[go: up one dir, main page]

JP4078821B2 - Biomagnetic field measurement device - Google Patents

Biomagnetic field measurement device Download PDF

Info

Publication number
JP4078821B2
JP4078821B2 JP2001310864A JP2001310864A JP4078821B2 JP 4078821 B2 JP4078821 B2 JP 4078821B2 JP 2001310864 A JP2001310864 A JP 2001310864A JP 2001310864 A JP2001310864 A JP 2001310864A JP 4078821 B2 JP4078821 B2 JP 4078821B2
Authority
JP
Japan
Prior art keywords
equation
magnetic field
diagram
component
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001310864A
Other languages
Japanese (ja)
Other versions
JP2002177233A (en
JP2002177233A5 (en
Inventor
啓二 塚田
明彦 神鳥
笹渕  仁
博之 鈴木
昭二 近藤
泰明 小見山
健一 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001310864A priority Critical patent/JP4078821B2/en
Publication of JP2002177233A publication Critical patent/JP2002177233A/en
Publication of JP2002177233A5 publication Critical patent/JP2002177233A5/ja
Application granted granted Critical
Publication of JP4078821B2 publication Critical patent/JP4078821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,生体の脳の神経活動,心臓の心筋活動等により発生する生体磁場を,高感度な量子干渉素子(SQUID:superconducting quantum interference device)からなる複数の磁束計を用いて計測する生体磁場計測方法及び生体磁場計測装置に関する。
【0002】
【従来技術】
本発明は,生体の脳の神経活動,心臓の心筋活動等により発生する生体磁場を,高感度な量子干渉素子(SQUID:superconducting quantum interference device)からなる複数の磁束計を用いて計測する生体磁場計測方法及び生体磁場計測装置に関する。
【0003】
生体磁場としては,電流ダイポールが作り出す磁場の他,生体内を流れる体積電流による磁場がある。生体磁場の法線成分(Bz(直交座標系でのZ成分)又はBr(極座標系での動径成分))の計測は,体積電流の影響を受けにくいと考えられている。従来技術では,生体表面に対してSQUIDに接続した検出コイルの面を平行に配置して,生体表面に垂直な法線成分であるBz又はBrを計測していた。生体磁場計測の結果は,測定された磁場成分の時間変化を表わす波形,測定された磁場成分の任意の時点での強度の等しい点を結ぶ等磁場線図(コンターマップ)により表示されていた。また,得られた等磁場線図から,生体磁場を発生している磁場源を解析する種々の解析方法が提案されているが,代表的な解析方法では磁場源を電流ダイポールに置き換えて解析を行なっていた。
【0004】
電流ダイポールが作る磁場の法線成分(Bz又はBr)の等磁場線図は,磁場源(電流ダイポール)を中心として分離した位置に磁場の沸き出し極,磁場の吸い込み極を持つパターンとなる。この2つの極での磁場強度,2つの極の間の距離により,磁場源(電流ダイポール)の大きさ,位置,方向等が解析されている。
【0005】
第1の従来技術(H.Hosaka and D.Cohen,J.Electrocardiol.,9(4),426-432(1976))では,心筋内の電流の方向や強さを見易くするため,計測された法線成分Bzの等磁場線図を用いて,心筋に分布する電流源を表示する方法として,(数1)で定義される電流ベクトル〈J(x,y)〉を各計測点上に矢印で表現するアローマップが考案されている。なお以下の説明では,括弧〈 〉は〈 〉内の記号がベクトルであることを示し,例えば,〈J〉はJがベクトルであることを表わす。
【0006】
【数1】
〈J(x,y)〉
=(∂Bz(x,y)/∂y)〈ex〉−(∂Bz(x,y)/∂x)〈ey〉
…(数1)
(数1)に於いて,〈ex〉はx方向の単位ベクトル,〈ey〉はy方向の単位ベクトルである。しかし,複数の電流源が存在する時には,法線成分Bzの等磁場線図から個々の電流源を判別しにくいという問題があった。
【0007】
第2の従来技術(K.Tukada et al.,Reveiw of the Scientific Instruments,66(10)5085-5091(1995))では,分布する複数の電流源を可視化するために,法線成分(Bz又はBr)を計測するのではなく,検出コイルの面を生体表面に対して垂直に配置して,接線成分Bx及びByを計測している。計測された接線成分Bx,Byを各成分毎に等磁場線図として表示している。従来技術2で計測された接線成分Bx,Byは体積電流の影響が考えられるものの,(数2)に従って,時刻tに於いて計測されたBx及びByを合成した2次元ベクトル強度Bxyの等磁場線図では,常に電流ダイポールの直上にピークが得られることから,複数の電流ダイポールが存在する場合でも,各電流ダイポールを分離して可視化できる。
【0008】
【数2】
│Bxy(x,y,t)│
=√{(Bx(x,y,t))2+(By(x,y,t))2} …(数2)
第3の従来技術(Y.Yoshida et al.,Tenth International Conference on Biomagnetism,Santana Fe,New Mexico,Feb.20(1996))では,コイルの面がそれぞれ直交した3つの検出コイルからなるベクトル磁場センサを用いて生体磁場の法線成分と2つの接線成分を検出し,磁場成分の検出結果を直交座標系に変換して,直交座標系の成分Bx,By,Bzを求め,法線成分Bz及び2次元ベクトル強度Bxyの等磁場線図をそれぞれ表示している。
【0009】
第4の従来技術(K.Tsukada,et.al.,Tenth International Conference on Biomagnetism,Santana Fe,New Mexico,Feb.20(1996))では,生体磁場の2つの接線成分Bx,Byを検出し,|Bxy|=|Bx+By|に基づく等磁場線図と法線成分Bzに基づく等磁場線図との比較を行なっている。
【0010】
生体内の電気的生理学現象の計測結果を表す図として,脳波計により計測して得る脳波図(MEG,magnetoencephalogram),心電計により計測して得る心電図(ECG,electrocardiogram)がある。心電図の計測に於いて,複数の電極を用いて心電図形をマッピングする体表面心電図(body surface potential map)は周知の技術である。これらの脳波図,又は体表面心電図は,等しい電位点を結ぶ等電位線図として表示されていた。
【0011】
第5の従来技術(T.J.Montague et al.,Circulation 63,No.5,pp1166-1172(1981))では,複数の電極の各電極の出力の時間変化を表わす波形を任意の時間区間で積分した等積分図(isointegral map)を,体表面心電図として表示している。
【0012】
【発明が解決しようとする課題】
以下の説明では,「生体磁場」は「生体磁場から発する磁場」を意味し,「心磁場計測」は,「心臓から発する磁場の計測」を意味し,「心磁波形」は,「心磁場計測により得た心磁図(MCG,Magnetocardiogram)が表わす波形」を意味する。また,「脳磁場計測」は,「脳から発する磁場の計測」を意味し,「脳磁波形」は,「脳磁場計測により得た脳磁図(MEG,Magnetoencephalogram)が表わす波形」を意味する。
【0013】
従来技術に於ける各成分毎の等磁場線図はそれぞれ特徴があり,単一電流ダイポールが存在する時には,法線成分Bzの等磁場線図では,電流源の位置,大きさ,方向等が容易に解析できる。一方,接線成分Bx,Byの計測結果から得る2次元ベクトル強度Bxyの等磁場線図では,複数の電流ダイポールが存在する時でも,容易に各電流ダイポールを判別できる特徴がある。しかし,磁場を検出するコイルの数はx,y方向それぞれに必要であるため,法線成分Bzのみの検出に比べてコイル数が2倍になる。また,Bx,By,Bzの全ての成分を計測するベクトル計測では,法線成分Bzのみの検出に比べて3倍の数のコイルが必要となる。このため,検出コイルとSQUIDからなる磁場センサの数は増加し,更に,信号処理回路等も増加し,生体磁場計測システムは高価なシステムとなってしまうという問題があった。また,第1の従来技術では,各計測点上にアローを表示するだけであり,電流源の詳細な分布状態が識別しにくいという問題があった。
【0014】
生体磁場成分で表わした等磁場線図により,任意の時点での生体内の電流源の位置,大きさ,方向等を解析でき詳細な電流源の位置,大きさ,方向等の情報の変化を知ることができる。従来技術では,装置に表示,又は出力された多数の図を用いて各種情報のダイナミックな変化をとらえ疾患等の診断を行っていた。しかし,従来技術では,診断のために各種情報を表す多数の図を必要とし,各種情報の変化の異常を経験的に行っていた。この様に従来技術では,どの生体部位でどのような大きさの電流が流れたか,又は異常な生体電流が流れている領域がどこであるか等を表わす総合的な情報を1つの図として表示するための処理は実行されていなかった。また,体表面心電図では,任意の時間間隔(Q,R,Sの各波の発生する期間,S波からT波の発生する期間等)での積分値の等しい点を示す等積分図では,連続する各時刻での等電位線図を複数必要とせず,1つの心電図形で心臓の情報を得ることができる。しかし,等電位線図では心臓内の電流源を1つの電流ダイポールと仮定しておくと,電流ダイポールの直上ではなく電流ダイポールの直上から離れた位置に陽極のピークと陰極のピークが存在する図形となってしまうという問題がある。更に,電流ダイポールの位置が変化せず電流ダイポールの方向が変化すると陽極及び陰極のピーク位置が変化してしまい,電位を積分する時に電流源と積分値のピークとが対応しなくなるという問題があった。また,生体磁場計測により得る生体磁場の成分を単に積分しても,心電図の場合と同様に,生体磁場成分のピーク位置と電流源の位置が対応しないという問題があった。また,心電図から得る等積分図のみでは,臓器の位置,大きさ等の個人差があり単純に等積分図から疾患等の異常を正確に判断することが困難であるという問題があった。
【0015】
本発明の目的は,従来技術で必要としていた図(マップ)の数よりもはるかに少数の図(マップ)を用いて,生体部位の全体の状態を把握できる生体磁場計測方法及び生体磁場計測装置を提供することにある。
【0016】
本発明の他の目的は,検出コイルの数を増加させることなく,生体磁場の垂直成分Bzを計測して磁場源の解析を可能とする生体磁場計測方法及び生体磁場計測装置を提供することにある。
【0017】
【課題を解決するための手段】
本発明の生体磁場計測方法では,(1)量子干渉素子(SQUID)からなり,生体の外部に配置される複数の磁束計を用いて,生体から発する生体磁場の生体の面に垂直な第1方向の磁場成分の時間変化を計測する第1の工程と,第1方向と交叉する第2方向及び第3方向に於ける第1方向の磁場成分の変化率の2乗和の平方根に比例する値の時間変化を表わす波形を求める第2の工程と,この第2の工程で得る波形を所定の期間で積分し積分値を求める第3の工程と,この第3の工程の工程で得る積分値を表示する第4の工程とを有することに特徴があり,更に,(2)量子干渉素子(SQUID)からなり,生体の外部に配置される複数の磁束計を用いて,生体から発する生体磁場の生体の面に平行な第1,第2方向の磁場成分の時間変化を計測する第1の工程と,第1,第2方向の磁場成分の2乗和の平方根に比例する値の時間変化を表わす波形を求める第2の工程と,この第2の工程で得る波形を所定の期間で積分し積分値を求める第3の工程と,この第3の工程の工程で得る積分値を表示する第4の工程とを有することに特徴がある。また上記(1),(2)の特徴を有する生体磁場計測方法に於いて,上記の積分値を用いて,内挿,外挿により,上記の第4の工程で積分値が等しい点を結ぶ等積分図を表示すること,上記の第3の工程に於いて,上記の第2の工程で得る上記の波形を所定の期間で積分し積分値を求めることを,複数の所定の期間で行ない積分値を複数個求め,この複数個の積分値の間での,比,等加重を含む和又は差の何れかを求める演算を行なうことにも特徴がある。なお,直交座標系(x,y,z)に於いて,生体表面に垂直な方向をz軸とし,第1方向をz方向,第2方向をx方向,第3方向をy方向とする。また,極座標系(r,θ,φ)において,生体表面に垂直な方向をr軸とし,第1方向をr方向,第2方向をθ方向,第3方向をφ方向とする。
【0018】
本発明の生体磁場計測装置では,(1)量子干渉素子(SQUID)からなり生体から発する生体磁場を信号として検出する,生体の外部に配置される複数の磁束計と,信号の演算処理を行なう演算処理手段と,演算処理結果を表示する表示手段とを有し,生体磁場分布を計測する生体磁場計測装置に於いて,磁束計は,生体磁場の生体の面に垂直な第1方向の磁場成分の時間変化を検出し,演算処理手段は,第1方向と交叉する第2方向及び第3方向に於ける第1方向の磁場成分の変化率の2乗和の平方根に比例する値の時間変化を表わす波形を求める演算と,この波形を所定の期間で積分し積分値を求める演算とを行ない,表示手段に積分値を表示することに特徴があり,更に,(2)同上の生体磁場計測装置に於いて,磁束計は,生体磁場の生体の面に平行な第1,第2方向の磁場成分の時間変化を検出し,演算処理手段は,第1,第2方向の磁場成分の2乗和の平方根に比例する値の時間変化を表わす波形を求める演算と,この波形を所定の期間で積分し積分値を求める演算とを行ない,表示手段に積分値を表示することに特徴がある。また,上記(1),(2)の特徴を有する生体磁場計測装置に於いて,表示手段に,内挿,外挿により積分値の等しい点を結ぶ等積分図が表示されること,演算処理手段は,上記波形を所定の期間で積分し積分値を求めることを,複数の所定の期間で行ない積分値を複数個求め,この複数個の積分値の間での,比,等加重を含む和又は差の何れかを求める演算を行なうこと,複数の磁束計が,生体の面に等間隔に配置されることにも特徴がある。本発明の生体磁場計測装置では,心臓から発する磁場の,胸面に対する法線(垂直)成分,接線(平行)成分の同時表示が可能である。なお,直交座標系(x,y,z)に於いて,生体表面に垂直な方向をz軸とし,第1方向をz方向,第2方向をx方向,第3方向をy方向とする。また,極座標系(r,θ,φ)において,生体表面に垂直な方向をr軸とし,第1方向をr方向,第2方向をθ方向,第3方向をφ方向とする。
【0019】
本発明の本質的な特徴は,生体表面に垂直な方向を直交座標(x,y,z)のz軸とし,生体表面に平行な面を(x,y)平面とする時,生体磁場の生体表面に垂直な法線成分Bz(x,y)を検出し,生体磁場の生体表面に平行な接線成分Bx,Byをそれぞれ,法線成分Bzのx方向,y方向に於ける変化率から推定することに特徴がある。
【0020】
本発明によれば,接線成分Bx,Byを測定する検出コイルを必要とすることなく,生体の磁場分布を2次元(x,y)平面に投影した等磁場線図を得ることができ,等磁場線図のピークパターンから生体内の電流源を判別でき,複数の電流ダイポールの(x,y)座標での位置を知ることができる。
【0021】
以下,本発明に於ける演算処理手段(複数の磁束計により計測された信号を収集し,信号に対して以下の演算処理を行なうパソコン等の計算機,又は専用的にハードウエア化され演算処理を行なう電子回路)にて行なう演算処理の内容に付いて説明する。
【0022】
量子干渉素子(SQUID)からなる複数の磁束計を用いて,生体表面の位置(x,y)に於いて生体から発する磁場の接線成分(生体の面に平行な成分)Bx(x,y,t),By(x,y,t)を計測する場合には(但し,直交座標系(x,y,z)に於いて生体の面に平行な面をxy面,生体の面に垂直な軸をzとする),接線成分Bx(x,y,t)とBy(x,y,t)の2乗和の平方根から2次元ベクトル強度│Bxy(x,y)│(以下,│ │は絶対値を表わす)を(数3)により求める。
【0023】
【数3】
│Bxy(x,y,t)│=√{(Bx(x,y,t))2+(By(x,y,t))2} …(数3)
次いで,各点(x,y)について任意の期間での波形│Bxy(x,y,t)│の積分値I1(x,y)を(数4)により求め,内挿,外挿により各点(x,y)での積分値I1(x,y)が同じ値の点を結ぶ等積分図を求めて,等積分図を表示画面に表示する。
【0024】
【数4】
I1(x,y)=∫│Bxy(x,y,t)│dt …(数4)
以下,計測された生体の面に垂直な磁場成分Bz(x,y,t)(法線成分)から,接線成分Bx,Byを推定すること説明する。
【0025】
生体磁場の体表面に平行な接線成分は,体表面直下を流れる電流を最もよく反映していることを利用すると,電流の流れる向きと磁場の向きの関係から,計測された磁場の接線ベクトル(Bx,By)を反時計回りに90°回転させることにより,生体内の電流分布を生体表面に平行な2次元平面に投影して概観できる。即ち,〈ex〉,〈ey〉をそれぞれx軸方向,y軸方向の単位ベクトルとして,各計測点に於ける接線成分Bx,Byから,(数5)に示す電流ベクトク〈J〉を求め,各計測点(x,y)に於ける電流ベクトル場の分布(アローマップ)として表現することができる。
【0026】
【数5】
〈J〉=−By〈ex〉+Bx〈ey〉 …(数5)
一方,磁場の生体表面に垂直な法線成分Bzを計測する場合,(数1)により表現される電流ベクトルを用いたアローマップが定義されている(第1の従来技術:H.Hosaka and D.Cohen(1976))。
【0027】
本願発明の発明者らは,(数1)と(数5)との比較から,(数6)及び(数7)が成立する可能性,即ち,計測された磁場の法線成分Bzから接線成分Bx及びByを導出できる可能性があることを見い出し,種々の検討を行なった。以下,検討の結果を詳細に説明する。
【0028】
【数6】
Bx=−(∂Bz/∂x) …(数6)
【0029】
【数7】
By=−(∂Bz/∂y) …(数7)
図1は,心臓の活動による磁場(心磁場)の発生を,無限平面導体中の電流ダイポールから発生する磁場によりモデル化して解析するための図である。図1に於いて,Pは直交座標系(x,y,z)のxy面に表面を持つ無限平面導体,〈Q〉は位置ベクトル〈r0(x0,y0,z0)〉で示される位置に存在する電流ダイポールのモーメント,〈r(x,y,z)〉は磁束密度(磁場)〈B(r)〉を計測する計測点の位置ベクトルを示す。図1に示すモデルに於いて,無限平面導体Pの外部に生じる磁場〈B(r)〉は,Sarvas(文献:Phys.Med.Biol.,Vol.32,No.1,11-22(1987))により定式化されており,(数8)により表現される。
【0030】
【数8】
〈B(r)〉={μ0/(4πK2)}{〈Q〉×〈a〉・〈ez〉∇K−K〈ez〉×〈Q〉} …(数8)
(数8)に於いて,μ0は真空の透磁率,〈ez〉はz軸方向の単位ベクトル,×はベクトル積,・はスカラ積,∇はgrad=(∂/∂x,∂/∂y,∂/∂z)を表わし,〈a〉は(数9),aは(数10),Kは(数11),∇Kは(数12)により示される。| |は絶対値を示す。
【0031】
【数9】
〈a〉=〈r(x,y,z)〉−〈r0(x0,y0,z0)〉 …(数9)
【0032】
【数10】
a=|〈a〉| …(数10)
【0033】
【数11】
K=a(a+〈a〉・〈ez〉) …(数11)
【0034】
【数12】
∇K=(2+a−1〈a〉・〈ez〉)〈a〉+a〈ez〉 …(数12)
(数8)により示される〈B〉(r)の無限平面導体Pに平行な接線成分Bx及びByと,無限平面導体Pに垂直なな法線成分Bzは,それぞれ(数13),(数14),(数15)により与えられる。
【0035】
【数13】
Bx={μ0/(4πK2)}
×[{Qx(y−y0)−Qy(x−x0)}(∇K)x+KQy]…(数13)
【0036】
【数14】
By={μ0/(4πK2)}
×[{Qy(y−y0)−Qx(x−x0)}(∇K)y+KQx]…(数14)
【0037】
【数15】
BZ={μ0/(4πK2)}
×[{Qx(y−y0)−Qy(x−x0)}(∇K)z] …(数15)
一方,(数13)により示される法線成分BZのx方向に於ける微分は(数16)により表わされる。
【0038】
【数16】
∂BZ/∂x={μ0/(4πK2)}×[{Qx(y−y0)−Qy(x−x0)}{−2(∇K)z(∇K)x/K−a−3(x−x0)(z−z0)2+a−1(x−x0)}−(∇K)zQy] …(数16)
同様に,法線成分BZのy方向に於ける微分は(数17)により表わされる。
【0039】
【数17】
∂BZ/∂y=−{μ0/(4πK2)}×[{Qx(y−y0)−Qy(x−x0)}{2(∇K)z(∇K)y/K+a−3(y−y0)(z−z0)2−a−1(y−y0)}+(∇K)zQx] …(数17)
(数16),(数17)に於いて,
【0040】
【数18】
α=(∇K)z/K …(数18)
【0041】
【数19】
βx=−a−3(x−x0)(z−z0)2+a−1(x−x0)…(数19)
【0042】
【数20】
βy=−a−3(y−y0)(z−z0)2+a−1(y−y0)…(数20)
と置く時,(数16),(数17)はそれぞれ(数21),(数22)により表わされる。
【0043】
【数21】
∂BZ/∂x=−{μ0/(4πK2)}×[{Qx(y−y0)−Qy(x−x0)}{2α(∇K)x−βx}+αKQy] …(数21)
【0044】
【数22】
∂BZ/∂y=−{μ0/(4πK2)}×[{Qx(y−y0)−Qy(x−x0)}{2α(∇K)y−βy}+αKQx] …(数22)
簡単のために,(数13),(数21),(数14),(数22)を共通因子である{μ0/(4πK2)}により規格化して変形を行ない,(数23),(数24),(数25),(数26)を得る。
【0045】
【数23】
Bx=(∇K)x{Qx(y−y0)−Qy(x−x0)}+KQy…(数23)
【0046】
【数24】
∂BZ/∂x=
−2α(∇K)x{Qx(y−y0)−Qy(x−x0)}−αKQy
+βx{Qx(y−y0)−Qy(x−x0)}=
−2αBx+αKQy+βx{Qx(y−y0)−Qy(x−x0)}…(数24)
【0047】
【数25】
By=(∇K)y{Qy(y−y0)−Qx(x−x0)}+KQx…(数25)
【0048】
【数26】
∂BZ/∂y=
−2α(∇K)y{Qx(y−y0)−Qy(x−x0)}−αKQx]
+βy{Qx(y−y0)−Qy(x−x0)}=
−2αBy+αKQx+βy{Qx(y−y0)−Qy(x−x0)}…(数26)
(数23)と(数24)とから明らかなように,∂BZ/∂xの値は,接線成分Bxの−2α倍に等しい項に,2つの付加項を加算した値に等しく,(数25)と(数26)とから明らかなように,∂BZ/∂yの値は,接線成分Byの−2α倍に等しい項に,2つの付加項を加算した値に等しい。
【0049】
ここで,図2に概略位置を示すように,無限平面導体Pの内部の点〈r0(0,0,−z0)〉,z0=0.05[m]に,電流ダイポールのモーメント〈Q〉=(Qx,Qy,0),Qx=Qy=50[nAm]が存在する場合に,Bx((数13))と−∂BZ/∂x((数16))を比較する。x0=y0=y=0,Qz=0を(数13),(数16)に代入して,(数27),(数28)を得る。
【0050】
【数27】
Bx(x,0)=
{μ0/(4πK2)}{−(∇K)xQyx+KQy} …(数27)
【0051】
【数28】
∂BZ(x,0)/∂x=
{μ0/(4πK2)}{2α(∇K)xQyx−αKQy−βxQyx}…(数28)
図3は,無限平面導体Pの上でのBx((数27))及び−∂BZ/∂x((数28))をそれぞれの最大値で規格化した相対磁場強度曲線C1,C2で示す。
【0052】
即ち,曲線C1はBx(x,0)/max|Bx(x,0)|を,曲線C2は{−∂BZ(x,0)/∂x}/max|∂BZ(x,0)/∂x|を表わす。図3から明らかなように,Bx及び−∂BZ/∂xの分布は何れも電流ダイポールが存在する真上の原点(x=0)にピークを持ち,何れも共に電流ダイポールが存在する点の真上に計測点がある時に最大の信号を検出可能であることを示している。また,曲線C2の方が曲線C1よりも鋭いピークを与え,−∂BZ/∂x((数16))による磁場分布はBx((数13))による磁場分布よりも空間分解能が高いことを示している。
【0053】
図4に示す磁場強度曲線C3,C4,C5はそれぞれ,−∂BZ(x,0)/∂xの第1項,第2項,第3項を示す。図4に示す結果から,第3項は第1項及び第2項に対して無視でき,−∂BZ(x,0)/∂xの形状は第1項,第2項により決定されていると見なせ,(数28)は(数29)と近似できる。
【0054】
【数29】
∂BZ(x,0)/∂x=
{μ0/(4πK2)}{2α(∇K)xQyx−αKQy} …(数29)
図5は,(数13),(数16)のそれぞれの第1項と第2項を規格化の後に比較した相対磁場強度曲線を示す図である。図5に於いて,曲線C6は{Bx(x,0)の第1項}/max|Bx(x,0)|,即ち,{−(∇K)xQyx}/max|Bx(x,0)|を表わし,曲線C7は{−∂BZ(x,0)/∂xの第1項}/max|∂BZ(x,0)/∂x|,即ち,{−2α(∇K)xQyx}/max|∂BZ(x,0)/∂x|を表わし,曲線C8は{Bx(x,0)の第2項}/max|Bx(x,0)|,即ち,{KQy}/max|Bx(x,0)|を表わし,曲線C9は{−∂BZ(x,0)/∂xの第2項}/max|∂BZ(x,0)/∂x|,即ち,{αKQy}/max|∂BZ(x,0)/∂x|を表わす。
【0055】
図5に示す結果から,−∂BZ(x,0)/∂xの第1項,第2項の分布は共にそれぞれ,Bx(x,0)の第1項,第2項の分布よりも鋭く,分布の尖鋭度は(数18)で定義されているα=(∇K)z/Kにより規定されている。
【0056】
図6に於いて,磁場曲線C10はα=(∇K)z/Kを,磁場曲線C11は−{(数28)の第1項}/{(数27)の第1項},即ち,2α(∇K)xQyx/(∇K)xQyx=2αを,磁場曲線C12は−{(数28)の第2項}/{(数27)の第2項},即ち,αKQy/KQy=αをそれぞれ示す。図6に示すように,α=(∇K)z/K(曲線C10)は電流ダイポールが存在する原点にピーク点を有し,ピーク値は2/(z−z0)である。−∂BZ(x,0)/∂xの大きさは,Bx(x,0)の大きさとピーク点で2/(z−z0)だけ異なる。(z−z0)は電流ダイポールの存在する深さである。実際の磁場計測からは(z−z0)を決定することは困難である。(数27)と(数29)との比較から(数30)を得る。
【0057】
【数30】
−∂BZ(x,0)/∂x=
{μ0/(4πK2)}{−2α(∇K)xQyx+αKQy}
=2αBx(x,0)−{μ0/(4πK)}αQy …(数30)
即ち,(数30)の第2項が第1項に対して小さい場合には,近似的に(数31)が成立すると見做せる。
【0058】
【数31】
−∂BZ(x,0)/∂x=2αBx(x,0) …(数31)
一般化して(数24)に於いて,−2αBx以外の2つの付加項が−2αBxに対して小さい場合には,近似的に(数32)が成立すると見做せる。
【0059】
【数32】
∂BZ/∂x=−2αBx …(数32)
以上では,−∂BZ/∂xとBxの関係について検討した結果であるが,同様のことが−∂BZ/∂yとByの関係についても成立し,(数26)から近似的に(数33)成立すると見做せる。
【0060】
【数33】
∂BZ/∂y=−2αBy …(数33)
以下,(数32),(数33)からそれぞれ,Bxは−∂BZ/∂x,Byは−∂BZ/∂yに比例すると仮定して,計測された法線成分Bzから接線成分Bx,Byを推定して等磁場線図を求める手順を詳細に説明する。
【0061】
生体の面に垂直な磁場成分Bz(x,y,t)を計測した場合,Bz(x,y,t)のx方向の変化率∂Bz(x,y,t)/∂xと,Bz(x,y,t)の方向の変化率∂Bz(x,y,t)/∂yと求め,(数34)に示すように2乗和の平方根St(x,y,t)を求める。
【0062】
【数34】
St(x,y,t)=√[{∂Bz(x,y,t)/∂x}2
+{∂Bz(x,y,t)/∂y}2] …(数34)
次いで,各点(x,y)について任意の期間での波形St(t,x,y)の積分値I2(x,y)を(数35)により求め,内挿,外挿により各点(x,y)での積分値I2(x,y)が同じ値の点を結ぶ等積分図を求めて,等積分図を表示画面に表示する。
【0063】
【数35】
I2(x,y)=∫│St(x,y,t)│dt …(数35)
なお,(数4),(数35)の積分範囲としては,例えば,心臓を測定の対象とする時には,Q,R,Sの各波の発生する期間,Q波からS波の発生するQRS波(QRS complex)の期間,T波の発生する期間等をとる。更に,(数4),(数35)の積分範囲として複数の積分範囲をとり求めた複数の積分値の間での,等加重(加重をw1,w2とする)を含む和又は差,比を求める等の演算を行ない,内挿,外挿により演算結果が同じ値の点を結ぶ等積分図を求めて,等積分図を表示画面に表示する。例えば,第1の積分範囲としてQRS波の発生する期間T1,第2の積分範囲としてT波の発生する期間T2を設定し,(数4),又は(数35)に従って,期間T1に関する積分値I1,T1(x,y),I2,T1(x,y),期間T2に関する積分値I1,T2(x,y),I2,T2(x,y)をそれぞれを求め,積分値I1,T1(x,y)と積分値I1,T2(x,y)との間,又は積分値I2,T1(x,y)と積分値I2,T2(x,y)との間で,等加重を含む和Isum(x,y),又は差Idif(x,y),比r(x,y)を,(数36)〜(数37),(数38)〜(数39),(数40)〜(数41)に従って求める。
【0064】
【数36】
Isum(x,y)=
w1×I1,T1(x,y)+w2×I1,T2(x,y) …(数36)
【0065】
【数37】
Isum(x,y)=
w1×I2,T1(x,y)+w2×I2,T2(x,y) …(数37)
【0066】
【数38】
Idif(x,y)=
w2×I1,T2(x,y)−w1×I1,T1(x,y) …(数38)
【0067】
【数39】
Idif(x,y)=
w2×I2,T2(x,y)−w1×I2,T1(x,y) …(数39)
【0068】
【数40】
r(x,y)=I1,T1(x,y)/I1,T2(x,y) …(数40)
【0069】
【数41】
r(x,y)=I2,T1(x,y)/I2,T2(x,y) …(数41)
(数36)〜(数37),(数38)〜(数39),(数40)〜(数41)の演算の結果,個人差による等積分図のばらつきが改善され,疾患等による生体機能の異常を検出できる。
【0070】
本発明で得られる等積分図によれば,従来技術で必要としていた生体部位の各時刻に於ける状態を表わす多数の図(マップ)を用いて生体現象を解析することなく,従来技術で必要としていた図(マップ)の数よりもはるかに少数の図(マップ)を用いて,生体部位の全体の状態を把握できる。また,生体磁場の接線成分,又は法線成分を用いて得られる等積分図のピーク位置と,生体内で電流が多く流れる部位が一致するので,等積分図から任意の時間帯での生体内のどの部位で多く電流が流れたかを判別できる。生体磁場分布は個人差が大きいが,本発明では,生体磁場の各方向成分の時間変化を表わす波形から得る任意の時間(期間)での積分値を用いるので,より定量的な生体磁場分布を少数の図(マップ)を用いて表示でき,個人毎の疾患,異常を客観的,定量的に把握できる。
【0071】
本発明では,生体の面に垂直な磁場成分Bz(x,y,t)を計測して,BxをBz(x,y,t)のx方向の変化率∂Bz(x,y,t)/∂xから,ByをBz(x,y,t)の方向の変化率∂Bz(x,y,t)/∂yから推定して求めるので,隣接する各計測点(x,y)に共通して存在する背景となる磁場(妨害磁場)は,x方向,及びy方向で各々キャンセルされることとなる。
【0072】
【発明の実施の形態】
生体磁場計測に於ける座標系として直交座標系(x,y,z)(磁場成分をBx,By,Bzとする)や極直交座標系(r,θ,φ)が用いられる。計測対象が心臓等である場合には,胸壁をxy平面とする直交座標系(x,y,z)が用いられる。計測対象が脳部等である場合には,頭部が球に近い形状であるため極座標系(r,θ,φ)(磁場成分をBr,Bθ ,Bφ とする)が用いられる。本実施例では,生体表面に垂直な磁場成分(法線成分)はBz,Brで表わされ,生体の面に平行な成分(接線成分)は,Bx,By,Bθ ,Bφ で表わされる。以下,本実施例では,直交座標系(x,y,z)を用いて説明するが,極座標系(r,θ,φ)を用いる場合には,BzをBrに,BxをBθ に,ByをBφ にそれぞれ読み替えれば良い。
【0073】
図7は本発明が実施される生体磁場計測装置の概略構成を示す。心磁場計測を行なう生体磁場計測装置は,量子干渉素子(SQUID)からなる複数の磁場センサを用いる。環境磁場雑音の影響を除去するために,心磁場計測は磁場シールドルーム1の内部で行なわれる。被検者2はベッド3に横たわり計測する(図11に示すように,xy面がベッドの面となるように直交座標系(x,y,z)を設定する)。被検者2の胸部の上方に,SQUIDとそのSQUIDに接続した検出コイルとが一体化された磁場センサを複数個収納し,液体Heを満たしたデュワ4が配置される。液体Heは磁場シールドルーム1の外部の自動補給装置5により,連続的に液体Heが補充されている。
【0074】
磁場センサからの出力は,検出コイルが検出した磁場強度に比例する電圧を出力するFLL(Flux Locked Loop)回路6に入力される。このFFL回路はSQUIDの出力を一定に保つようSQUIDに入力された生体磁場の変化を帰還コイルを介してキャンセルしている。この帰還コイルに流した電流を電圧に変換することにより,生体磁場信号の変化に比例した電圧出力が得られる。この電圧出力は,増幅器(図示せず)により増幅され,フイルター回路7により周波数帯域が選択され,AD変換器で(図示せず)AD変換され,計算機8に取り込まれる。計算機8では,各種の演算処理が実行され,演算処理結果がデイスプレイに表示され,更に,プリンタにより出力される。
【0075】
磁場の接線成分を検出する検出コイルとして,コイル面がx方向,及びy方向を向いた2つのコイルを使用し,磁場の接線成分を検出する検出コイルとする。また磁場の法線成分を検出するコイルとしては,z方向を向いたコイルを使用する。これら磁場センサ(20−1,20−2,〜,20−8,21−1,〜,21−8,22−1,〜,22−8,23−2,〜,23−8,24−1,〜,24−8,25−1,〜,25−8,26−1,〜,26−8,27−1,〜,27−8)の配置図を図8に示す。磁場センサ9はデュワ内部の底部から垂直の方向に設置し,また各センサ間の距離はx,y方向における磁場の変化量を正確に捕らえるようにx方向,y方向に等間隔になるようにした。ここで,センサ間距離は25mmとし,センサ数は8×8の64チャンネルとした。
【0076】
この配列方法に従って,設置した磁場センサの1本の概略図を図9及び図10に示す。図9の磁場センサは生体表面に対して垂直な成分Bzを測定するセンサで,超伝導線(NbーTi線)で作製したコイルの面がz方向を向いている。このコイルは2つの逆向きのコイルを組み合わせたもので生体に近い方を検出コイル10とし,遠い方のコイルを外部磁場雑音を除去する参照コイル(reference coil)11とし1次微分コイルを形成している。ここでコイル径を20mmφ,コイル間のベースラインを50mmとした。外部磁場雑音は生体より遠い信号源から生じており,これらは検出コイル及び参照コイルで同じように検出される。一方,生体からの信号はコイルに近いため検出コイル10でより強く検出される。このため,検出コイル10では信号と雑音が検出され,参照コイル11では雑音のみが検出される。従って,両者のコイルで捕らえた磁場の差を取ることによりS/Nの高い計測ができる。
【0077】
1次微分コイルはSQUID12を実装した実装基板の超伝導配線を介してSQUIDのインプットコイルに接続し,コイルで検出した生体磁場をSQUIDに伝達する。生体磁場成分の接線成分Bx,Byを検出する磁場センサの概略図を図10に示す。この磁場センサは平面型のコイルを使用しており,検出コイル10’,10”及び参照コイル11’,11”が1つの平面に並び,コイル径は20mm×20mm,ベースラインは50mmとした。コイルは法線成分用と同様にSQUID12’,12”の実装基板に接続している。4角柱の支持体の互いに直交する2面に,これらx成分検出用磁場センサ13とy成分検出用磁場センサ14を張り付けることにより,x及びy成分を測定できる磁場センサを形成している。この4角柱は図8に示すようにアレイ状に配置した。
【0078】
磁場センサを内蔵したデュワは,ベットに横たわった被験者の胸部上方に配置し心臓から発生する磁場を計測する。ここで,体の横方向をx軸とし,体の上下方向をy軸とする。磁場センサ(20−1,〜,20−8,21−1,〜,21−8,22−1,〜,22−8,23−2,〜,23−8,24−1,〜,24−8,25−1,〜,25−8,26−1,〜,26−8,27−1,〜,27−8)の配置と胸部30との位置関係を図11に示す。この位置関係で計測した生体磁場信号を図12(a),(b),(c)に示す。
【0079】
図12(a),(b),(c)は,各磁場センサ(8×8のアレイ状に並んだ磁場センサ)による,ある健常者の心臓から発する磁場の時間変化を表わす波形を示し,各図の中の64個の波形の横軸が時間軸,縦軸が検出された磁場強度を示している。図12(a)は接線成分Bx,図12(b)は接線成分By,図12(c)は法線成分Bz,の各成分の時間(横軸)の変化を,各磁場成分毎に信号強度の最も大きいチャンネルの絶対値の最大値で規格化して表示している。
【0080】
図13に示す点線,実線は,健常者について計測された特定の2チャンネルに関する接線成分(Bx)の時間変化を表わす波形を実線,点線で示している。心臓の心室が脱分極したQRS波が出現する時間帯T1でのQ波,R波,及びS波のピーク(極値)を与える時点を図13中にそれぞれtQ,tR,tsで示した。また,心臓の再分極過程であるT波の出現する時間帯T2とし,ピーク(極値)を与える時点をtTで示した。
【0081】
図13に於いて,P波は心房の興奮(脱分極(depolarization))を示し,Q波,R波,及びS波からなるQRS波は心室の興奮(脱分極)を示し,T波はQRS波に続いて出現するゆるやかなふれであり,心筋の再分極(repolarization)を示している。脱分極は,はじめに筋の中を興奮が広がる過程であり,再分極は,興奮した筋が静止状態に戻る過程である。
【0082】
図14(a),(b),(c)は,tQ,tR,tsの時点での心磁場の強度の等しい点を線で結んだ等磁場線図を示す。図14(a),(b),(c)は,(数4)の│Bxy(x,y,t)│で示され,64個所で計測された接線成分Bx,Byを合成した2次元のベクトル強度分布を示している。更に,図14(a),(b),(c)中の矢印は,64個所の各測定点での電流源が各測定点での磁場を作っているものとして仮定した時の2次元の電流ベクトルを示している。この電流ベクトルにより心臓内での電流方向及び分布が推定できる。図14(a),(b),(c)の各図の横軸x,縦軸yは磁場センサが配置されている座標を示す。図14(a)に示すように,Q波のピーク時では,心臓内を流れる電流は心室中隔で右下方向に流れ,図14(b)に示すように,R波のピーク時では,左心室全体で斜め下方向に電流が大きく流れ,図14(c)に示すように,S波のピーク時では,心室基部の方向の左斜め上方向に電流が流れ,心室の脱分極過程が終了することが分かる。このように,図14(a),(b),(c)の等磁場線図により各時間での心臓内の活動部位及び電流方向が可視化できることが分かる。
【0083】
図15は,心磁波形のQ波からS波までのQRS波が出現する時間帯T1に於いて検出された2つの接線成分Bx,Byから得た2次元ベクトル強度│Bxy(x,y,t)│を各点(x,y)について,(数4)の積分を行ない,同じ積分値の点を結んだ等積分図である。図15のx軸,y軸は,生体表面に配置された磁場センサの座標を表し,等積分図の各曲線の黒丸の近傍に示した数値はその曲線のもつ積分値を示す。図15から,QRS波の時間帯に心筋に流れた電流の多くは心筋の厚みが大きい左心室で流れたことが分かり,等積分図でのピーク位置と心臓に流れる電流量の多い部位とがよく対応することが分かった。
【0084】
図16は,図12(a),(b),(c)から図15のデータを求めたのと同一の健常者について,法線線分Bzを各点(x,y)に於いて計測し,(数34)によりSt(x,y,t)を求め,QRS波の時間帯T1について,(数35)の積分を行ない同じ積分値の点を結んだ等積分図である。以下,図16から図21に於いて,x軸,y軸は,生体表面に配置された磁場センサの位置座標(単位はmである)を表わす。図16から図21の曲線の黒丸の近傍に示した数値はその曲線のもつ積分値を示す。
【0085】
図15に示す磁場の接線成分Bx,Byから求めた等積分図と,図16に示す磁場の法線成分Bzから求めた等積分図のパターンは一致することが判明した。この一致は,(数6)及び(数7),又は(数32)及び(数33)が実際の実験データでほぼ成立していることを意味している。
【0086】
図17は,図15を求めたのと同一の健常者について,T波の時間帯T2に於いて検出された2つの接線成分Bx,Byから得た2次元ベクトル強度│Bxy(x,y)│を各点(x,y)について,(数4)の積分を行ない同じ積分値の点を結んだ等積分図である。図17に於いて,1e+003は,1000を示す。
【0087】
図18は,時間帯T2についての(数4)の積分値と,QRS波が発生した期間帯T1についての(数4)の積分値との差(数37)を表わす等高線図である。即ち,図18は図17に示す等積分図から図15に示す等積分図を差し引いた図である。T波の時間帯T2の方が,QRS波の時間帯T1よりも長い。また,図17のパターンは,図15に示すパターンと似ている。このため,図18に示す等高線図は全体が正の値となる。図17,図18の曲線の黒丸の近傍に示した数値はその曲線のもつ上記の積分値の差の値を示す。
【0088】
次ぎに,心筋梗塞の患者の心磁場計測に関する結果を,図19,図20,図21に示す。図19は,QRS波の時間帯T1について図15と同様にして求めた等積分図,図20は,T波の時間帯T2について図17と同様にして求めた等積分図,図21は,T波の時間帯T2についての積分値(数4)と,QRS波の時間帯T1についての積分値(数4)との差(数38)を表わし,図18と同様にして求めた等高線図である。即ち,図21は,図20に示す等積分図から図19に示す等積分図を差し引いた図である。図19,図20の曲線の黒丸の近傍に示した数値はその曲線のもつ積分値を示し,図21の曲線の黒丸の近傍に示した数値はその曲線の持つ上記の積分値の差の値を示す。
【0089】
図19に示す時間帯T1での等積分図は,図15及び図16に示す等積分図とあまり差のないパターンであり,左心室に電流が多く流れたことが分かる。しかし,図20に示す時間帯T2での等積分図は,図19に示す時間帯T1での等積分図とは異なるパターンとなり,心筋梗塞のために,時間帯T1と時間帯T2では心臓に流れる電流量のパターンが大きく異なることが明確に分かる。更に,図21に示す等高線図は全体が負の値をもち,全体が正の値をもつ図18に示す健常者の等高線図とは大きく異なり,心筋梗塞の患者では,時間帯T2で心臓に流れる電流が障害を受けていることが明確に分かる。
【0090】
以上説明したように,心臓の時間帯T1と時間帯T2に於ける磁場強度を画像化するすることにより,患者に苦痛を与えることなく非侵襲的に,1分以下の短時間で,健康な状態と異常な状態(例えば,心筋梗塞の状態,虚血状態等)とを容易に判別できる。即ち,逆問題を解くことな疾患部位の早期発見,推定が可能となる。
【0091】
図22には生体磁場計測装置のコンピュータの画面上での処理画像例を示す。マルチウィンド形式になっており,各処理画像をそれぞれのウィンド上に表示できる。また,先に説明した図15から図21では磁場強度や積分値の高低がわかるように各曲線に数値を入れたが,ディスプレイ上では等高線の高低によって色分けをして3次元カラー表示している。同時に,図13に示すような磁場成分の時間変化を表わす波形(心磁図),更には心電図も表示できるようになっており,心臓疾患に関する総合的な解析ができるようにしている。
【0092】
図23は本発明の生体磁場計測装置のデスプレイに表示された処理画像の一例を示す図である。図23に於いて,MCGは心磁図の例,QRSは積分範囲をQRS波の発生する期間T1とし(数35)により得られた第1の等積分図,Tは積分範囲をT波の発生する期間T2とし(数35)により得られた第2の等積分図,(T−QRS)は第1及び第2の等積分図の差の各例を示す。図22,図23に示すディスプレイ上の表示例では,等高線の高低によって色分けをして3次元カラー表示している。
【0093】
なお,(数4),(数35)に於いて,積分を行なわず簡便な方法により,I1(x,y),I2(x,y)を求めることもできる。即ち,以下の(数42)〜(数45)からI1(x,y),I2(x,y)を求めて,更に,(数36)〜(数41)を適用する。生体から発する磁場の接線成分(生体の面に平行な成分)Bx(x,y,t),By(x,y,t)を計測する場合には(但し,直交座標系(x,y,z)に於いて生体の面に平行な面をxy面,生体の面に垂直な軸をzとする),接線成分BxとByの2乗和の平方根から2次元ベクトル強度│Bxy(x,y)│(│ │は絶対値を表わす)を(数42)により求める。
【0094】
【数42】
│Bxy(x,y,t0)│=√{(Bx(x,y,t0))2+(By(x,y,t0))2}…(数42)
次いで,各点(x,y)について任意の時点での波形│Bxy(x,y,t0)│の値I1(x,y)を(数43)により求め,内挿,外挿により各点(x,y)でのI1(x,y)が同じ値の点を結ぶ等磁場線図を求めて,等磁場線図を表示画面に表示する。
【0095】
【数43】
I1(x,y)=│Bxy(x,y,t0)│ …(数43)
生体の面に垂直な磁場成分Bz(x,y,t)を計測する場合には,垂直な磁場成分Bz(x,y,t0)のx方向の変化率∂Bz(x,y,t0)/∂xと,
Bz(x,y,t0)の方向の変化率∂Bz(x,y,t0)/∂yと求め,(数44)に示すように2乗和の平方根St0(x,y,t)を求める。
【0096】
【数44】
St0(x,y,t0)=√[{∂Bz(x,y,t0)/∂x}2
+{∂Bz(x,y,t0)/∂y}2]…(数44)
次いで,各点(x,y)について任意の時点での波形St0(x,y,t0)の値I2(x,y)を(数45)により求め,内挿,外挿により各点(x,y)での値I2(x,y)が同じ値の点を結ぶ等磁場線図を求めて,等磁場線図を表示画面に表示する。
【0097】
【数45】
I2(x,y)=│St0(x,y,t0)│ …(数45)
なお,(数42)〜(数45)に於いてt0として,例えば,心臓を測定の対象とする時には,心室が収縮した時のQ,R,Sの各波の極大値を与える時点をとる。更に,(数42)〜(数45)に於いてt0として,複数のt0をとり求めた複数の値の間での,等加重を含む和又は差,比を求める等の演算を行ない,内挿,外挿により演算結果が同じ値の点を結ぶ等磁場線図を求めて,等磁場線図を表示画面に表示する。このような方法によっても,上記で説明した(数4),(数35)を用いる方法とほぼ同様な結果を得ることができる。
【0098】
従来方法により法線成分Bzを測定して得た患者Xの心磁図のQ波,R波,S波の極値が出現する時点での等磁場線図を,図24(a),(b),(c)に示す。図24(a),(b),(c)に於いて,点線は吸い込まれる磁場の等磁場線図を示し,実線は沸き出す磁場の等磁場線図を示し,白抜き矢印は電流ダイポールの大きさ,方向を示している。図24(a),(b),(c)に示す等磁場線図には,心臓内に存在する電流源を1つと仮定した時の電流ダイポールの位置を白抜き矢印により示して重ねて表示している。図24(a)に示すように,Q波の極値が出現する時点では,心室中隔で右下方向に電流が流れ,図24(b)に示すように,R波の極値が出現する時点では,左室全体で左斜め下方向に電流が大きく流れる。また,図24(c)に示すように,S波の極値が出現する時点では,心室基部方向に右斜め上に電流が流れ,心室の脱分極過程が終了するのが分かる。
【0099】
上記患者Xの心臓から発する磁場の接線成分Bx,Byを測定し,Q波,R波,S波の各極値が出現する時点に於いて,接線成分を(数42),(数43)に基づいて合成した等磁場線図を,図25(a),(b),(c)に示す。
【0100】
図25(a)のパターンと図24(a)のパターン,図25(b)のパターンと図24(b)のパターン,図25(c)のパターンと図24(c)のパターン,はそれぞれほぼ一致する。しかし,図25(b)に示すR波の極値が出現する時点のパターンでは,心筋は広い領域で活動しており,図24(b)のR波の極値が出現する時点のパターンでは鮮明でなかった複数の電流源が容易に判別でき,電流源の1つは左方向に存在し,他の電流源は下方に存在することが分かる。
【0101】
図24(a),(b),(c)に示す,Q波,R波,S波の各極値が出現する時点での法線成分Bzの等磁場線図データをそれぞれ用いて,(数44),(数45)に基づいて求めた,Q波,R波,S波の各極値が出現する時点の等磁場線図を,図26(a),(b),(c)に示す。図26(a),(b),(c)に示す結果から,図24(a),(b),(c)に示す法線成分Bzの等磁場線図や,(数1)に基づくアローマップでは判別しにくかった複数の電流源が判別できる。図26(a),(b),(c)のパターンは,図25(a),(b),(c)に示すパターン(接線成分Bx,By合成から得られるBxyの等磁場線図)と同等であることが分かる。このことは,(数6)及び(数7),又は(数32)及び(数33)が実際の実験データでほぼ成立していることを意味している。
【0102】
なお,図24(a)から図26(c)の各図に於いて,横軸x,縦軸yは,生体表面に配置された磁場センサの位置座標を表わす。
【0103】
以上の説明では,心磁場計測に関する例をとって本発明を説明したが,脳磁図(MEG)を得る脳磁場計測の場合にも本発明が適用できることは言うまでもない。
【0104】
図27は脳磁場を計測する脳磁場計測システムの脳磁場計測用デュワの内部構成の一部を示す断面図である。図27に示すように,脳磁場を計測する場合には,胸部と異なり頭部は球状であるため,SQUID磁束計103−1,103−2,…,103−Nを内蔵する頭部計測用デュワ102の底面の形状を半球として頭部100を覆うようにする。SQUID磁束計103−1,103−2,…,103−Nは頭部計測用デュワ102の内側の面に沿って放射状に配置され,各SQUID磁束計の先端面(磁場計測面)は半球面の接線面にほぼ平行となるように配置されている。半球の中心が頭部の脳部のほぼ中心と一致するように脳部を球と仮定して半球の半径は設定され,この半径は成人でも測定できるよう約10cmとした。頭部計測用デュワ102の内部には熱輻射シールド部材104が配置され頭部計測用デュワの上部は上板105により密閉されている。SQUID磁束計103−1,…,103−Nにより検出された信号は信号線106−1,…,106−Nを通して頭部計測用デュワの外部に取り出される。
【0105】
図28は図27に示す脳磁場計測システムにより計測可能な磁場成分と頭部の関係を説明する図である。頭部の上方に放射状に複数の位置の1つO’配置されたQUID磁束計により計測可能な脳磁場Bの成分は,Oを原点とする極座標(r,θ,φ)に於けるr方向の成分Br(法線成分)である。図28に於いて,成分Bθ,Bφは頭部表面に平行な接線成分を示し,原点Oは脳部を球と仮定した時の球の中心である。体性感覚として右中指に電気刺激を与え,図27に示す脳磁場計測システムにより法線成分Brを検出し,電気刺激を与えてから約100msec後に出現する脳波が最大となる時点での等磁場線図を求める。図29(a),(b)は,図27に示す脳磁場計測システムにより得られる等磁場線図の一例を示す図であり,図29(a)は従来の方法による法線成分Brの等磁場線図,図29(b)は以下に示す本発明の(数46)を使用して得られる等磁場線図(地球儀に示された地図の如く,脳部を近似する球面に表示された脳磁場の強度分布を示す。)を示す。
【0106】
【数46】
St(θ,φ,t)=
√{(∂Br(t)/∂θ)2+(∂Br(t)/∂φ)2} …(数46)
図29(a)に示す等磁場線図には,脳内に存在する電流源を1つと仮定した時の電流ダイポールの位置を白抜き矢印により示して重ねて表示している。図29(a)において,点線は吸い込まれる磁場の等磁場線図を示し,実線は沸き出す磁場の等磁場線図を示し,白抜き矢印は電流ダイポールの大きさ,方向を示している。図29(a)に示す法線成分Brの等磁場線図で従来推定していた電流源(白抜き矢印で示す電流ダイポール)が,図29(b)に示す等磁場線図ではピーク位置Aに対応して出現していることが容易に直視できる。なお,図27に図示しない脳磁場計測システムのその他の構成は基本的に図7に示す生体磁場計測装置の構成と同一である。
【0107】
以上説明した本発明による各種の方法により得られる心磁場,脳磁場に関する等磁場線図を使って,磁場源を解析する方法として,逆問題を解く様々のアルゴリズムが考えられる。実際に多く使用されている単純なアルゴリズムは,磁場源として単一あるいは2つ程度の電流ダイポールを想定し,これら電流ダイポールが存在する位置座標を初期条件として任意に仮定して,各位置座標に存在する電流ダイポールが,ビオサバールの式で表される磁場を作るものとして,実測した磁場の計測点(x,y)での磁場を計算する。計算された磁場〈Bc(x,y)〉と実測値の磁場〈Vm(x,y)〉(m=1,2,…,M:Mは実測される磁場の計測点の総数)との差で表される次の(数47)に示す評価関数を計算し,各電流ダイポールの位置座標を変化させて,評価関数Lの最小値を解析的に求めていく。(数47)に於いて,Gは定数,〈ns〉は法線又はz方向の単位ベクトルであり,加算記号Σは,m=1,2,…,Mに関する加算を示す。
【0108】
【数47】
L=Σ{〈Vm(x,y)〉−G([〈Bc(x,y)〉]・ns)}2…(数47)
しかし,(数47)に基づく方法では,磁場の広い測定領域を解析する場合,最小値に収束しない場合も出てくる。本発明では,評価関数Lを算出の際のダイポールの位置と個数の初期条件を,(数3),(数34),又は(数46)に基づく等磁場線図に於けるピーク位置をダイポールの位置とし,更に,等磁場線図に於けるピークの個数をダイポールの個数として予め決める。このように初期条件を与え評価関数Lを解くことにより,磁場源解析が必ず収束する。ディスプレイ上に表示される,(数3),(数34),又は(数46)に基づく心磁場,脳磁場に関する等磁場線図上での各ピーク位置を指定することにより,自動的に各ピーク位置の座標とその個数が上記の初期値として自動的に装置に入力され,評価関数Lが解かれ,収束する磁場源解析結果が得られる。
【0109】
従って,従来技術のように試行錯誤的に初期値を設定するのではなく,計測の結果得られる等磁場線図のデータに基づいて,初期値設定をほぼ一義的にかつ容易に可能ででき,効率よくより正確に逆問題を解くことが可能となる。
【0110】
なお,以上の説明に於いて使用した等磁場線図を表わす各図では,医療の分野で行なわれている通例に従い,人体の右側を各図の左側に表示し,人体の左側を各図の右側に表示している。
【0111】
【発明の効果】
本発明では,ベクトル計測により接線成分Bx,Byを計測することなく,法線成分Bzの計測のみから,(数2)に示す従来技術に於けるBxyに基づく等磁場線図と等価的な等磁場線図が得られる。従来技術の於ける法線成分Bzから直接得る等磁場線図では,複数の電流源は判別しにくかったが,本発明の等磁場線図では,(数2)に示す従来技術に於けるBxyに基づく等磁場線図と同様に,電流源の直上にピークパターンが出現するので,生体内の複数の電流源を直読でき,複数の電流源の位置,大きさ等を解析する逆問題が容易に解けるようになる。本発明の装置によれば,心筋梗塞,虚血等の発見,不整脈を生じている位置の発見,心筋肥大の発見,術前術後の心筋状態の変化の評価等の心臓に関する疾患の発見,状態の確認等が容易にできる。
【図面の簡単な説明】
【図1】本発明に於いて,心磁場の発生を,無限平面導体中の電流ダイポールから発生する磁場によりモデル化して解析するための図。
【図2】本発明に於いて,無限平面導体の内部に存在する電流ダイポールのモーメントの概略位置を示す図。
【図3】本発明に於いて,無限平面導体の上でのBx及び−∂BZ/∂xをそれぞれの最大値で規格化した相対磁場強度曲線C1,C2を示す図。
【図4】本発明に於いて,−∂BZ(x,0)/∂xの第1項,第2項,第3項を示す磁場強度曲線C3,C4,C5を示す図。
【図5】本発明に於いて,Bx,∂BZ/∂xのそれぞれの第1項と第2項を規格化の後に比較した相対磁場強度曲線C6,C7,C8,C9を示す図。
【図6】本発明に於いて,α=(∇K)z/K,{−∂BZ(x,0)/∂xの第1項}/{Bx(x,0)の第1項},{−∂BZ(x,0)/∂xの第2項}/{Bx(x,0)の第2項}の各々の磁場強度曲線C10,C11,C12を示す図。
【図7】本発明が実施される心磁場計測を行なう生体磁場計測装置の概略構成を示す図。
【図8】本発明が実施される心磁場計測を行なう生体磁場計測装置に於ける磁場センサの配置構成を示す図。
【図9】本発明が実施される心磁場計測を行なう生体磁場計測装置に於ける磁場の法線成分を検出する磁場センサ単体の構成を示す図。
【図10】本発明が実施される心磁場計測を行なう生体磁場計測装置に於ける磁場の接線成分を検出する磁場センサ単体の構成を示す図。
【図11】本発明が実施される心磁場計測を行なう生体磁場計測装置に於ける磁場センサの配置と人体の胸部との位置関係を示す図。
【図12】本発明の実施例に於いて,各磁場センサ位置に於いて計測した健常者の心臓から発する磁場の各方向の成分の時間変化を表わす波形を示す図。
【図13】本発明の実施例に於いて,健常者について計測された特定の2チャンネルに関する接線成分(Bx)の時間変化を表わす波形を示す図。
【図14】本発明の実施例に於いて,磁場の接線成分Bx,Byを計測した健常者の心磁波形から得た,Q波,R波,S波の各波のピーク時に於ける等磁場線図。
【図15】本発明の実施例に於いて,健常者の心磁波形のQRS波が出現する時間帯に於いて検出された2つの接線成分から得た等積分図。
【図16】本発明の実施例に於いて,健常者の心磁波形のQRS波が出現する時間帯に於いて検出された法線線分から得た等積分図。
【図17】本発明の実施例に於いて,健常者の心磁波形のT波が出現する時間帯に於いて検出された2つの接線成分から得た等積分図。
【図18】図17に示す等積分図から図15に示す等積分図を差し引いた図。
【図19】本発明の実施例に於いて,心筋梗塞の患者の心磁波形のQRS波が出現する時間帯に於いて検出された2つの接線成分から得た等積分図。
【図20】本発明の実施例に於いて,心筋梗塞の患者の心磁波形のT波が出現する時間帯に於いて検出された2つの接線成分から得た等積分図。
【図21】図20に示す等積分図から図19に示す等積分図を差し引いた図。
【図22】本発明が実施される心磁場計測を行なう生体磁場計測装置のパソコンでの出力画面の例を示す図。
【図23】本発明の生体磁場計測装置のデスプレイに表示された処理画像の一例を示す図。
【図24】従来方法により法線成分Bzを測定して得た,心磁図(MCG)のQ波,R波,S波の極値が出現する時点での等磁場線図を示す図。
【図25】本発明の実施例に於いてそれぞれ,心臓からの磁場の接線成分Bx,Byを測定し,Q波,R波,S波の極値が出現する時点に於いて,接線成分を合成したBxyの等磁場線図を示す図。
【図26】本発明の実施例に於いて,図24に示す,Q波,R波,S波の極値が出現する時点での法線成分Bzの等磁場線図データをそれぞれ用いて,(数43),(数44)に基づいて求めた,各時点での等磁場線図を示す図。
【図27】本発明の実施例に於いて,脳磁場を計測する脳磁場計測システムの脳磁場計測用デュワの内部構成の一部を示す断面図。
【図28】図27に示す脳磁場計測システムにより計測可能な磁場成分と頭部の関係を説明する図。
【図29】図27に示す脳磁場計測システムにより得られる等磁場線図の一例を示す図。
【符号の説明】
1…磁場シールドルーム,2…被検者,3…ベッド,4…デュワ,5…自動補給装置,6…FFL回路,7…フイルター回路,8…計算機,10,10’,10”…検出コイル,11,11’,11”…参照コイル,12,12’,12”…SQUID,13…x成分検出用磁場センサ,14…y成分検出用磁場センサ,20−1,20−2,〜,20−8,21−1,〜,21−8,22−1,〜,22−8,23−2,〜,23−8,24−1,〜,24−8,25−1,〜,25−8,26−1,〜,26−8,27−1,〜,27−8…磁場センサ,30…胸部,103−1,103−2,…,103−N…SQUID磁束計,100…頭部,102…頭部計測用デュワ,104…熱輻射シールド部材,105…上板,106−1,…,106−N…信号線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biomagnetic field that measures a biomagnetic field generated by neural activity of the brain of a living body, myocardial activity of the heart, and the like using a plurality of magnetometers composed of highly sensitive quantum interference devices (SQUIDs). The present invention relates to a measurement method and a biomagnetic field measurement apparatus.
[0002]
[Prior art]
The present invention relates to a biomagnetic field that measures a biomagnetic field generated by nerve activity of the brain of a living body, myocardial activity of the heart, and the like using a plurality of magnetometers composed of highly sensitive quantum interference devices (SQUIDs). The present invention relates to a measurement method and a biomagnetic field measurement apparatus.
[0003]
The biomagnetic field includes a magnetic field generated by a volume current flowing in the living body, in addition to a magnetic field generated by a current dipole. Measurement of the normal component of the biomagnetic field (Bz (Z component in the orthogonal coordinate system) or Br (radial component in the polar coordinate system)) is considered to be less susceptible to volume current. In the prior art, the surface of the detection coil connected to the SQUID is arranged in parallel to the living body surface, and Bz or Br, which is a normal component perpendicular to the living body surface, is measured. The result of biomagnetic field measurement was displayed by a waveform representing the time change of the measured magnetic field component and an isomagnetic field diagram (contour map) connecting points at which the measured magnetic field component has the same intensity at an arbitrary time. In addition, various analysis methods for analyzing the magnetic field source generating the biomagnetic field from the obtained isomagnetic field diagram have been proposed. In a typical analysis method, the magnetic field source is replaced with a current dipole. I was doing it.
[0004]
The isomagnetic field diagram of the normal component (Bz or Br) of the magnetic field generated by the current dipole is a pattern having a magnetic field extraction pole and a magnetic field suction pole at positions separated from the magnetic field source (current dipole). The size, position, direction, and the like of the magnetic field source (current dipole) are analyzed based on the magnetic field intensity at the two poles and the distance between the two poles.
[0005]
In the first prior art (H. Hosaka and D. Cohen, J. Electrocardiol., 9 (4), 426-432 (1976)), it was measured to make it easier to see the direction and intensity of the current in the myocardium. As a method of displaying the current source distributed in the myocardium using the isomagnetic field diagram of the normal component Bz, the current vector <J (x, y)> defined by (Equation 1) is indicated by an arrow on each measurement point. The arrow map expressed by is devised. In the following description, parentheses <> indicate that the symbol in <> is a vector, for example, <J> indicates that J is a vector.
[0006]
[Expression 1]
<J (x, y)>
= (∂Bz (x, y) / ∂y) <ex> − (∂Bz (x, y) / ∂x) <ey>
... (Equation 1)
In (Expression 1), <ex> is a unit vector in the x direction, and <ey> is a unit vector in the y direction. However, when there are a plurality of current sources, there is a problem that it is difficult to distinguish individual current sources from the isomagnetic field diagram of the normal component Bz.
[0007]
In the second prior art (K. Tukada et al., Reveiw of the Scientific Instruments, 66 (10) 5085-5091 (1995)), in order to visualize a plurality of distributed current sources, the normal component (Bz or Instead of measuring Br), the surface of the detection coil is arranged perpendicular to the surface of the living body, and the tangential components Bx and By are measured. The measured tangential components Bx and By are displayed as isomagnetic field diagrams for each component. Although the tangential components Bx and By measured by the prior art 2 can be influenced by volume current, the equal magnetic field of the two-dimensional vector intensity Bxy obtained by synthesizing Bx and By measured at time t according to (Equation 2). In the diagram, since a peak is always obtained directly above the current dipole, each current dipole can be separated and visualized even when there are a plurality of current dipoles.
[0008]
[Expression 2]
│Bxy (x, y, t) │
= √ {(Bx (x, y, t)) 2 + 2 + (By (x, y, t)) 2} (Expression 2)
In the third prior art (Y. Yoshida et al., Tenth International Conference on Biomagnetism, Santana Fe, New Mexico, Feb. 20 (1996)), a vector magnetic field sensor comprising three detection coils whose coil surfaces are orthogonal to each other. Is used to detect the normal component and two tangential components of the biomagnetic field, and the detection result of the magnetic field component is converted to an orthogonal coordinate system to obtain the components Bx, By, Bz of the orthogonal coordinate system, and the normal component Bz and The isomagnetic field diagrams of the two-dimensional vector intensity Bxy are respectively displayed.
[0009]
In the fourth prior art (K. Tsukada, et.al., Tenth International Conference on Biomagnetism, Santana Fe, New Mexico, Feb. 20 (1996)), two tangential components Bx and By of the biomagnetic field are detected, Comparison is made between the isomagnetic field diagram based on | Bxy | = | Bx + By | and the isomagnetic field diagram based on the normal component Bz.
[0010]
As a diagram showing the measurement result of the electrophysiological phenomenon in the living body, there are an electroencephalogram (MEG) obtained by measuring with an electroencephalograph and an electrocardiogram (ECG) obtained by measuring with an electrocardiograph. In electrocardiogram measurement, a body surface potential map that maps an electrocardiogram using a plurality of electrodes is a well-known technique. These electroencephalograms or body surface electrocardiograms were displayed as equipotential diagrams connecting equal potential points.
[0011]
In the fifth prior art (TJMontague et al., Circulation 63, No.5, pp1166-1172 (1981)), the waveform representing the time change of the output of each of a plurality of electrodes is integrated over an arbitrary time interval, etc. The integral map (isointegral map) is displayed as a body surface electrocardiogram.
[0012]
[Problems to be solved by the invention]
In the following description, “biomagnetic field” means “magnetic field generated from biomagnetic field”, “cardiac magnetic field measurement” means “measurement of magnetic field generated from heart”, and “cardiac magnetic waveform” refers to “cardiac magnetic field” It means “a waveform represented by a magnetocardiogram (MCG) obtained by measurement”. Further, “magnetomagnetic field measurement” means “measurement of a magnetic field emitted from the brain”, and “magnetomagnetic waveform” means “a waveform represented by a magnetoencephalogram (MEG) obtained by magnetoencephalogram measurement”.
[0013]
The isomagnetic field diagram for each component in the prior art has its characteristics. When a single current dipole exists, the isomagnetic field diagram of the normal component Bz indicates the position, size, direction, etc. of the current source. Easy to analyze. On the other hand, the isomagnetic field diagram of the two-dimensional vector intensity Bxy obtained from the measurement results of the tangential components Bx and By has a feature that each current dipole can be easily distinguished even when a plurality of current dipoles exist. However, since the number of coils for detecting the magnetic field is required in each of the x and y directions, the number of coils is doubled as compared with the detection of only the normal component Bz. Further, in the vector measurement for measuring all the components of Bx, By, and Bz, three times as many coils are required as compared with the detection of only the normal component Bz. For this reason, the number of magnetic field sensors composed of detection coils and SQUIDs increases, and further, the number of signal processing circuits and the like increase, and there is a problem that the biomagnetic field measurement system becomes an expensive system. Further, the first conventional technique has a problem in that it is difficult to identify the detailed distribution state of the current source because it only displays an arrow on each measurement point.
[0014]
The position, size, direction, etc. of the current source in the living body at any point in time can be analyzed using the isomagnetic field diagram represented by the biomagnetic field component, and detailed changes in information such as the position, size, direction, etc. of the current source can be analyzed. I can know. In the prior art, a diagnosis of a disease or the like is performed by capturing a dynamic change in various information using a large number of figures displayed or output on an apparatus. However, in the prior art, many figures representing various information are required for diagnosis, and abnormal changes in various information are empirically performed. As described above, in the conventional technique, comprehensive information indicating which current flows in which part of the living body or where the abnormal biological current flows is displayed as one figure. The processing for was not executed. Further, in the body surface electrocardiogram, in the integral diagram showing the points having the same integral value at an arbitrary time interval (period in which each wave of Q, R, S is generated, period in which the S wave is generated from T wave, etc.), Heart information can be obtained with one electrocardiogram without requiring a plurality of equipotential diagrams at each successive time. However, in the equipotential diagram, assuming that the current source in the heart is a single current dipole, a figure in which an anode peak and a cathode peak exist at positions away from directly above the current dipole rather than immediately above the current dipole. There is a problem of becoming. Furthermore, if the current dipole position does not change and the direction of the current dipole changes, the peak positions of the anode and the cathode change, and when the potential is integrated, the current source does not correspond to the integrated value peak. It was. Further, even if the biomagnetic field component obtained by biomagnetic field measurement is simply integrated, there is a problem that the peak position of the biomagnetic field component does not correspond to the position of the current source, as in the case of the electrocardiogram. In addition, there is a problem that only the isointegration diagram obtained from the electrocardiogram has individual differences such as the position and size of the organ, and it is difficult to accurately determine abnormalities such as diseases from the isointegration diagram.
[0015]
An object of the present invention is to provide a biomagnetic field measurement method and a biomagnetic field measurement apparatus capable of grasping the overall state of a living body part using a much smaller number of figures (maps) than the number of figures (maps) required in the prior art. Is to provide.
[0016]
Another object of the present invention is to provide a biomagnetic field measurement method and a biomagnetic field measurement apparatus that can analyze the magnetic field source by measuring the vertical component Bz of the biomagnetic field without increasing the number of detection coils. is there.
[0017]
[Means for Solving the Problems]
In the biomagnetic field measurement method of the present invention, (1) a first magnetic field composed of a quantum interference element (SQUID) and perpendicular to the surface of the living body of the biomagnetic field emitted from the living body using a plurality of magnetometers arranged outside the living body. Is proportional to the square root of the square sum of the rate of change of the magnetic field component in the first direction in the second direction and the third direction intersecting the first direction, and the first step of measuring the time change of the magnetic field component in the direction A second step of obtaining a waveform representing a time change of the value, a third step of integrating the waveform obtained in the second step over a predetermined period to obtain an integral value, and an integration obtained in the step of the third step And a fourth step of displaying a value, and (2) a living body that emits from a living body using a plurality of magnetometers that are composed of quantum interference elements (SQUIDs) and are arranged outside the living body. Time of magnetic field component in the first and second directions parallel to the surface of the living body of the magnetic field The first step of measuring the conversion, the second step of obtaining the waveform representing the time change of the value proportional to the square root of the square sum of the magnetic field components in the first and second directions, and the second step It is characterized in that it has a third step of integrating the waveform over a predetermined period to obtain an integrated value and a fourth step of displaying the integrated value obtained in the step of the third step. Further, in the biomagnetic field measurement method having the features (1) and (2) above, the points having the same integral value are connected in the fourth step by interpolation and extrapolation using the integral values. An integral diagram is displayed, and in the third step, the waveform obtained in the second step is integrated in a predetermined period to obtain an integral value in a plurality of predetermined periods. The present invention is also characterized in that a plurality of integral values are obtained and an operation for obtaining either a sum or a difference including a ratio and equal weight between the plurality of integral values is performed. In the Cartesian coordinate system (x, y, z), the direction perpendicular to the surface of the living body is the z axis, the first direction is the z direction, the second direction is the x direction, and the third direction is the y direction. In the polar coordinate system (r, θ, φ), the direction perpendicular to the surface of the living body is the r axis, the first direction is the r direction, the second direction is the θ direction, and the third direction is the φ direction.
[0018]
In the biomagnetic field measurement apparatus of the present invention, (1) a plurality of magnetometers which are composed of quantum interference elements (SQUIDs) and detect a biomagnetic field emitted from a living body as a signal and are arranged outside the living body, and perform signal processing. In a biomagnetic field measuring apparatus that has an arithmetic processing means and a display means for displaying the arithmetic processing result and measures a biomagnetic field distribution, the magnetometer is a magnetic field in a first direction perpendicular to the surface of the biomagnetic field. The time change of the component is detected, and the arithmetic processing means is a time of a value proportional to the square root of the square sum of the change rate of the magnetic field component in the first direction in the second direction and the third direction intersecting the first direction. The present invention is characterized in that an operation for obtaining a waveform representing a change and an operation for obtaining an integral value by integrating the waveform over a predetermined period and displaying the integral value on the display means. In the measuring device, the magnetometer The time change of the magnetic field component in the first and second directions parallel to the surface of the living body of the field is detected, and the arithmetic processing means has a time proportional to the square root of the square sum of the magnetic field components in the first and second directions. A feature is that an operation for obtaining a waveform representing a change and an operation for obtaining an integral value by integrating the waveform over a predetermined period are performed, and the integral value is displayed on the display means. Further, in the biomagnetic field measurement apparatus having the features (1) and (2) above, an equiintegration diagram connecting points having the same integral value by interpolation and extrapolation is displayed on the display means, and arithmetic processing The means integrates the waveform in a predetermined period to obtain an integral value, and obtains a plurality of integral values in a plurality of predetermined periods, including a ratio and an equal weight between the plurality of integral values. It is also characterized in that an operation for obtaining either the sum or the difference is performed, and a plurality of magnetometers are arranged at equal intervals on the surface of the living body. In the biomagnetic field measurement apparatus of the present invention, the normal (vertical) component and tangential (parallel) component of the magnetic field generated from the heart can be displayed simultaneously. In the Cartesian coordinate system (x, y, z), the direction perpendicular to the surface of the living body is the z axis, the first direction is the z direction, the second direction is the x direction, and the third direction is the y direction. In the polar coordinate system (r, θ, φ), the direction perpendicular to the surface of the living body is the r axis, the first direction is the r direction, the second direction is the θ direction, and the third direction is the φ direction.
[0019]
An essential feature of the present invention is that when the direction perpendicular to the biological surface is the z-axis of orthogonal coordinates (x, y, z) and the plane parallel to the biological surface is the (x, y) plane, The normal component Bz (x, y) perpendicular to the living body surface is detected, and the tangential components Bx and By parallel to the living body surface of the biomagnetic field are calculated from the rate of change of the normal component Bz in the x and y directions, respectively. It is characterized by estimation.
[0020]
According to the present invention, an isomagnetic field diagram in which a magnetic field distribution of a living body is projected on a two-dimensional (x, y) plane can be obtained without requiring a detection coil for measuring the tangential components Bx, By, etc. The current source in the living body can be discriminated from the peak pattern of the magnetic field diagram, and the positions of the plurality of current dipoles in the (x, y) coordinates can be known.
[0021]
Hereinafter, arithmetic processing means in the present invention (a computer such as a personal computer that collects signals measured by a plurality of magnetometers and performs the following arithmetic processing on the signals, or a dedicated hardware implementation of arithmetic processing. The contents of the arithmetic processing performed in the electronic circuit) will be described.
[0022]
Using a plurality of magnetometers composed of quantum interference elements (SQUIDs), a tangential component (component parallel to the surface of the living body) Bx (x, y, t), By (x, y, t) is measured (however, in the Cartesian coordinate system (x, y, z)), a plane parallel to the plane of the living body is defined as the xy plane and the plane of the living body is perpendicular to the plane. Z-axis), the two-dimensional vector intensity | Bxy (x, y) | (hereinafter, ||) from the square root of the square sum of the tangential components Bx (x, y, t) and By (x, y, t) Represents an absolute value) by (Equation 3).
[0023]
[Equation 3]
│Bxy (x, y, t) │ = √ {(Bx (x, y, t)) 2+ (By (x, y, t)) 2} (Equation 3)
Next, for each point (x, y), an integral value I1 (x, y) of the waveform | Bxy (x, y, t) | in an arbitrary period is obtained by (Equation 4), and each of the points is obtained by interpolation and extrapolation. An isointegral diagram connecting points having the same integral value I1 (x, y) at the point (x, y) is obtained, and the isointegral diagram is displayed on the display screen.
[0024]
[Expression 4]
I1 (x, y) = ∫ | Bxy (x, y, t) | dt (Equation 4)
Hereinafter, it will be described that the tangential components Bx and By are estimated from the measured magnetic field component Bz (x, y, t) (normal component) perpendicular to the surface of the living body.
[0025]
Using the fact that the tangential component parallel to the body surface of the biomagnetic field reflects the current that flows directly under the body surface, the tangent vector of the measured magnetic field ( By rotating Bx, By) 90 ° counterclockwise, the current distribution in the living body can be projected onto a two-dimensional plane parallel to the surface of the living body and viewed. That is, using <ex> and <ey> as unit vectors in the x-axis direction and y-axis direction, respectively, the current vector <J> shown in (Equation 5) is obtained from the tangential components Bx and By at each measurement point, It can be expressed as a current vector field distribution (arrow map) at each measurement point (x, y).
[0026]
[Equation 5]
<J> = − By <ex> + Bx <ey> (Expression 5)
On the other hand, when the normal component Bz perpendicular to the living body surface of the magnetic field is measured, an arrow map using the current vector expressed by (Equation 1) is defined (first conventional technique: H. Hosaka and D .Cohen (1976)).
[0027]
From the comparison of (Equation 1) and (Equation 5), the inventors of the present invention have the possibility that (Equation 6) and (Equation 7) hold, that is, the tangent line from the normal component Bz of the measured magnetic field. It was found that the components Bx and By could be derived, and various studies were conducted. The results of the study are described in detail below.
[0028]
[Formula 6]
Bx = − (∂Bz / ∂x) (Expression 6)
[0029]
[Expression 7]
By = − (∂Bz / ∂y) (Expression 7)
FIG. 1 is a diagram for modeling and analyzing the generation of a magnetic field (cardiac magnetic field) due to the activity of the heart by a magnetic field generated from a current dipole in an infinite plane conductor. In FIG. 1, P is an infinite plane conductor having a surface on the xy plane of the orthogonal coordinate system (x, y, z), and <Q> is a position indicated by a position vector <r0 (x0, y0, z0)>. The moment of the existing current dipole, <r (x, y, z)> indicates the position vector of the measurement point for measuring the magnetic flux density (magnetic field) <B (r)>. In the model shown in FIG. 1, the magnetic field <B (r)> generated outside the infinite plane conductor P is determined by Sarvas (literature: Phys. Med. Biol., Vol. 32, No. 1, 11-22 (1987). )) And is expressed by (Equation 8).
[0030]
[Equation 8]
<B (r)> = {μ0 / (4πK2)} {<Q> × <a> · <ez> ・ K <ez> × <Q>} (Equation 8)
In (Equation 8), μ0 is the magnetic permeability of vacuum, <ez> is a unit vector in the z-axis direction, x is a vector product,. Is a scalar product, ∇ is grad = (∂ / ∂x, ∂ / ∂y , ∂ / ∂z), <a> is represented by (Equation 9), a is represented by (Equation 10), K is represented by (Equation 11), and ∇K is represented by (Equation 12). || indicates an absolute value.
[0031]
[Equation 9]
<a> = <r (x, y, z)> − <r0 (x0, y0, z0)> (Equation 9)
[0032]
[Expression 10]
a = | <a> | (Expression 10)
[0033]
## EQU11 ##
K = a (a + <a> · <ez>) (Expression 11)
[0034]
[Expression 12]
∇K = (2 + a−1 <a> · <ez>) <a> + a <ez> (Equation 12)
The tangential components Bx and By that are parallel to the infinite plane conductor P of <B> (r) and the normal component Bz that is perpendicular to the infinite plane conductor P shown in (Equation 8) are (Equation 13) and (Equation 13), respectively. 14) and (Equation 15).
[0035]
[Formula 13]
Bx = {μ0 / (4πK2)}
X [{Qx (y−y0) −Qy (x−x0)} (∇K) x + KQy] (Equation 13)
[0036]
[Expression 14]
By = {μ0 / (4πK2)}
× [{Qy (y−y0) −Qx (x−x0)} (∇K) y + KQx] (Equation 14)
[0037]
[Expression 15]
BZ = {μ0 / (4πK2)}
X [{Qx (y−y0) −Qy (x−x0)} (∇K) z] (Expression 15)
On the other hand, the differential in the x direction of the normal component BZ shown by (Equation 13) is expressed by (Equation 16).
[0038]
[Expression 16]
∂BZ / ∂x = {μ0 / (4πK2)} × [{Qx (y−y0) −Qy (x−x0)} {− 2 (∇K) z (∇K) x / Ka−3 ( x−x0) (z−z0) 2 + a−1 (x−x0)} − (∇K) zQy] (Expression 16)
Similarly, the differentiation of the normal component BZ in the y direction is expressed by (Equation 17).
[0039]
[Expression 17]
∂BZ / ∂y = − {μ0 / (4πK2)} × [{Qx (y−y0) −Qy (x−x0)} {2 (∇K) z (∇K) y / K + a−3 (y− y0) (z−z0) 2-a−1 (y−y0)} + (∇K) zQx] (Expression 17)
In (Equation 16) and (Equation 17),
[0040]
[Formula 18]
α = (∇K) z / K (Equation 18)
[0041]
[Equation 19]
βx = −a−3 (x−x0) (z−z0) 2 + a−1 (x−x0) (Equation 19)
[0042]
[Expression 20]
βy = −a−3 (y−y0) (z−z0) 2 + a−1 (y−y0) (Equation 20)
(Equation 16) and (Equation 17) are expressed by (Equation 21) and (Equation 22), respectively.
[0043]
[Expression 21]
∂BZ / ∂x = − {μ0 / (4πK2)} × [{Qx (y−y0) −Qy (x−x0)} {2α (∇K) x−βx} + αKQy] (Equation 21)
[0044]
[Expression 22]
∂BZ / ∂y = − {μ0 / (4πK2)} × [{Qx (y−y0) −Qy (x−x0)} {2α (∇K) y−βy} + αKQx] (Equation 22)
For simplicity, (Equation 13), (Equation 21), (Equation 14), and (Equation 22) are standardized by the common factor {μ0 / (4πK2)} and transformed. (Equation 24), (Equation 25), and (Equation 26) are obtained.
[0045]
[Expression 23]
Bx = (∇K) x {Qx (y−y0) −Qy (x−x0)} + KQy (Equation 23)
[0046]
[Expression 24]
∂BZ / ∂x =
−2α (∇K) x {Qx (y−y0) −Qy (x−x0)} − αKQy
+ Βx {Qx (y−y0) −Qy (x−x0)} =
−2αBx + αKQy + βx {Qx (y−y0) −Qy (x−x0)} (Equation 24)
[0047]
[Expression 25]
By = (∇K) y {Qy (y−y0) −Qx (x−x0)} + KQx (Equation 25)
[0048]
[Equation 26]
∂BZ / ∂y =
−2α (∇K) y {Qx (y−y0) −Qy (x−x0)} − αKQx]
+ Βy {Qx (y−y0) −Qy (x−x0)} =
−2αBy + αKQx + βy {Qx (y−y0) −Qy (x−x0)} (Equation 26)
As is clear from (Equation 23) and (Equation 24), the value of ∂BZ / ∂x is equal to the value obtained by adding two additional terms to a term equal to −2α times the tangential component Bx, As is clear from (25) and (Equation 26), the value of ∂BZ / 項 y is equal to a value obtained by adding two additional terms to a term equal to -2α times the tangential component By.
[0049]
Here, as shown in FIG. 2, the current dipole moment <Q> at a point <r0 (0, 0, −z0)>, z0 = 0.05 [m] inside the infinite plane conductor P is shown. When B = (Qx, Qy, 0) and Qx = Qy = 50 [nAm], Bx ((Equation 13)) is compared with −∂BZ / ∂x ((Equation 16)). By substituting x0 = y0 = y = 0 and Qz = 0 into (Equation 13) and (Equation 16), (Equation 27) and (Equation 28) are obtained.
[0050]
[Expression 27]
Bx (x, 0) =
{Μ0 / (4πK2)} {− (} K) × Qyx + KQy} (Expression 27)
[0051]
[Expression 28]
∂BZ (x, 0) / ∂x =
{Μ0 / (4πK2)} {2α (∇K) xQyx−αKQy−βxQyx} (Equation 28)
FIG. 3 shows relative magnetic field strength curves C1 and C2 obtained by normalizing Bx ((Equation 27)) and −∂BZ / ∂x ((Equation 28)) on the infinite plane conductor P with respective maximum values. .
[0052]
That is, the curve C1 is Bx (x, 0) / max | Bx (x, 0) |, and the curve C2 is {−∂BZ (x, 0) / ∂x} / max | ∂BZ (x, 0) / Represents ∂x |. As is apparent from FIG. 3, the distributions of Bx and −ZBZ / ∂x both have a peak at the origin immediately above where the current dipole exists (x = 0), and both of them have a current dipole. It shows that the maximum signal can be detected when there is a measurement point directly above. The curve C2 gives a sharper peak than the curve C1, and the magnetic field distribution by -∂BZ / ∂x ((Equation 16)) has a higher spatial resolution than the magnetic field distribution by Bx ((Equation 13)). Show.
[0053]
Magnetic field strength curves C3, C4, and C5 shown in FIG. 4 indicate the first, second, and third terms of −∂BZ (x, 0) / ∂x, respectively. From the results shown in FIG. 4, the third term is negligible for the first and second terms, and the shape of −∂BZ (x, 0) / ∂x is determined by the first and second terms. (Equation 28) can be approximated as (Equation 29).
[0054]
[Expression 29]
∂BZ (x, 0) / ∂x =
{Μ0 / (4πK2)} {2α (∇K) xQyx−αKQy} (Equation 29)
FIG. 5 is a diagram showing relative magnetic field strength curves obtained by comparing the first and second terms of (Equation 13) and (Equation 16) after normalization. In FIG. 5, the curve C6 represents {the first term of Bx (x, 0)} / max | Bx (x, 0) |, that is, {− (∇K) xQyx} / max | Bx (x, 0 ) |, And the curve C7 is {−∂BZ (x, 0) / first term of ∂x} / max | ∂BZ (x, 0) / ∂x |, that is, {−2α (∇K) xQyx } / Max | ∂BZ (x, 0) / ∂x |, and the curve C8 represents {the second term of Bx (x, 0)} / max | Bx (x, 0) |, that is, {KQy} / max | Bx (x, 0) |, and the curve C9 is {−∂BZ (x, 0) / second term of ∂x} / max | ∂BZ (x, 0) / ∂x |, that is, { αKQy} / max | ∂BZ (x, 0) / ∂x |
[0055]
From the results shown in FIG. 5, the distributions of the first and second terms of −∂BZ (x, 0) / ∂x are both higher than the distributions of the first and second terms of Bx (x, 0), respectively. The sharpness of the distribution is defined by α = (規定 K) z / K defined by (Equation 18).
[0056]
In FIG. 6, the magnetic field curve C10 is α = (∇K) z / K, and the magnetic field curve C11 is − {the first term of (Equation 28)} / {the first term of (Equation 27)}, 2α (∇K) xQyx / (∇K) xQyx = 2α, the magnetic field curve C12 is − {the second term of (Equation 28)} / {the second term of (Equation 27)}, that is, αKQy / KQy = α Respectively. As shown in FIG. 6, α = (∇K) z / K (curve C10) has a peak point at the origin where the current dipole exists, and the peak value is 2 / (z−z0). The size of ∂BZ (x, 0) / ∂x differs from the size of Bx (x, 0) by 2 / (z−z0) at the peak point. (Z−z0) is the depth at which the current dipole exists. It is difficult to determine (z−z0) from actual magnetic field measurement. (Equation 30) is obtained from a comparison between (Equation 27) and (Equation 29).
[0057]
[30]
−∂BZ (x, 0) / ∂x =
{Μ0 / (4πK2)} {− 2α (∇K) × Qyx + αKQy}
= 2αBx (x, 0) − {μ0 / (4πK)} αQy (Equation 30)
That is, when the second term of (Equation 30) is smaller than the first term, it can be considered that (Equation 31) is approximately established.
[0058]
[31]
−∂BZ (x, 0) / ∂x = 2αBx (x, 0) (Equation 31)
In general, in (Equation 24), when two additional terms other than −2αBx are smaller than −2αBx, it can be assumed that (Equation 32) holds approximately.
[0059]
[Expression 32]
∂BZ / ∂x = -2αBx (Expression 32)
The above is the result of studying the relationship between -∂BZ / ∂x and Bx, but the same holds true for the relationship between -∂BZ / ∂y and By. 33) It can be assumed that it will be established.
[0060]
[Expression 33]
∂BZ / ∂y = -2αBy (Expression 33)
Hereinafter, from (Equation 32) and (Equation 33), assuming that Bx is proportional to −∂BZ / ∂x and By is proportional to −∂BZ / ∂y, the measured normal component Bz to the tangential component Bx, A procedure for estimating By and obtaining an isomagnetic field diagram will be described in detail.
[0061]
When the magnetic field component Bz (x, y, t) perpendicular to the surface of the living body is measured, the rate of change Bz (x, y, t) in the x direction ∂Bz (x, y, t) / ∂x and Bz The rate of change in the direction of (x, y, t) is obtained as ∂Bz (x, y, t) / 求 め y, and the square root St (x, y, t) of the sum of squares is obtained as shown in (Equation 34). .
[0062]
[Expression 34]
St (x, y, t) = √ [{∂Bz (x, y, t) / ∂x} 2
+ {∂Bz (x, y, t) / ∂y} 2] (Equation 34)
Next, for each point (x, y), an integral value I2 (x, y) of the waveform St (t, x, y) in an arbitrary period is obtained by (Equation 35), and each point ( An integral diagram that connects points having the same integral value I2 (x, y) at x, y) is obtained, and the integral diagram is displayed on the display screen.
[0063]
[Expression 35]
I2 (x, y) = ∫ | St (x, y, t) | dt (Equation 35)
In addition, as the integration range of (Equation 4) and (Equation 35), for example, when the heart is to be measured, the period in which each of the Q, R, and S waves is generated, and the QRS in which the S wave is generated from the Q wave. The period of wave (QRS complex), the period of T wave generation, etc. are taken. Further, a sum, difference, ratio including a plurality of integration values obtained by taking a plurality of integration ranges as the integration ranges of (Equation 4) and (Equation 35), including equal weighting (weighting is set to w1, w2). Is calculated, and an isointegration diagram connecting points having the same calculation result is obtained by interpolation and extrapolation, and the isointegration diagram is displayed on the display screen. For example, a period T1 in which a QRS wave is generated as a first integration range, and a period T2 in which a T wave is generated as a second integration range are set, and an integration value related to the period T1 according to (Equation 4) or (Equation 35). Integration values I1, T2 (x, y), I2, T2 (x, y) relating to I1, T1 (x, y), I2, T1 (x, y), and period T2 are obtained, and integration values I1, T1 are obtained. Equal weight between (x, y) and integral value I1, T2 (x, y) or between integral value I2, T1 (x, y) and integral value I2, T2 (x, y) The sum Isum (x, y) or the difference Idif (x, y) and the ratio r (x, y) including (Equation 36) to (Equation 37), (Equation 38) to (Equation 39), (Equation 40) ) To (Equation 41).
[0064]
[Expression 36]
Isum (x, y) =
w1 × I1, T1 (x, y) + w2 × I1, T2 (x, y) (Equation 36)
[0065]
[Expression 37]
Isum (x, y) =
w1 × I2, T1 (x, y) + w2 × I2, T2 (x, y) (Expression 37)
[0066]
[Formula 38]
Idif (x, y) =
w2 × I1, T2 (x, y) −w1 × I1, T1 (x, y) (Equation 38)
[0067]
[39]
Idif (x, y) =
w2 × I2, T2 (x, y) −w1 × I2, T1 (x, y) (Equation 39)
[0068]
[Formula 40]
r (x, y) = I1, T1 (x, y) / I1, T2 (x, y) (Equation 40)
[0069]
[Expression 41]
r (x, y) = I2, T1 (x, y) / I2, T2 (x, y) (Equation 41)
As a result of the calculations of (Equation 36) to (Equation 37), (Equation 38) to (Equation 39), and (Equation 40) to (Equation 41), the variation of the isointegral diagram due to individual differences is improved, and the living body due to the disease Function abnormality can be detected.
[0070]
According to the isometric diagram obtained by the present invention, it is necessary in the prior art without analyzing the biological phenomenon using a number of figures (maps) representing the state of the living body part at each time required in the prior art. By using a much smaller number of figures (maps) than the number of figures (maps), the overall state of the living body part can be grasped. In addition, since the peak position of the isotonic map obtained using the tangential component or normal line component of the biomagnetic field coincides with the site where a large amount of current flows in the living body, It can be determined in which part of the throat a large amount of current flows. The biomagnetic field distribution varies greatly between individuals, but in the present invention, since an integral value at an arbitrary time (period) obtained from a waveform representing a temporal change of each direction component of the biomagnetic field is used, a more quantitative biomagnetic field distribution can be obtained. It can be displayed using a small number of figures (maps), and it can objectively and quantitatively grasp the diseases and abnormalities of each individual.
[0071]
In the present invention, a magnetic field component Bz (x, y, t) perpendicular to the surface of the living body is measured, and Bx is a change rate ∂ Bz (x, y, t) in the x direction of Bz (x, y, t). / Byx, By is estimated and obtained from the rate of change ∂Bz (x, y, t) / ∂y in the direction of Bz (x, y, t), so that each adjacent measurement point (x, y) The common background magnetic field (interfering magnetic field) is canceled in the x and y directions, respectively.
[0072]
DETAILED DESCRIPTION OF THE INVENTION
An orthogonal coordinate system (x, y, z) (magnetic field components are Bx, By, Bz) and a polar orthogonal coordinate system (r, θ, φ) are used as a coordinate system in biomagnetic field measurement. When the measurement target is a heart or the like, an orthogonal coordinate system (x, y, z) with the chest wall as the xy plane is used. When the measurement target is the brain or the like, the polar coordinate system (r, θ, φ) (magnetic field components are Br, Bθ, Bφ) is used because the head has a shape close to a sphere. In the present embodiment, the magnetic field component (normal component) perpendicular to the surface of the living body is represented by Bz and Br, and the component parallel to the surface of the living body (tangential component) is represented by Bx, By, Bθ and Bφ. Hereinafter, in this embodiment, description will be made using an orthogonal coordinate system (x, y, z). However, when using a polar coordinate system (r, θ, φ), Bz is Br, Bx is Bθ, By May be read as Bφ respectively.
[0073]
FIG. 7 shows a schematic configuration of a biomagnetic field measurement apparatus in which the present invention is implemented. A biomagnetic field measurement apparatus that performs electrocardiographic measurement uses a plurality of magnetic field sensors composed of quantum interference elements (SQUIDs). In order to remove the influence of environmental magnetic field noise, the cardiac magnetic field measurement is performed inside the magnetic field shield room 1. The subject 2 lies on the bed 3 and measures (as shown in FIG. 11, the orthogonal coordinate system (x, y, z) is set so that the xy plane becomes the plane of the bed). A dewar 4 that houses a plurality of magnetic field sensors in which a SQUID and a detection coil connected to the SQUID are integrated and filled with liquid He is disposed above the chest of the subject 2. The liquid He is continuously replenished by the automatic replenishing device 5 outside the magnetic field shield room 1.
[0074]
The output from the magnetic field sensor is input to an FLL (Flux Locked Loop) circuit 6 that outputs a voltage proportional to the magnetic field intensity detected by the detection coil. This FFL circuit cancels the change of the biomagnetic field input to the SQUID via the feedback coil so as to keep the output of the SQUID constant. By converting the current passed through the feedback coil into a voltage, a voltage output proportional to the change in the biomagnetic field signal can be obtained. This voltage output is amplified by an amplifier (not shown), a frequency band is selected by a filter circuit 7, AD converted by an AD converter (not shown), and taken into a computer 8. The computer 8 executes various arithmetic processes, displays the arithmetic processing results on the display, and further outputs them by a printer.
[0075]
As a detection coil for detecting the tangential component of the magnetic field, two coils whose coil surfaces are directed in the x direction and the y direction are used as a detection coil for detecting the tangential component of the magnetic field. As a coil for detecting the normal component of the magnetic field, a coil facing the z direction is used. These magnetic field sensors (20-1, 20-2, ..., 20-8, 21-1, ..., 21-8, 22-1, ..., 22-8, 23-2, ..., 23-8, 24- 1, 24-8, 25-1,..., 25-8, 26-1,..., 26-8, 27-1,. The magnetic field sensors 9 are installed in the vertical direction from the bottom inside the dewar, and the distances between the sensors are equally spaced in the x and y directions so as to accurately capture the amount of change in the magnetic field in the x and y directions. did. Here, the distance between the sensors was 25 mm, and the number of sensors was 8 × 8, 64 channels.
[0076]
A schematic diagram of one of the installed magnetic field sensors according to this arrangement method is shown in FIGS. The magnetic field sensor of FIG. 9 is a sensor that measures a component Bz perpendicular to the surface of the living body, and the surface of the coil made of superconducting wire (Nb-Ti wire) faces the z direction. This coil is a combination of two reverse coils. The coil closer to the living body is used as the detection coil 10 and the coil farther away is used as a reference coil 11 for removing external magnetic field noise to form a first differential coil. ing. Here, the coil diameter was 20 mmφ, and the baseline between the coils was 50 mm. External magnetic field noise is generated from a signal source farther from the living body, and these are detected in the same manner by the detection coil and the reference coil. On the other hand, since the signal from the living body is close to the coil, it is detected more strongly by the detection coil 10. For this reason, the detection coil 10 detects a signal and noise, and the reference coil 11 detects only noise. Therefore, measurement with a high S / N can be performed by taking the difference between the magnetic fields captured by the two coils.
[0077]
The primary differential coil is connected to the SQUID input coil via the superconducting wiring of the mounting substrate on which the SQUID 12 is mounted, and transmits the biomagnetic field detected by the coil to the SQUID. FIG. 10 shows a schematic diagram of a magnetic field sensor that detects tangential components Bx and By of the biomagnetic field component. This magnetic field sensor uses a planar coil, and the detection coils 10 ′ and 10 ″ and the reference coils 11 ′ and 11 ″ are arranged in one plane, the coil diameter is 20 mm × 20 mm, and the baseline is 50 mm. The coil is connected to the mounting substrate of SQUIDs 12 'and 12 "in the same manner as for the normal component. These two x-component detection magnetic field sensors 13 and y-component detection magnetic field are formed on two orthogonal surfaces of the quadrangular prism support. A magnetic field sensor capable of measuring the x and y components is formed by pasting the sensor 14. The quadrangular columns are arranged in an array as shown in FIG.
[0078]
A dewar with a built-in magnetic field sensor is placed above the chest of the subject lying on the bed and measures the magnetic field generated from the heart. Here, the horizontal direction of the body is taken as the x-axis, and the vertical direction of the body is taken as the y-axis. Magnetic field sensors (20-1, ..., 20-8, 21-1, ..., 21-8, 22-1, ..., 22-8, 23-2, ..., 23-8, 24-1, ..., 24 11 shows the positional relationship between the placement of −8, 25-1,..., 25-8, 26-1,..., 26-8, 27-1,. The biomagnetic field signals measured in this positional relationship are shown in FIGS.
[0079]
12 (a), (b), and (c) show waveforms representing temporal changes in the magnetic field emitted from the heart of a healthy person by the magnetic field sensors (magnetic field sensors arranged in an 8 × 8 array). In each figure, the horizontal axis of the 64 waveforms indicates the time axis, and the vertical axis indicates the detected magnetic field intensity. 12 (a) shows the tangential component Bx, FIG. 12 (b) shows the tangential component By, and FIG. 12 (c) shows the change in time (horizontal axis) of each component of each magnetic field component. Standardized with the maximum absolute value of the channel with the highest intensity.
[0080]
The dotted line and the solid line shown in FIG. 13 indicate the waveform representing the time change of the tangential component (Bx) related to the specific two channels measured for the healthy person by the solid line and the dotted line. Time points at which peaks (extreme values) of the Q wave, R wave, and S wave in the time zone T1 in which the QRS wave in which the heart ventricle is depolarized appear are shown by tQ, tR, and ts in FIG. 13, respectively. Further, a time zone T2 in which a T wave, which is a repolarization process of the heart, appears, and a time point when a peak (extreme value) is given is indicated by tT.
[0081]
In FIG. 13, P wave indicates atrial excitement (depolarization), QRS wave composed of Q wave, R wave, and S wave indicates ventricular excitement (depolarization), and T wave indicates QRS. It is a gentle shake that follows the waves, indicating myocardial repolarization. Depolarization is a process in which excitement first spreads in the muscle, and repolarization is a process in which the excited muscle returns to a resting state.
[0082]
FIGS. 14A, 14B, and 14C are isomagnetic field diagrams in which points having the same cardiac magnetic field intensity at time points tQ, tR, and ts are connected by lines. 14 (a), (b), and (c) are two-dimensional composites of tangential components Bx and By indicated by | Bxy (x, y, t) | in (Equation 4) and measured at 64 locations. The vector intensity distribution is shown. Furthermore, the arrows in FIGS. 14 (a), (b), and (c) are two-dimensional when it is assumed that the current source at each of the 64 measurement points creates a magnetic field at each measurement point. The current vector is shown. With this current vector, the current direction and distribution in the heart can be estimated. 14A, 14B, and 14C, the horizontal axis x and the vertical axis y indicate the coordinates where the magnetic field sensor is arranged. As shown in FIG. 14 (a), at the peak of the Q wave, the current flowing in the heart flows in the lower right direction in the ventricular septum, and as shown in FIG. 14 (b), at the peak of the R wave, A large current flows diagonally downward in the entire left ventricle. As shown in FIG. 14C, at the peak of the S wave, a current flows diagonally upward to the left of the direction of the ventricular base, and the depolarization process of the ventricle You can see that it ends. Thus, it can be seen from the isomagnetic field diagrams of FIGS. 14A, 14B, and 14C that the active site and current direction in the heart at each time can be visualized.
[0083]
FIG. 15 shows a two-dimensional vector intensity | Bxy (x, y, obtained from two tangential components Bx and By detected in a time zone T1 in which a QRS wave from the Q wave to the S wave appears in the magnetocardiogram waveform. t) | is an equiintegration diagram obtained by performing integration of (Equation 4) for each point (x, y) and connecting the points of the same integration value. The x-axis and y-axis of FIG. 15 represent the coordinates of the magnetic field sensor arranged on the surface of the living body, and the numerical values shown in the vicinity of the black circles of each curve in the isometric view indicate the integrated values of the curves. From FIG. 15, it can be seen that most of the current that flowed to the myocardium during the QRS wave time zone flowed in the left ventricle where the thickness of the myocardium was large. It turns out that it corresponds well.
[0084]
FIG. 16 shows the measurement of the normal line segment Bz at each point (x, y) for the same healthy person who obtained the data of FIG. 15 from FIGS. 12 (a), 12 (b), and 12 (c). Then, St (x, y, t) is obtained from (Equation 34), and the integration of (Equation 35) is performed for the time zone T1 of the QRS wave, and the same integration value points are connected. Hereinafter, in FIG. 16 to FIG. 21, the x-axis and y-axis represent the position coordinates (unit is m) of the magnetic field sensor arranged on the surface of the living body. The numerical values shown in the vicinity of the black circles of the curves in FIGS. 16 to 21 indicate the integral values of the curves.
[0085]
It has been found that the isotonic diagram obtained from the tangential components Bx and By of the magnetic field shown in FIG. 15 and the isometric diagram obtained from the normal component Bz of the magnetic field shown in FIG. This coincidence means that (Equation 6) and (Equation 7), or (Equation 32) and (Equation 33) are substantially satisfied with actual experimental data.
[0086]
FIG. 17 shows two-dimensional vector intensities | Bxy (x, y) obtained from two tangential components Bx and By detected in the time zone T2 of the T wave for the same healthy person who obtained FIG. FIG. 4 is an equiintegration diagram in which integration of (Equation 4) is performed for each point (x, y) and points of the same integration value are connected. In FIG. 17, 1e + 003 indicates 1000.
[0087]
FIG. 18 is a contour diagram showing the difference (Equation 37) between the integration value of (Equation 4) for the time zone T2 and the integration value of (Equation 4) for the period zone T1 where the QRS wave is generated. That is, FIG. 18 is a diagram obtained by subtracting the isointegral diagram shown in FIG. 15 from the isointegral diagram shown in FIG. The T wave time zone T2 is longer than the QRS wave time zone T1. Further, the pattern of FIG. 17 is similar to the pattern shown in FIG. For this reason, the contour map shown in FIG. 18 has a positive value as a whole. The numerical values shown in the vicinity of the black circles in the curves in FIGS. 17 and 18 indicate the difference between the integral values of the curves.
[0088]
Next, the results relating to the measurement of the cardiac magnetic field of the patient with myocardial infarction are shown in FIG. 19, FIG. 20, and FIG. FIG. 19 is an isointegration diagram obtained in the same manner as FIG. 15 for the QRS wave time zone T1, FIG. 20 is an isointegration diagram obtained in the same manner as FIG. 17 for the T wave time zone T2, and FIG. A contour map representing the difference (Equation 38) between the integral value (Equation 4) for the time zone T2 of the T wave and the integration value (Equation 4) for the time zone T1 of the QRS wave, and obtained in the same manner as in FIG. It is. That is, FIG. 21 is a diagram obtained by subtracting the isointegral diagram shown in FIG. 19 from the isointegral diagram shown in FIG. The numerical values shown in the vicinity of the black circles of the curves in FIGS. 19 and 20 indicate the integral values of the curves, and the numerical values shown in the vicinity of the black circles of the curves in FIG. 21 are the values of the difference between the integral values of the curves. Indicates.
[0089]
The isointegral diagram in the time zone T1 shown in FIG. 19 is a pattern that is not so different from the isointegral diagrams shown in FIGS. 15 and 16, and it can be seen that a large amount of current flows in the left ventricle. However, the isointegral diagram in the time zone T2 shown in FIG. 20 has a different pattern from the isointegral diagram in the time zone T1 shown in FIG. 19, and due to myocardial infarction, the isotonic diagram in the time zone T1 and the time zone T2 It can be clearly seen that the patterns of the amount of flowing current are greatly different. Furthermore, the contour map shown in FIG. 21 has a negative value as a whole, and is significantly different from the contour map of the healthy person shown in FIG. 18 which has a positive value as a whole. It can be clearly seen that the flowing current is disturbed.
[0090]
As described above, by imaging the magnetic field strength in the time zone T1 and time zone T2 of the heart, it is possible to be healthy in a short time of 1 minute or less in a non-invasive manner without causing pain to the patient. A state and an abnormal state (for example, a state of myocardial infarction, an ischemic state, etc.) can be easily distinguished. That is, early detection and estimation of a diseased part without solving the inverse problem becomes possible.
[0091]
FIG. 22 shows an example of a processed image on the computer screen of the biomagnetic field measurement apparatus. The multi-window format allows each processed image to be displayed on its own window. Further, in FIGS. 15 to 21 described above, numerical values are entered in each curve so that the magnetic field strength and the level of the integrated value can be seen. However, on the display, the color is classified according to the level of the contour line and is displayed in three dimensions. . At the same time, a waveform (magnetocardiogram) representing the time change of the magnetic field component as shown in FIG. 13 and also an electrocardiogram can be displayed, so that comprehensive analysis on the heart disease can be performed.
[0092]
FIG. 23 is a diagram showing an example of a processed image displayed on the display of the biomagnetic field measurement apparatus of the present invention. In FIG. 23, MCG is an example of a magnetocardiogram, QRS is a first equiintegration diagram obtained by (Equation 35) where the integration range is a period T1 in which a QRS wave is generated, and T is an integration range in which a T wave is generated. A second isointegral diagram obtained by (Equation 35) with a period T2 to be performed, and (T-QRS) indicate examples of differences between the first and second isointegral diagrams. In the display examples on the display shown in FIGS. 22 and 23, three-dimensional color display is performed by color-coding according to the contour lines.
[0093]
In (Equation 4) and (Equation 35), I1 (x, y) and I2 (x, y) can also be obtained by a simple method without performing integration. That is, I1 (x, y) and I2 (x, y) are obtained from the following (Equation 42) to (Equation 45), and (Equation 36) to (Equation 41) are further applied. When measuring the tangential component (component parallel to the surface of the living body) Bx (x, y, t), By (x, y, t) of the magnetic field generated from the living body (however, the orthogonal coordinate system (x, y, t z), the plane parallel to the plane of the living body is the xy plane, and the axis perpendicular to the plane of the living body is z), and the two-dimensional vector intensity | Bxy (x, y) │ (│ │ represents an absolute value) is obtained by (Equation 42).
[0094]
[Expression 42]
│Bxy (x, y, t0) │ = √ {(Bx (x, y, t0)) 2+ (By (x, y, t0)) 2} (Equation 42)
Next, the value I1 (x, y) of the waveform | Bxy (x, y, t0) | at any point in time for each point (x, y) is obtained by (Equation 43), and each point is obtained by interpolation and extrapolation. An isomagnetic field diagram connecting points having the same value of I1 (x, y) at (x, y) is obtained, and the isomagnetic field diagram is displayed on the display screen.
[0095]
[Equation 43]
I1 (x, y) = | Bxy (x, y, t0) |
When measuring the magnetic field component Bz (x, y, t) perpendicular to the surface of the living body, the rate of change ∂Bz (x, y, t0) in the x direction of the perpendicular magnetic field component Bz (x, y, t0). / ∂x,
The rate of change ∂Bz (x, y, t0) / ∂y in the direction of Bz (x, y, t0) is obtained, and the square root St0 (x, y, t) of the square sum is obtained as shown in (Equation 44). Ask.
[0096]
(44)
St0 (x, y, t0) = √ [{∂Bz (x, y, t0) / ∂x} 2
+ {∂Bz (x, y, t0) / ∂y} 2] (Equation 44)
Next, the value I2 (x, y) of the waveform St0 (x, y, t0) at an arbitrary point in time for each point (x, y) is obtained by (Equation 45), and each point (x , Y), an isomagnetic field diagram connecting points having the same value I2 (x, y) is obtained, and the isomagnetic field diagram is displayed on the display screen.
[0097]
[Equation 45]
I2 (x, y) = | St0 (x, y, t0) | (Equation 45)
It should be noted that t0 in (Equation 42) to (Equation 45) is the time when the maximum value of each of the Q, R, and S waves when the heart contracts is taken, for example, when the heart is to be measured. . Further, as t0 in (Equation 42) to (Equation 45), an operation such as obtaining a sum or difference including equal weights and a ratio between a plurality of values obtained by obtaining a plurality of t0 is performed. An isomagnetic field diagram connecting points having the same calculation result is obtained by interpolation and extrapolation, and the isomagnetic field diagram is displayed on the display screen. Also by such a method, a result almost similar to the method using (Equation 4) and (Equation 35) described above can be obtained.
[0098]
FIGS. 24A and 24B show isomagnetic field diagrams at the time when the extreme values of the Q wave, R wave, and S wave of the magnetocardiogram of the patient X obtained by measuring the normal component Bz by the conventional method appear. ) And (c). 24 (a), (b), and (c), the dotted line shows the isomagnetic field diagram of the magnetic field to be sucked, the solid line shows the isomagnetic field diagram of the boiling magnetic field, and the white arrow indicates the current dipole. The size and direction are shown. In the isomagnetic field diagrams shown in FIGS. 24 (a), 24 (b), and 24 (c), the position of the current dipole when the number of current sources existing in the heart is assumed is indicated by a white arrow and superimposed. is doing. As shown in FIG. 24A, when the extreme value of the Q wave appears, a current flows in the lower right direction in the ventricular septum, and the extreme value of the R wave appears as shown in FIG. At that time, a large current flows diagonally to the left in the entire left ventricle. In addition, as shown in FIG. 24C, it can be seen that when the extreme value of the S wave appears, a current flows diagonally right upward in the direction of the ventricular base, and the depolarization process of the ventricle is completed.
[0099]
The tangential components Bx and By of the magnetic field emitted from the heart of the patient X are measured, and the tangential components are expressed as (Equation 42) and (Equation 43) at the time when the extreme values of the Q wave, R wave, and S wave appear. FIG. 25A, FIG. 25B, and FIG. 25C show isomagnetic field diagrams synthesized based on the above.
[0100]
The pattern of FIG. 25 (a) and the pattern of FIG. 24 (a), the pattern of FIG. 25 (b) and the pattern of FIG. 24 (b), the pattern of FIG. 25 (c) and the pattern of FIG. Almost matches. However, in the pattern when the extreme value of the R wave shown in FIG. 25B appears, the myocardium is active in a wide area, and in the pattern when the extreme value of the R wave shown in FIG. It can be seen that a plurality of current sources that were not clear can be easily identified, one of the current sources is present in the left direction and the other current source is present in the lower direction.
[0101]
Using the isomagnetic field diagram data of the normal component Bz at the time when the extreme values of the Q wave, R wave, and S wave appear as shown in FIGS. 24 (a), (b), and (c), FIGS. 26A, 26B, and 26C are isomagnetic field diagrams obtained when the extreme values of the Q wave, R wave, and S wave appear based on (Equation 44) and (Equation 45). Shown in Based on the results shown in FIGS. 26 (a), (b), and (c), based on the isomagnetic field diagram of the normal component Bz shown in FIGS. 24 (a), (b), and (c), and (Equation 1). A plurality of current sources that are difficult to discriminate in the arrow map can be discriminated. 26 (a), (b), and (c) are the patterns shown in FIGS. 25 (a), (b), and (c) (isomagnetic field diagrams of Bxy obtained from tangential component Bx and By synthesis). It turns out that it is equivalent. This means that (Equation 6) and (Equation 7), or (Equation 32) and (Equation 33) are substantially satisfied with actual experimental data.
[0102]
In each of FIGS. 24A to 26C, the horizontal axis x and the vertical axis y represent the position coordinates of the magnetic field sensor arranged on the surface of the living body.
[0103]
In the above description, the present invention has been described by taking an example related to magnetocardiogram measurement. However, it goes without saying that the present invention can also be applied to the case of magnetoencephalogram measurement for obtaining a magnetoencephalogram (MEG).
[0104]
FIG. 27 is a cross-sectional view showing a part of the internal configuration of the dewar for brain magnetic field measurement of the brain magnetic field measurement system for measuring the brain magnetic field. As shown in FIG. 27, when measuring the cerebral magnetic field, the head has a spherical shape unlike the chest, so that the SQUID magnetometers 103-1, 103-2,. The shape of the bottom surface of the dewar 102 is a hemisphere so as to cover the head 100. The SQUID magnetometers 103-1, 103-2, ..., 103-N are arranged radially along the inner surface of the dewar 102 for head measurement, and the tip surface (magnetic field measurement surface) of each SQUID magnetometer is a hemispherical surface. It is arrange | positioned so that it may become substantially parallel to the tangent surface. The radius of the hemisphere was set so that the brain was a sphere so that the center of the hemisphere coincided with the approximate center of the brain of the head. A heat radiation shield member 104 is arranged inside the head measuring dewar 102, and the upper part of the head measuring dewar is sealed by an upper plate 105. The signals detected by the SQUID magnetometers 103-1,..., 103-N are taken out of the head measuring dewar through signal lines 106-1,.
[0105]
FIG. 28 is a diagram for explaining the relationship between the magnetic field component measurable by the brain magnetic field measurement system shown in FIG. 27 and the head. The component of the cerebral magnetic field B that can be measured by a QUID magnetometer that is arranged at one O ′ in a plurality of positions radially above the head is the r direction in polar coordinates (r, θ, φ) with O as the origin. Component Br (normal component). In FIG. 28, components Bθ and Bφ indicate tangential components parallel to the head surface, and the origin O is the center of the sphere when the brain is assumed to be a sphere. As a somatosensory sensation, an electrical stimulation is applied to the right middle finger, a normal component Br is detected by the cerebral magnetic field measurement system shown in FIG. Obtain a diagram. 29 (a) and 29 (b) are diagrams showing an example of an isomagnetic field diagram obtained by the cerebral magnetic field measurement system shown in FIG. 27, and FIG. 29 (a) shows a normal component Br obtained by a conventional method. The magnetic field diagram, FIG. 29 (b), is an isomagnetic field diagram obtained by using the following (Equation 46) of the present invention (displayed on a spherical surface approximating the brain, like the map shown on the globe). The intensity distribution of the cerebral magnetic field is shown.)
[0106]
[Equation 46]
St (θ, φ, t) =
√ {(∂Br (t) / ∂θ) 2+ (∂Br (t) / ∂φ) 2} (Expression 46)
In the isomagnetic field diagram shown in FIG. 29A, the position of the current dipole when the number of current sources existing in the brain is assumed is indicated by a white arrow and superimposed. In FIG. 29A, the dotted line shows the isomagnetic field diagram of the magnetic field to be sucked, the solid line shows the isomagnetic field diagram of the boiling magnetic field, and the white arrow shows the size and direction of the current dipole. The current source (current dipole indicated by a white arrow) conventionally estimated in the isomagnetic field diagram of the normal component Br shown in FIG. 29A is the peak position A in the isomagnetic field diagram shown in FIG. It can be easily seen that it has appeared corresponding to. The other configuration of the cerebral magnetic field measurement system (not shown in FIG. 27) is basically the same as that of the biomagnetic field measurement device shown in FIG.
[0107]
Various algorithms for solving the inverse problem are conceivable as a method of analyzing a magnetic field source using isomagnetic field diagrams relating to a cardiac magnetic field and a brain magnetic field obtained by various methods according to the present invention described above. A simple algorithm that is often used in practice assumes a single or two current dipoles as a magnetic field source, and arbitrarily assumes the position coordinates where these current dipoles exist as initial conditions, Assuming that the existing current dipole creates a magnetic field represented by the Biosavart equation, the magnetic field at the measurement point (x, y) of the measured magnetic field is calculated. The calculated magnetic field <Bc (x, y)> and the measured magnetic field <Vm (x, y)> (m = 1, 2,..., M: M is the total number of measured magnetic field measuring points). The following evaluation function expressed by the difference (Equation 47) is calculated, the position coordinate of each current dipole is changed, and the minimum value of the evaluation function L is obtained analytically. In (Equation 47), G is a constant, <ns> is a normal vector or a unit vector in the z direction, and an addition symbol Σ indicates addition for m = 1, 2,.
[0108]
[Equation 47]
L = Σ {<Vm (x, y)> − G ([<Bc (x, y)>] · ns)} 2 (Equation 47)
However, in the method based on (Equation 47), when analyzing a wide measurement region of the magnetic field, there may be cases where it does not converge to the minimum value. In the present invention, the initial condition of the position and the number of dipoles in calculating the evaluation function L is the dipole, and the peak position in the isomagnetic field diagram based on (Equation 3), (Equation 34), or (Equation 46) is the dipole. In addition, the number of peaks in the isomagnetic diagram is determined in advance as the number of dipoles. Thus, by providing the initial conditions and solving the evaluation function L, the magnetic field source analysis always converges. By specifying each peak position on the isomagnetic field diagram related to the magnetocardiogram and cerebral magnetic field based on (Equation 3), (Equation 34), or (Equation 46) displayed on the display, The coordinates of the peak position and the number thereof are automatically input to the apparatus as the above initial values, the evaluation function L is solved, and a convergent magnetic field source analysis result is obtained.
[0109]
Therefore, instead of setting the initial value by trial and error as in the prior art, the initial value can be set almost uniquely and easily based on the isomagnetic field map data obtained as a result of the measurement. It becomes possible to solve the inverse problem efficiently and more accurately.
[0110]
In each figure showing the isomagnetic field diagrams used in the above description, the right side of the human body is displayed on the left side of each figure and the left side of the human body is shown on the left side of each figure in accordance with the customary practice in the medical field. It is displayed on the right side.
[0111]
【The invention's effect】
In the present invention, only the normal component Bz is measured without measuring the tangential components Bx and By by vector measurement, and the equivalent magnetic field diagram based on Bxy in the prior art shown in (Equation 2) is equivalent. A magnetic field diagram is obtained. In the isomagnetic field diagram obtained directly from the normal component Bz in the prior art, it was difficult to distinguish a plurality of current sources, but in the isomagnetic field diagram of the present invention, the Bxy in the prior art shown in (Formula 2) is difficult. As with isomagnetic field diagrams based on, a peak pattern appears just above the current source, so multiple current sources in the living body can be read directly, and the inverse problem of analyzing the position, size, etc. of multiple current sources is easy Can be solved. According to the apparatus of the present invention, discovery of heart diseases such as discovery of myocardial infarction, ischemia, discovery of arrhythmia location, discovery of myocardial hypertrophy, evaluation of changes in myocardial state before and after surgery, The status can be easily confirmed.
[Brief description of the drawings]
FIG. 1 is a view for modeling and analyzing generation of a cardiac magnetic field by a magnetic field generated from a current dipole in an infinite plane conductor in the present invention.
FIG. 2 is a diagram showing a schematic position of a moment of a current dipole existing inside an infinite plane conductor in the present invention.
FIG. 3 is a diagram showing relative magnetic field strength curves C1 and C2 in which Bx and − 及 び BZ / ∂x on an infinite plane conductor are normalized by respective maximum values in the present invention.
FIG. 4 is a diagram showing magnetic field strength curves C3, C4, and C5 showing the first, second, and third terms of −∂BZ (x, 0) / ∂x in the present invention.
FIG. 5 is a diagram showing relative magnetic field strength curves C6, C7, C8, and C9 obtained by comparing the first and second terms of Bx and ∂BZ / ∂x after normalization in the present invention.
In the present invention, α = (∇K) z / K, {-first term of ∂BZ (x, 0) / ∂x} / {first term of Bx (x, 0)} , {−∂BZ (x, 0) / second term of ∂x} / {second term of Bx (x, 0)}, respectively, showing magnetic field strength curves C10, C11, and C12.
FIG. 7 is a diagram showing a schematic configuration of a biomagnetic field measurement apparatus that performs cardiac magnetic field measurement in which the present invention is implemented.
FIG. 8 is a diagram showing an arrangement configuration of magnetic field sensors in a biomagnetic field measurement apparatus that performs cardiac magnetic field measurement in which the present invention is implemented.
FIG. 9 is a diagram showing a configuration of a single magnetic field sensor that detects a normal component of a magnetic field in a biomagnetic field measurement apparatus that performs cardiac magnetic field measurement according to the present invention.
FIG. 10 is a diagram showing a configuration of a single magnetic field sensor that detects a tangential component of a magnetic field in a biomagnetic field measurement apparatus that performs cardiac magnetic field measurement according to the present invention.
FIG. 11 is a diagram showing the positional relationship between the arrangement of magnetic field sensors and the chest of a human body in a biomagnetic field measurement apparatus that performs cardiac magnetic field measurement according to the present invention.
FIG. 12 is a diagram showing a waveform representing a time change of a component in each direction of a magnetic field emitted from a healthy person's heart measured at each magnetic field sensor position in the embodiment of the present invention.
FIG. 13 is a diagram showing a waveform representing a time change of a tangent component (Bx) for two specific channels measured for a healthy person in the example of the present invention.
FIG. 14 shows an embodiment of the present invention, obtained from a magnetocardiogram waveform of a healthy person who measured tangential components Bx and By of a magnetic field, etc. at the peak of each of the Q wave, R wave, and S wave. Magnetic field diagram.
FIG. 15 is an isometric view obtained from two tangential components detected in a time zone in which a QRS wave of a healthy person's magnetocardiogram appears in an embodiment of the present invention.
FIG. 16 is an isometric view obtained from a normal line segment detected in a time zone in which a QRS wave of a healthy person's magnetocardiogram appears in an embodiment of the present invention.
FIG. 17 is an isometric view obtained from two tangential components detected in a time zone in which a T wave of a healthy person's magnetocardiogram appears in an embodiment of the present invention.
18 is a diagram obtained by subtracting the isointegral diagram shown in FIG. 15 from the isointegral diagram shown in FIG.
FIG. 19 is an isometric view obtained from two tangential components detected in a time zone in which a QRS wave of a magnetocardiographic waveform of a patient with myocardial infarction appears in an example of the present invention.
FIG. 20 is an isometric view obtained from two tangential components detected in a time zone in which a T wave of the magnetocardiographic waveform of a patient with myocardial infarction appears in the example of the present invention.
FIG. 21 is a diagram obtained by subtracting the isointegral diagram shown in FIG. 19 from the isointegral diagram shown in FIG. 20;
FIG. 22 is a diagram showing an example of an output screen on a personal computer of a biomagnetic field measurement apparatus that performs cardiac magnetic field measurement according to the present invention.
FIG. 23 is a diagram showing an example of a processed image displayed on the display of the biomagnetic field measurement apparatus of the present invention.
FIG. 24 is a diagram showing an isomagnetic field diagram at the time when extreme values of Q wave, R wave, and S wave of a magnetocardiogram (MCG) appear by measuring a normal component Bz by a conventional method.
FIG. 25 shows the measurement of the tangential components Bx and By of the magnetic field from the heart in the embodiment of the present invention. The figure which shows the isomagnetic-field diagram of the synthesize | combined Bxy.
FIG. 26 shows an example of the present invention, using the isomagnetic field diagram data of the normal component Bz at the time when the extreme values of the Q wave, R wave, and S wave appear as shown in FIG. The figure which shows the isomagnetic-field diagram in each time point calculated | required based on (Equation 43) and (Equation 44).
FIG. 27 is a cross-sectional view showing a part of the internal configuration of the dewar for cerebral magnetic field measurement of the cerebral magnetic field measurement system for measuring the cerebral magnetic field in the embodiment of the present invention.
FIG. 28 is a diagram for explaining the relationship between the magnetic field component measurable by the brain magnetic field measurement system shown in FIG. 27 and the head.
FIG. 29 is a diagram showing an example of an isomagnetic field diagram obtained by the cerebral magnetic field measurement system shown in FIG. 27;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Magnetic field shield room, 2 ... Subject, 3 ... Bed, 4 ... Dewar, 5 ... Automatic replenishment device, 6 ... FFL circuit, 7 ... Filter circuit, 8 ... Computer, 10, 10 ', 10 "... Detection coil , 11, 11 ', 11 "... reference coil, 12, 12', 12" ... SQUID, 13 ... x-component detection magnetic field sensor, 14 ... y-component detection magnetic field sensor, 20-1, 20-2, ... 20-8, 21-1, ..., 21-8, 22-1, ..., 22-8, 23-2, ..., 23-8, 24-1, ..., 24-8, 25-1, ..., 25-8, 26-1, ..., 26-8, 27-1, ..., 27-8 ... Magnetic field sensor, 30 ... Chest, 103-1, 103-2, ..., 103-N ... SQUID magnetometer, 100 ... head, 102 ... dewar for head measurement, 104 ... thermal radiation shield member, 105 ... upper plate, 106-1, ..., 06-N ... signal line.

Claims (1)

生体の胸面に平行な面を直交座標のx,y平面,前記胸面に垂直な方向を前記直交座標のz軸とし,前記生体の心臓から発する磁場の前記胸面に垂直な法線成分Bz(x,y)を検出するx及びy方向に配置される複数のSQUID磁束計と,前記法線成分Bz(x,y)を用いて,前記x方向の接線成分Bx(x,y)が∂Bz(x,y)/∂xに比例し,前記y方向の接線成分By(x,y)が∂Bz(x,y)/∂yに比例するとして,前記接線成分Bx(x,y)及びBy(x,y)を推定する演算処理手段と,前記法線成分Bz(x,y),前記接線成分Bx(x,y)及びBy(x,y)を同時に表示する表示手段とを有することを特徴とする生体磁場計測装置。  A normal component perpendicular to the chest surface of the magnetic field emitted from the heart of the living body, with a plane parallel to the chest surface of the living body being an x, y plane of orthogonal coordinates and a direction perpendicular to the chest surface being az axis of the orthogonal coordinates Using a plurality of SQUID magnetometers arranged in the x and y directions for detecting Bz (x, y) and the normal component Bz (x, y), the tangential component Bx (x, y) in the x direction Is proportional to ∂Bz (x, y) / ∂x, and the tangential component By (x, y) in the y direction is proportional to ∂Bz (x, y) / ∂y, the tangential component Bx (x, y, calculation processing means for estimating y) and By (x, y), and display means for simultaneously displaying the normal component Bz (x, y), the tangential component Bx (x, y) and By (x, y) And a biomagnetic field measuring apparatus.
JP2001310864A 1997-03-07 2001-10-09 Biomagnetic field measurement device Expired - Lifetime JP4078821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001310864A JP4078821B2 (en) 1997-03-07 2001-10-09 Biomagnetic field measurement device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-52769 1997-03-07
JP5276997 1997-03-07
JP2001310864A JP4078821B2 (en) 1997-03-07 2001-10-09 Biomagnetic field measurement device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000244018A Division JP3525873B2 (en) 1997-03-07 2000-08-07 Initial value estimation method in magnetic field source analysis method

Publications (3)

Publication Number Publication Date
JP2002177233A JP2002177233A (en) 2002-06-25
JP2002177233A5 JP2002177233A5 (en) 2005-07-14
JP4078821B2 true JP4078821B2 (en) 2008-04-23

Family

ID=26393428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001310864A Expired - Lifetime JP4078821B2 (en) 1997-03-07 2001-10-09 Biomagnetic field measurement device

Country Status (1)

Country Link
JP (1) JP4078821B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014302B1 (en) 2003-08-29 2011-02-16 서강대학교산학협력단 Method for measuring position and intensity of biocurrent source and device therefor
FR2860879B1 (en) * 2003-10-08 2006-02-03 Centre Nat Etd Spatiales PROBE FOR MEASURING A MAGNETIC FIELD.
JP7525297B2 (en) 2020-05-08 2024-07-30 旭化成エレクトロニクス株式会社 Magnetic field measurement device, magnetic field measurement method, and magnetic field measurement program

Also Published As

Publication number Publication date
JP2002177233A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
US6735460B2 (en) Biomagnetic field measuring method and apparatus
Brisinda et al. Clinical magnetocardiography: The unshielded bet—past, present, and future
JP2012179352A (en) System and method for constructing current dipole
Nenonen et al. Magnetocardiographic functional localization using current multipole models
JP3582495B2 (en) Biomagnetic field measurement device
Burghoff et al. Conversion of magnetocardiographic recordings between two different multichannel SQUID devices
JP2019515757A (en) Device for measuring biomagnetic field
JP3067728B2 (en) Biomagnetic field measurement device
Han et al. Magnetocardiography using optically pumped magnetometers array to detect acute myocardial infarction and premature ventricular contractions in dogs
Nowak Biomagnetic instrumentation
JP4078821B2 (en) Biomagnetic field measurement device
JP3518493B2 (en) Calculation method of isometric diagram of biomagnetic field
Gusev et al. Ultra-sensitive vector magnetometer for magnetocardiographic mapping
JP3233127B2 (en) Biomagnetic field measurement device
JP3231710B2 (en) A method for estimating the tangent component of a biomagnetic field parallel to a biological surface
JP3196771B2 (en) Magnetic field source analysis method
JP3196770B2 (en) Biomagnetic field measurement device
Tsukada et al. Newly developed magnetocardiographic system for diagnosing heart disease
JP3196769B2 (en) Biomagnetic field measurement device
JP3196768B2 (en) Biomagnetic field measurement device
JP3525873B2 (en) Initial value estimation method in magnetic field source analysis method
Lounasmaa et al. SQUIDs in neuro-and cardiomagnetism
JP2004073894A (en) Calculation method of isomagnetic field map of biomagnetic field
Horigome et al. Visualization of regional myocardial depolarization by tangential component mapping on magnetocardiogram in children
Sato et al. Visualization of atrial excitation by magnetocardiogram

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

EXPY Cancellation because of completion of term