coef 1 " may be set automatically. "0" or "1" is set to "i" in the formula of FIG. 13(A). "0" indicates that no policy is received. "1" indicates that a policy is received. When calculating a policy score evaluating whether different users receive a policy on the previous day and today, the previous day and plan 2 in the table of FIG. 13(A) are referenced. Then, the policy score is calculated using the inner product based on the previous day and plan 2 and "Coef 1 ".

図13(B)は、複数の施策の中で、特定の施策に偏りがないことを評価する施策スコアを示す。図13(B)の式が示す“Coef”は、ユーザが設定してもよい。また、“Coef”は、自動で設定されてもよい。複数の施策の中で、特定の施策に偏りがない場合とは、図13(B)の表における案2の場合である。例えば、案2は、Aクーポンを21人に提供し、Bクーポンを20人に提供し、Cクーポンを19人に提供することを示す。このように、案2は、A~Cクーポンが多くの人に提供される場合を示す。言い換えれば、案2は、1つのクーポン(例えば、Aクーポン)が多く人に提供されない場合を示している。例えば、当該場合は、案1の場合である。施策スコアは、案2に基づく標準偏差と、“Coef”とを用いて、算出される。 FIG. 13B shows a measure score that evaluates whether or not a specific measure is biased among multiple measures. The "Coef 2 " shown in the formula in FIG. 13B may be set by the user. Also, "Coef 2 " may be set automatically. A case in which there is no bias in a specific measure among multiple measures is the case of plan 2 in the table in FIG. 13B. For example, plan 2 indicates that coupon A is provided to 21 people, coupon B is provided to 20 people, and coupon C is provided to 19 people. In this way, plan 2 indicates a case in which coupons A to C are provided to many people. In other words, plan 2 indicates a case in which one coupon (e.g., coupon A) is not provided to many people. For example, this case is the case of plan 1. The measure score is calculated using the standard deviation based on plan 2 and "Coef 2 ".

図14は、施策スコアの算出方法の例を示す図(その2)である。図14は、異なるユーザにも施策を行うことを評価する施策スコアを示す。図14の式が示す“Coef”は、ユーザが設定してもよい。また、“Coef”は、自動で設定されてもよい。異なるユーザにも施策を行う場合とは、図14の表における案2の場合である。施策スコアは、案2に基づく標準偏差と、“Coef”とを用いて、算出される。
このように、施策スコアは、算出される。図13,14の算出方法は、一例である。そのため、施策スコアは、上記以外の方法で算出されてもよい。
FIG. 14 is a diagram (part 2) showing an example of a method for calculating a policy score. FIG. 14 shows a policy score for evaluating implementation of a policy on different users. "Coef 3 " shown in the formula in FIG. 14 may be set by the user. Also, "Coef 3 " may be set automatically. The case where a policy is implemented on different users is the case of plan 2 in the table in FIG. 14. The policy score is calculated using the standard deviation based on plan 2 and "Coef 3 ".
13 and 14 are merely examples. Therefore, the policy score may be calculated by a method other than the above.

また、取得部130は、予算を示す予算情報を取得する。例えば、取得部130は、記憶部110又は外部装置から予算情報を取得する。In addition, the acquisition unit 130 acquires budget information indicating the budget. For example, the acquisition unit 130 acquires the budget information from the memory unit 110 or an external device.

決定部160は、予測結果と施策スコアとを用いて、予算内で最適化計算を行い、ユーザ毎の施策を決定する。詳細には、決定部160は、式(3)を用いて、最適化計算を行う。また、制約条件として、式(4)が用いられる。The decision unit 160 uses the prediction results and the policy scores to perform optimization calculations within the budget and determine policies for each user. In detail, the decision unit 160 performs optimization calculations using formula (3). In addition, formula (4) is used as a constraint condition.

Figure 0007589391000003
Figure 0007589391000003

Figure 0007589391000004
Figure 0007589391000004

ここで、式(3)は、目的関数とも言う。決定部160は、目的関数を最大化するために、式(3)を用いて、最適化計算を行う。また、最適化計算では、グリーディ法などの最適化手法、勾配降下法、ベイズ最適化などのパラメータ探索手法が用いられてもよい。Here, formula (3) is also referred to as the objective function. The determination unit 160 performs optimization calculations using formula (3) in order to maximize the objective function. In addition, the optimization calculations may use optimization methods such as the greedy method, gradient descent, and parameter search methods such as Bayesian optimization.

決定部160が実行する処理を、具体例を用いて説明する。The processing performed by the determination unit 160 is explained using a concrete example.

図15は、決定部が実行する処理の具体例を示す図である。まず、予算は、600円とする。決定部160は、予算内で施策Aを検討する。施策Aは、ユーザID“00001”のユーザにCストアの300円クーポンが提供され、ユーザID“00002”のユーザにAストアの100円クーポンが提供され、ユーザID“00004”のユーザにAストアの200円クーポンが提供されることを示す。決定部160は、施策Aに対応する予測結果の合計値を算出する。決定部160は、予測結果の合計値と施策スコアとを用いて、施策Aに対する評価値を算出する。 Figure 15 is a diagram showing a specific example of processing executed by the decision unit. First, the budget is set to 600 yen. The decision unit 160 considers policy A within the budget. Policy A indicates that a 300 yen coupon for store C is provided to a user with user ID "00001", a 100 yen coupon for store A is provided to a user with user ID "00002", and a 200 yen coupon for store A is provided to a user with user ID "00004". The decision unit 160 calculates the total value of the prediction results corresponding to policy A. The decision unit 160 calculates an evaluation value for policy A using the total value of the prediction results and the policy score.

決定部160は、予算内で施策Bを検討する。施策Bは、ユーザID“00001”のユーザにBストアの200円クーポンが提供され、ユーザID“00002”のユーザにCストアの100円クーポンが提供され、ユーザID“00003”のユーザにCストアの300円クーポンが提供されることを示す。決定部160は、施策Bに対応する予測結果の合計値を算出する。決定部160は、予測結果の合計値と施策スコアとを用いて、施策Bに対する評価値を算出する。The decision unit 160 considers measure B within the budget. Measure B indicates that a 200 yen coupon for store B will be provided to user with user ID "00001", a 100 yen coupon for store C will be provided to user with user ID "00002", and a 300 yen coupon for store C will be provided to user with user ID "00003". The decision unit 160 calculates the total value of the prediction results corresponding to measure B. The decision unit 160 calculates an evaluation value for measure B using the total value of the prediction results and the measure score.

決定部160は、施策Aに対する評価値と施策Bに対する評価値とを比較する。決定部160は、比較結果に基づいて、施策Aが最適であると判定する。決定部160は、同様の処理を繰り返し、最適な施策の検討を行う。そして、決定部160は、最適な施策を、ユーザ毎の施策として決定する。ここで、ユーザ毎の施策の例を示す。The decision unit 160 compares the evaluation value for measure A with the evaluation value for measure B. Based on the comparison result, the decision unit 160 determines that measure A is optimal. The decision unit 160 repeats the same process to consider the optimal measure. Then, the decision unit 160 decides on the optimal measure as the measure for each user. Here, an example of a measure for each user is shown.

図16は、ユーザ毎の施策の例を示す図である。図16の表は、決定されたユーザ毎の施策を示している。例えば、ユーザID“00001”のユーザには、施策として、Aストアの100円クーポンが提供される。
また、図16の表は、決定された施策に対応する予測結果とコストを示している。
Fig. 16 is a diagram showing an example of a campaign for each user. The table in Fig. 16 shows the determined campaign for each user. For example, a 100 yen coupon for Store A is provided to a user with a user ID "00001" as a campaign.
Moreover, the table in FIG. 16 shows the predicted results and costs corresponding to the determined measures.

なお、上記では、取得部130が取得した施策スコアを用いる場合を説明した。決定部160は、予算内で選択された施策に基づいて、施策スコアを算出し、算出された施策スコアを用いてもよい。例えば、決定部160は、施策Aに基づいて、施策スコアを算出し、算出された施策スコアを用いてもよい。また、決定部160は、算出された施策スコアが、取得部130により取得された施策スコアよりも大きい場合、施策の決定をやり直してもよい。In the above, a case has been described in which the policy score acquired by the acquisition unit 130 is used. The decision unit 160 may calculate a policy score based on the policy selected within the budget, and use the calculated policy score. For example, the decision unit 160 may calculate a policy score based on policy A, and use the calculated policy score. Furthermore, if the calculated policy score is greater than the policy score acquired by the acquisition unit 130, the decision unit 160 may redo the policy decision.

また、決定部160は、式(5)を用いて、最適化計算を行ってもよい。また、制約条件として、式(4)が用いられる。The determination unit 160 may also perform optimization calculations using equation (5). Furthermore, equation (4) is used as a constraint.

Figure 0007589391000005
Figure 0007589391000005

出力部170は、ユーザ毎の施策を、施策情報として出力する。The output unit 170 outputs measures for each user as policy information.

次に、情報処理装置100が実行する処理を、フローチャートを用いて、説明する。
図17は、情報処理装置が実行する処理の例を示すフローチャートである。
(ステップS21)取得部130は、学習済モデル115を取得する。
(ステップS22)取得部130は、行動特徴テーブル112、属性テーブル113、及び施策候補テーブル116を取得する。
(ステップS23)生成部140は、行動特徴テーブル112、属性テーブル113、及び施策候補テーブル116に基づいて、データを生成する。
Next, the process executed by the information processing device 100 will be described with reference to a flowchart.
FIG. 17 is a flowchart illustrating an example of processing executed by the information processing device.
(Step S21) The acquisition unit 130 acquires the trained model 115.
(Step S22) The acquiring unit 130 acquires the behavioral characteristics table 112, the attribute table 113, and the policy candidate table 116.
(Step S23) The generation unit 140 generates data based on the behavioral characteristics table 112, the attribute table 113, and the policy candidate table 116.

(ステップS24)予測部150は、生成されたデータと学習済モデル115とに基づいて、施策を行ったときの売上又は来店増加回数を予測する。
(ステップS25)取得部130は、施策スコアを取得する。
(ステップS26)取得部130は、予算情報を取得する。
(ステップS27)決定部160は、予測結果と施策スコアとを用いて、予算内で最適化計算を行い、ユーザ毎の施策を決定する。
(ステップS28)出力部170は、ユーザ毎の施策を、施策情報として出力する。
(Step S24) The prediction unit 150 predicts the increase in sales or the number of visits to the store when the measure is implemented, based on the generated data and the trained model 115.
(Step S25) The acquisition unit 130 acquires the policy score.
(Step S26) The acquiring unit 130 acquires budget information.
(Step S27) The determination unit 160 performs optimization calculations within the budget using the prediction results and the policy scores, and determines a policy for each user.
(Step S28) The output unit 170 outputs the policy for each user as policy information.

ここで、予算が無限であれば、全てのユーザに一番良いクーポンを提供できる。しかし、予算には、制限がある。そのため、情報処理装置100は、予算内で施策の効果を最大化するために、最適化計算を行う。また、普通に最適化計算が行われた場合、特定のユーザに一番良いクーポンが提供される、という計算結果が毎回出力される可能性がある。例えば、ユーザID“00001”のユーザにAストアの300円クーポンが提供される、という計算結果が毎回出力される可能性がある。このような偏った計算結果が出力されることを防止するために、情報処理装置100は、最適化計算で、施策スコアを用いる。そして、偏った計算結果が出力されることを防止することは、施策の不平等を解消する。よって、実施の形態によれば、情報処理装置100は、施策の不平等を解消することができる。Here, if the budget is infinite, the best coupon can be provided to all users. However, the budget is limited. Therefore, the information processing device 100 performs optimization calculations to maximize the effect of the measures within the budget. Furthermore, when the optimization calculations are performed normally, there is a possibility that the calculation result that the best coupon is provided to a specific user is output every time. For example, there is a possibility that the calculation result that a 300 yen coupon from Store A is provided to a user with user ID "00001" is output every time. In order to prevent such biased calculation results from being output, the information processing device 100 uses a policy score in the optimization calculation. And preventing biased calculation results from being output eliminates inequality in the policies. Therefore, according to the embodiment, the information processing device 100 can eliminate inequality in the policies.

また、上記では、施策として、クーポンを提供する場合を示した。例えば、施策として、ノベルティが提供されてもよい。In the above, a coupon is provided as a campaign. For example, a novelty item may be provided as a campaign.

100 情報処理装置、 101 プロセッサ、 102 揮発性記憶装置、 103 不揮発性記憶装置、 104 通信インタフェース、 110 記憶部、 111 行動履歴テーブル、 112 行動特徴テーブル、 113 属性テーブル、 114 施策結果テーブル、 115 学習済モデル、 116 施策候補テーブル、 120 学習部、 130 取得部、 140 生成部、 150 予測部、 160 決定部、 170 出力部、 200 端末装置、 300 学習データ。 100 Information processing device, 101 Processor, 102 Volatile storage device, 103 Non-volatile storage device, 104 Communication interface, 110 Storage unit, 111 Action history table, 112 Action feature table, 113 Attribute table, 114 Policy result table, 115 Learned model, 116 Policy candidate table, 120 Learning unit, 130 Acquisition unit, 140 Generation unit, 150 Prediction unit, 160 Decision unit, 170 Output unit, 200 Terminal device, 300 Learning data.

Claims (3)

学習済モデル、ユーザ毎の行動特徴を示す行動特徴情報、前記ユーザ毎の属性を示す属性情報、前記各ユーザに対して行うクーポンの提供又はノベルティの提供の施策の候補を示す施策候補情報、施策の不平等を緩和するための値である施策スコア、及び予算を示す予算情報を取得する取得部と、
前記行動特徴情報、前記属性情報、及び前記施策候補情報に基づいて、データを生成する生成部と、
生成された前記データと前記学習済モデルとに基づいて、施策を行ったときの売上又は来店増加回数を予測する予測部と、
前記予測の結果である予測結果と前記施策スコアとを用いて、前記予算内で最適化計算を行い、前記ユーザ毎の施策を決定する決定部と、
を有する情報処理装置。
An acquisition unit that acquires a trained model, behavioral feature information indicating behavioral features of each user, attribute information indicating attributes of each user, policy candidate information indicating candidates for policies such as providing coupons or novelties to each user, a policy score that is a value for mitigating inequality in policies, and budget information indicating a budget;
A generation unit that generates data based on the behavioral characteristic information, the attribute information, and the policy candidate information;
A prediction unit that predicts sales or an increase in the number of visits to the store when a measure is implemented based on the generated data and the trained model;
a decision unit that performs optimization calculation within the budget using the prediction result, which is a result of the prediction, and the policy score, and decides a policy for each user;
An information processing device having the above configuration.
情報処理装置が、
学習済モデル、ユーザ毎の行動特徴を示す行動特徴情報、前記ユーザ毎の属性を示す属性情報、前記各ユーザに対して行うクーポンの提供又はノベルティの提供の施策の候補を示す施策候補情報、施策の不平等を緩和するための値である施策スコア、及び予算を示す予算情報を取得し、前記行動特徴情報、前記属性情報、及び前記施策候補情報に基づいて、データを生成し、生成された前記データと前記学習済モデルとに基づいて、施策を行ったときの売上又は来店増加回数を予測し、
前記予測の結果である予測結果と前記施策スコアとを用いて、前記予算内で最適化計算を行い、前記ユーザ毎の施策を決定する、
決定方法。
An information processing device,
Acquire a trained model, behavioral characteristic information indicating behavioral characteristics of each user, attribute information indicating attributes of each user, policy candidate information indicating candidates for policies such as providing coupons or novelties to each user, a policy score which is a value for mitigating inequality in policies, and budget information indicating a budget, generate data based on the behavioral characteristic information, the attribute information, and the policy candidate information, and predict sales or an increase in the number of store visits when a policy is implemented based on the generated data and the trained model,
performing an optimization calculation within the budget using the prediction result, which is a result of the prediction, and the action score, and determining an action for each user;
How to decide.
情報処理装置に、
学習済モデル、ユーザ毎の行動特徴を示す行動特徴情報、前記ユーザ毎の属性を示す属性情報、前記各ユーザに対して行うクーポンの提供又はノベルティの提供の施策の候補を示す施策候補情報、施策の不平等を緩和するための値である施策スコア、及び予算を示す予算情報を取得し、前記行動特徴情報、前記属性情報、及び前記施策候補情報に基づいて、データを生成し、生成された前記データと前記学習済モデルとに基づいて、施策を行ったときの売上又は来店増加回数を予測し、
前記予測の結果である予測結果と前記施策スコアとを用いて、前記予算内で最適化計算を行い、前記ユーザ毎の施策を決定する、
処理を実行させる決定プログラム。
In the information processing device,
Acquire a trained model, behavioral characteristic information indicating behavioral characteristics of each user, attribute information indicating attributes of each user, policy candidate information indicating candidates for policies such as providing coupons or novelties to each user, a policy score which is a value for mitigating inequality in policies, and budget information indicating a budget, generate data based on the behavioral characteristic information, the attribute information, and the policy candidate information, and predict sales or an increase in the number of store visits when a policy is implemented based on the generated data and the trained model,
performing an optimization calculation within the budget using the prediction result, which is a result of the prediction, and the action score, and determining an action for each user;
A decision program that causes processing to occur.
JP2024507113A 2022-08-24 2022-08-24 Information processing device, determination method, and determination program Active JP7589391B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031794 WO2024042627A1 (en) 2022-08-24 2022-08-24 Information processing device, determination method, and determination program

Publications (3)

Publication Number Publication Date
JPWO2024042627A1 JPWO2024042627A1 (en) 2024-02-29
JPWO2024042627A5 JPWO2024042627A5 (en) 2024-07-31
JP7589391B2 true JP7589391B2 (en) 2024-11-25

Family

ID=90012672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024507113A Active JP7589391B2 (en) 2022-08-24 2022-08-24 Information processing device, determination method, and determination program

Country Status (2)

Country Link
JP (1) JP7589391B2 (en)
WO (1) WO2024042627A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080249844A1 (en) 2002-07-19 2008-10-09 International Business Machines Corporation System and method for sequential decision making for customer relationship management
JP2012003428A (en) 2010-06-15 2012-01-05 Dainippon Printing Co Ltd Electronic coupon delivery device, electronic coupon delivery system and method
WO2015079460A1 (en) 2013-11-28 2015-06-04 Gupta Lucky System for computing contribution and providing appropriate incentives
US20170300956A1 (en) 2016-04-15 2017-10-19 Wal-Mart Stores, Inc. Systems and methods to generate coupon offerings to identified customers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080249844A1 (en) 2002-07-19 2008-10-09 International Business Machines Corporation System and method for sequential decision making for customer relationship management
JP2012003428A (en) 2010-06-15 2012-01-05 Dainippon Printing Co Ltd Electronic coupon delivery device, electronic coupon delivery system and method
WO2015079460A1 (en) 2013-11-28 2015-06-04 Gupta Lucky System for computing contribution and providing appropriate incentives
US20170300956A1 (en) 2016-04-15 2017-10-19 Wal-Mart Stores, Inc. Systems and methods to generate coupon offerings to identified customers

Also Published As

Publication number Publication date
WO2024042627A1 (en) 2024-02-29
JPWO2024042627A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
US20230334570A1 (en) Utilizing artificial intelligence to make a prediction about an entity based on user sentiment and transaction history
AU2015317621B2 (en) Method and apparatus for predicting customer intentions
Lemmens et al. Bagging and boosting classification trees to predict churn
US20180150783A1 (en) Method and system for predicting task completion of a time period based on task completion rates and data trend of prior time periods in view of attributes of tasks using machine learning models
CN110008973B (en) Model training method, method and device for determining target user based on model
US20170235735A1 (en) System and methods of generating structured data from unstructured data
KR102422408B1 (en) Method and apparatus for recommending item based on collaborative filtering neural network
US11107109B2 (en) Method and system for personalizing offers
US20230028266A1 (en) Product recommendation to promote asset recycling
US20210182730A1 (en) Systems and methods for detecting non-causal dependencies in machine learning models
US20230032739A1 (en) Propensity modeling process for customer targeting
JP6253744B1 (en) Information analysis apparatus, information analysis method, and information analysis program
US20130332249A1 (en) Optimal supplementary award allocation
JP5963320B2 (en) Information processing apparatus, information processing method, and program
US11568343B2 (en) Data analytics model selection through champion challenger mechanism
CN113095861A (en) Method, device and equipment for predicting target object transaction probability and storage medium
Pinçe et al. The role of contract expirations in service parts management
US12020124B2 (en) Selecting optimum primary and secondary parameters to calibrate and generate an unbiased forecasting model
US10242068B1 (en) Methods and systems for ranking leads based on given characteristics
JP7589391B2 (en) Information processing device, determination method, and determination program
US20170046726A1 (en) Information processing device, information processing method, and program
JP7351887B2 (en) Information processing device, information processing system, and information processing method
US20230368130A1 (en) Systems and methods for prioritizing orders
Zhou et al. Maintenance policy structure investigation and optimisation of a complex production system with intermediate buffers
JP2021103340A (en) Device, method, and program for making recommendation based on customer attribute information

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240206

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241015

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20241023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241113

R150 Certificate of patent or registration of utility model

Ref document number: 7589391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150