[go: up one dir, main page]

JP4060559B2 - 画像処理装置および画像処理方法 - Google Patents

画像処理装置および画像処理方法 Download PDF

Info

Publication number
JP4060559B2
JP4060559B2 JP2001278478A JP2001278478A JP4060559B2 JP 4060559 B2 JP4060559 B2 JP 4060559B2 JP 2001278478 A JP2001278478 A JP 2001278478A JP 2001278478 A JP2001278478 A JP 2001278478A JP 4060559 B2 JP4060559 B2 JP 4060559B2
Authority
JP
Japan
Prior art keywords
image
attribute
area
color
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001278478A
Other languages
English (en)
Other versions
JP2003087562A (ja
Inventor
直朗 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001278478A priority Critical patent/JP4060559B2/ja
Publication of JP2003087562A publication Critical patent/JP2003087562A/ja
Application granted granted Critical
Publication of JP4060559B2 publication Critical patent/JP4060559B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、文書などの画像をファイリングや複写のために文書の構成要素と色情報によって変換処理を行なう画像処理装置および画像処理方法に関する。
【0002】
【従来の技術】
文書画像を画像データとして取り込んで、その画像をハードコピーとして出力したり、イメージファイルとして保存したりする技術として、複写機や、パーソナルコンピュータ等に於ける、イメージ取り込みの分野に利用されている技術や、ファイリングシステム装置やデータベースに利用される技術等がある。
【0003】
この種、画像データを扱う装置に於いて、取り込んだ画像をハードコピーとして出力する場合、文書画像として利用者が見易いものにするために、画像処理を施す場合がある。例えば、文書画像に文字が含まれている場合、ハイパスフィルタ処理を施すことによって、文字のエッジ部分が強調され、くっきりとした、読み易い文字となる。また、写真の場合、写真の滑らかな階調を再現するために、ローパスフィルタを施すことによって、ざらつき感が無くなり、奇麗な出力となる。網点で構成された網点写真であるのか、あるいは銀塩写真であるのかによっても処理を切り替えることも可能である。
【0004】
一方、イメージデータとして取り込む場合、カラー画像や濃淡画像のデータ量は非常に大きいため、データ量を削減するためにデータ圧縮を施すことが多い。このような場合、文字は2値化することによってデータ量を削減することが可能となり、写真は階調性を保存するような圧縮処理を施すことにより写真の美しさを保存しつつ、データ量を圧縮することが可能となる。
【0005】
以上のように、文書画像の種類によって処理手法を変更することは、ハードコピーとして出力する際も、イメージファイルとして保存する際にも非常に有効である。
【0006】
文書画像は、通常、テキスト、図表、写真等の領域がそれぞれ単独にあるいは重なり合うことによって構成されている。したがって、画像処理を行なう場合、文書画像にどのような領域がどのように構成されているかを検知する必要がある。
【0007】
従来、文字、網点、写真等の文書画像を構成する要素を識別するために、入力画像データの濃度値を利用する方法が用いられてきた。2×2から4×4画素程度のブロック内に於ける最大値と最小値の差を用いて写真領域と非写真領域に分離する方法、ブロック内でエッジ画素を検出し、そのエッジ画素が文字の一部か否かをパターンマッチングによって判別する方法、3値化された画像に対しパターンマッチングによりエッジ検出およびピーク画素検出を行ない判定する方法、ブロック内の各画素に於けるエッジ量の総和を算出し分離する方法等である。これらの手法に共通しているのは、高速な処理を実現するため、数画素単位のブロック毎に処理を行なっていることである。
【0008】
したがって、ブロック内に存在する画素値の変化によっては、同一の構成要素に於ける隣接ブロック間で違う要素であると誤って識別される虞があり、その結果として同じ領域でありながら異なった画像処理が施される。
【0009】
これを解決する方法として、特願平8−34702号に記載されているように、レイアウト解析を利用して、文書画像の構造を抽出するものがある。この方法では、2値化処理を行なった後に、画素の連結性を調べ、連結している画素同士を領域として抽出して、その位置や大きさ等の特徴量を利用して識別するものである。さらに、特願平10−191286号に記載されているように、入力された画像に対し、複数の2値画像に分離して、各々の2値画像データに於いてレイアウト解析を行なう方法もある。この方法では濃度値によって画像を分離しているため、各々の画像を処理した結果を比較することで、通常の2値化では困難であった正確な文書要素の抽出や識別を行なうことができる。またカラー画像や濃淡画像を複数の2値画像で表現しているため、処理時間の短縮とメモリ容量の削減が図られている。
【0010】
しかし、これらの方法では、カラー、グレー、黒といった彩度の違いによる色属性を文書要素毎に与えることは可能であったが、どのような色によって描かれているかは分からなかった。
【0011】
例えば、カラー画像に於いて、グラフのような複雑な線図形は、その領域に於ける特徴量が写真と類似することがあり、そのため写真と誤って識別する場合がある。逆に、薄い写真領域は、その領域における特徴量が線図形に類似することがあり、そのため線図形と誤って識別する場合がある。誤った識別の結果、写真領域に対してハイパスフィルタ処理を行なって、ざらついた画像となり、逆に、線図形にローパスフィルタ処理を行なって文字や線がぼやけた画像となる虞がある。通常、カラー写真は、多色により表現されており、色の分布は、散らばっていることが多い。線図形では限定された色により表現され、色の分布は塊のようになっていることが多い。したがって、色の分布を調べることにより誤識別を防ぐことが可能となる。しかし、カラー属性だけでは色の分布を調べることが難しい。
【0012】
また、通常、文書に赤色の文字がある場合、他の部分より注目すべき部分であることが多い。このような文字は、ファイリングを行なう際のキーワードとなることが想定されるため、より高度な文書処理を考慮した場合、他の文字と区別して扱うことが重要となってくる。しかし、この場合もカラー属性だけでは、赤色の文字と他の色との区別をつけるのは難しい。
【0013】
更に、ハードコピーとして出力する場合、予め使われている色が分かっているならば、色変換テーブルを構築する際に、使われていない色を除外し、逆に使われている色の分解能をあげることにより、綺麗な出力を得ることが可能となるが、どのような色分布であるか分からないため、このような適応的なカラーテーブルを構築することは難しい。
【0014】
このように、特願平10−191286号に記載されている方法では、文書要素がどのような色で描かれているかを示す色分布が分からないため、カラー画像に於ける特徴を抽出することが困難であった。
【0015】
【発明が解決しようとする課題】
上述したように従来では、画像データとして読み込まれた画像の各画素を、前記画像の画素およびその近傍画素の濃度情報に応じて複数の画像に分離し、当該各画像から領域を抽出し、抽出した領域の特徴量により分離された画像毎の属性を識別する画像処理に於いて、例えば写真領域、線図形領域等を弁別するための有効な処理手段が存在しなかった。
【0016】
本発明は上記実情に鑑みなされたもので、画像データとして読み込まれた画像の各画素を、前記画像の画素およびその近傍画素の濃度情報に応じて複数の画像に分離し、当該各画像から領域を抽出し、抽出した領域の特徴量により分離された画像毎の属性を識別する画像処理に於いて、例えば写真領域、線図形領域等を弁別するための有効な処理が期待できる画像処理装置および画像処理方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は、画像データとして読み込まれた画像の各画素を、前記画像の画素およびその近傍画素の濃度情報に応じて複数の画像に分離し、当該各画像から領域を抽出し、抽出した領域の特徴量により分離された画像毎の属性を識別する画像処理方法に於いて、前記抽出した領域の複数色毎若しくは特定色の色の固まり形状を認識し、当該認識した色の固まり状態の情報を識別条件に前記画像の属性を識別することを特徴とする。
【0018】
また、本発明に係る画像処理装置は、画像データとして読み込まれた画像の各画素を、前記画像の画素およびその近傍画素の濃度情報に応じて複数の画像に分離し、当該各画像から領域を抽出し、抽出した領域の特徴量により分離された画像毎の属性を識別する領域識別手段と、前記画像データとして読み込まれた画像の各画素を、前記画像の画素およびその近傍画素の色情報によって数種類の色に分類する色分類手段と、前記領域識別手段で取得した画像の属性、および前記色分類手段で取得した色の各情報をもとに、前記画像データとして読み込まれた画像の各画素の属性を識別する画素属性識別手段と、この画素属性識別手段により識別された属性を画像に変換して出力する画像出力手段とを具備することを特徴とする。
【0019】
また、本発明に係る画像処理装置は、画像データとして読み込まれた画像の各画素を、前記画像の画素およびその近傍画素の濃度情報に応じて複数の画像に分離し、当該各画像から領域を抽出し、抽出した領域の特徴量により分離された画像毎の属性を識別する領域識別手段と、前記画像データとして読み込まれた画像の各画素を、前記画像の画素およびその近傍画素の色情報によって数種類の色に分類する色分類手段と、前記領域識別手段で取得した画像の属性、および前記色分類手段で取得した色の各情報をもとに、前記画像データとして読み込まれた画像の各画素の属性を決定する画素属性識別手段と、前記画素属性識別手段で取得した特定の属性に対して画像生成方法の変更を行なう画像出力制御手段と、前記画素属性識別手段で取得した属性を画像に変換して出力する画像出力手段とを具備することを特徴とする。
【0020】
また、本発明に係る画像処理装置は、画像データとして読み込まれた画像の各画素を、前記画像の画素およびその近傍画素の濃度情報に応じて複数の画像に分離し、当該各画像から領域を抽出し、抽出した領域の特徴量により分離された画像毎の属性を識別する領域識別手段と、前記領域識別手段で抽出された領域内の各画素の色情報から前記領域内の色分布の情報を取得する色分類手段と、前記領域識別手段で取得した画像の属性、および前記色分類手段で取得した色の各情報をもとに、前記画像データとして読み込まれた画像の各画素の属性を識別する画素属性識別手段と、この画素属性識別手段により識別された属性を画像に変換して出力する画像出力手段とを具備することを特徴とする。
【0021】
上記した本発明の機能を備えることにより、従来発生していた写真領域や線図形領域の誤識別の軽減につながり、例えばハードコピーをとる場合、写真領域に対してはローパスフィルタ処理を行って滑らかな階調を再現するためにローパスフィルタを施すことによって、ざらつき感が無くなり、奇麗な出力となり、また、線図形領域に対してはハイパスフィルタ処理を施すことによって、文字のエッジ部分が強調され、くっきりとした出力にすることが可能となる。また、色によって画像編集の指示を行なったり、ファイリングの際に色付きの文字をキーワードとして自動登録を行なったりすることも可能となる。
【0022】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。
【0023】
図1は本発明の第1実施形態に於ける装置システムの構成を示すブロック図である。
【0024】
本発明は、文書画像を画像入力部によって取り込み、領域識別部に於いて画素値の濃度差や彩度などの状態によって複数の画像データに分離し、物理的あるいは論理的に連結しているものを一つの領域として抽出した後、個々の領域の画像上の位置、大きさ、形状、構造、濃度分布等の特徴量を計測し、その計測結果を予め定められたルールに基づいて文書構成要素として識別し、色分類部に於いて画素値の色相や彩度などの状態によって、幾つかの色に分類し、その結果を色分布画像データとして保持し、更に複数の画像データから抽出された領域の情報や色分布画像データより画像の各画素の属性を決定することによって、文書画像内の領域毎の属性を検知することができる。また、画像出力制御部で特定の属性を持った画素に対して色分布画像データに基づき、編集処理を行なわせることができる。
【0025】
以下、本発明のより具体的な実施の形態について、図面を参照して説明する。
【0026】
図1は本発明の第1実施形態に於ける画像処理装置の要部の構成要素を示すブロック図である。
【0027】
図1に於いて、101は画像入力部、102は領域識別部、103は色分類部、104は画素属性識別部、105は画像出力部である。
【0028】
画像入力部101は、画像データを入力する装置であり、書類を読み取って画像データに変換する装置であるイメージスキャナ等の画像入力装置により、文書等の書類から描かれているものを取り込む装置である。尚、この画像入力部101はイメージスキャナ等の読み取り装置で構成されたものでもよいし、保存された画像イメージを取り込む装置であってもよい。
【0029】
領域識別部102は、画像入力部101に於いて入力された画像データから文書要素を領域として抽出する。先ず、画像入力部101に於いて入力された画像データに対して、周辺画素の濃度差や彩度などの状態によって複数の2値の画像データに分離し、各画像より文字や図形等が物理的にあるいは論理的に連結されている各領域に分割して抽出し、その領域の位置、大きさ、形状、構造、濃度分布等の特徴量を計測して、文書要素としての各種類や重要度を識別する。文書要素の種類としては、例えば、文字、写真、図、表、網点などがあげられる。複数の2値の画像データに分離する具体的な手法として、既に公知となっているものがあり、例えば、特願平10−053317号で開示されている手法により実現してもよい。この場合、文字画像、中間調画像、下地画像、網点画像、カラー画像、グレー画像、黒画像の7つの2値分離画像データが生成される。また、文書要素の抽出および識別の具体的な手法として、既に公知となっているものがあり、例えば、特願平8−34702号で開示されている手法により実現してもよい。この領域抽出部102では、単一画像データからだけではなく、複数画像データでの特徴量をルールに従って統合し、入力された画像データの領域属性を決定する。例えば、文字画像と中間調画像の双方から同じ位置に領域が抽出された場合、その領域の種類や領域の大きさはどれだけなのかを決定する。具体的な例として、文字画像上に写真領域が存在し、同じ位置に中間調画像に中間調画素が存在する場合、銀塩写真領域と決定する。複数画像データからの領域属性決定の具体的な手法として、既に公知となっているものがあり、例えば、特願平10−053317号で開示されている手法により実現してもよい。
【0030】
色分類部103は、詳細は後述するが、画像入力部101に於いて入力された画像データに対して、周辺画素の色相や彩度などの状態から幾つかの色(数種類の色について、その同色の分布の状態)に分類し、その結果を色分類画像データとして生成するものである。
【0031】
画素属性識別部104は、詳細は後述するが、領域識別部102で識別された複数画像データの領域の種類や重要度と色分離部103で分類された色分類画像データを用いて、入力された画像データの画素毎の属性を決定するものである。
【0032】
画像出力部105は、画素属性識別部104によって決定された領域情報に従って出力を行なう。出力形態としては、例えば属性の領域情報を画像に変換したものでもよい。属性の領域情報を画像に変換する具体的な手法として、既に公知となっているものがあり、例えば、特願平10−053317号で開示されている手法により実現してもよい。
【0033】
図2は上記図1に示した本発明の第1実施形態に於ける画像処理装置の文書処理手順の一例を示すフローチャートである。
【0034】
上記各図を参照して本発明の第1実施形態に於ける処理動作を説明する。
【0035】
まず、書類の画像を画像入力部101により取り込む(ステップST201)。すなわち、スキャナ等の画像入力装置を利用して書類から画像を読み取ったり、またはファイリングシステム等の画像ファイルデータを入力したりしたものを、画像入力部101により画像データに変換する。
【0036】
領域抽出部102は、上記画像入力部101より出力される画像データを1ライン分、または数ライン分ずつ読み取り、周辺画素の濃度差や彩度などの画素毎の状態によって複数の2値画像データに分離し、更に文字や図形等が物理的にあるいは論理的に連結されている領域毎に分割して抽出し、その領域の位置、大きさ、形状、構造、濃度分布等の特徴量を計測して、領域の種類や重要度等の識別を行ない、その結果、文字、写真、図、表、網点領域などの文書要素を抽出する(ステップST202)。この処理を入力された画像の全画素に対して処理が終了するまで繰り返す(ステップST203)。
【0037】
色分類部103は、上記画像入力部101より出力される画像データを1ライン分、または数ライン分ずつ読み取り、周辺画素の色相や彩度などの画素毎の状態によって各画素がどのような色であるか分類を行ない、色分布画像データを生成する。その際、データ圧縮のため、周辺画素の色分布から微小な色分布をその周囲の大きな色分布に置き換える(ステップST204)。この処理を入力された画像の全画素に対して処理が終了するまで繰り返す(ステップST205)。
【0038】
すべての画素に対して領域識別および色分類が終了した後、画素属性判別部104に於いて、各画素の最終的な属性を決定する(ステップST206)。ここで決定される属性の一例としては、写真と線図形の区別や色分布情報の付加などである。そして、上記の処理をすべての画素に対して終了するまで繰り返す(ステップST207)。
【0039】
その後、画像出力部105に於いて、各々の画素属性を画像データとして変換した出力画像を出力する(ステップST208)。
【0040】
以上が本発明の第1実施形態に於ける画像処理装置の大まかな処理動作である。
【0041】
次に上記実施形態に於ける個々の要素の処理の詳細を説明する。
【0042】
図3は本発明の第1実施形態に於ける画像処理装置に設けられた色分類部103の処理手順の一例を示すフローチャートであり、図2に示したステップST204で行われる処理の手順を示すフローチャートである。
【0043】
色分類部103は、入力画像データの色相や彩度および輝度値の特徴から入力画像を数種類の色に分類する。ここで、色の数は、画素属性識別部104で処理を行なう内容によって決定される。厳密に色を調べる必要がある場合、分類数を増やし、逆に大まかな色の分布が分かればよい場合は、分類数を減らす。一般に分類数を増やすとデータ量が増大して、コスト的に不具合が生じる。本発明では、後者の大まかな色の分布が分かればよい場合について述べる。
【0044】
以下の例では、入力された画素を赤(red)、黄色(yellow)、緑(green)、シアン(cyan)、青(blue)、マゼンダ(magenta)、白(white)、グレー(gray)、黒(black)の9通りの色に分類する一例を示す。
【0045】
画像入力部101から入力される画像データ151は、RGBで表現されるカラー情報を含んだものである。このRGBで表わされた画像データを一例として次式によって示されるYUV線形変換によって輝度値Yに変換する(ステップST301)。
【0046】
Y=0.299R+0.587G+0.114B
ここで、R、G、Bは、それぞれ入力された画像データに於ける画素のRGB値である。また、同じRGBで表わされた画像データを一例として表1に示される変換式を用いて彩度Sに変換する。
【0047】
【表1】
Figure 0004060559
【0048】
図4は上記した例で示した画素変換のカラーモデルを示し、図5はそのモデルの断面を表している。図5の中央部の小さい円の領域は、白、グレー、黒のいずれかになる領域である。
【0049】
Hの値により赤(red)、黄色(yellow)、緑(green)、シアン(cyan)、青(blue)、マゼンダ(magenta)の何れかに分類される。
【0050】
以上の処理の結果、各画素は赤(red)、黄色(yellow)、緑(green)、シアン(cyan)、青(blue)、マゼンダ(magenta)、白(white)、グレー(gray)、黒(black)の何れかになる。
【0051】
これらの変換処理を入力された画像データの一行分行ない、その結果をメモリ内に保存する。
【0052】
次にHの値から更に大まかな色分布の決定を行なう(ステップST302)。ここでは、現在の行の色分布データと一つ前の行の色分布データからx方向の解像度を落としながら色分布を決定していく。
【0053】
方向の解像度を1/Nに落とし、色分布を決定する画素位置を(i,j)とすると、i−1行で前後3N画素、i行で前後3N画素分の色分布を調べ、赤(red)、黄色(yellow)、緑(green)、シアン(cyan)、青(blue)、マゼンダ(magenta)、白(white)、グレー(gray)、黒(black)ごとにカウントする。その結果、最もカウント数が多い色をその画素の色分布と決定する。
【0054】
図6はN=3とした例を示している。図中のrは赤(red)を、mはマゼンダ(magenta)を、gはグレー(gray)を、bは黒(black)を表している。該当する画素に於いて各々の色をカウントすると、r=8、g=5、m=3、b=2となる。これより色分布は赤と決定できる。以上の処理により、解像度を落とした大まかな色の分布状態がわかる色分布を決定できる。
【0055】
そして、決定した色分布から色分布画像データを生成する(ステップST303)。これは、ランレングスデータのように「色の識別子+連続する画素数」という表現でデータを記述することにより、更に圧縮することが可能となる。その結果、色分布画像データ152が出力される。
【0056】
以上により色分類部103の出力として、色分布画像データが生成される。
【0057】
次に画素属性識別処理について説明する。
図7は本発明の第1実施形態に於ける画像処理装置に設けられた画素属性識別部104の画素属性識別処理手順を示すフローチャートであり、図2のステップST206で行われる処理の詳細を示すフローチャートである。
【0058】
画素属性識別処理とは、領域識別と色分類の結果を比較することによって、領域識別結果の確認と修正を行なう処理である。以下、図7に示すフローチャートに従って画素属性識別処理動作を説明する。
【0059】
領域識別部102では、文書要素を抽出して、識別を行ない、その結果を出力する。また、色分類部103では、数種類の色の分類を行ない、その結果を色分布画像データとして出力する。画素属性識別部104では、領域識別の結果とそれに対応する位置の色分布画像データの情報から領域識別結果の再判定を行なう。以下の例では、カラー写真と識別された領域に対しての再判定方法を述べる。尚、ここでの写真はカラー写真のことを指す。
【0060】
まず領域識別データ153が写真属性かどうかを調べる(ステップST401)。写真属性を持っていない場合、例えばテキスト属性である場合、そのまま修正領域データ154として出力する。
【0061】
ステップST401に於いて領域識別データ153が写真属性であった場合、色分布画像データ152から該当する領域の色分布情報のうち、色数を調査する(ステップST402)。写真であるならば、さまざまな色で表現されることが多い。そのような領域では、色分類の結果として、いくつもの色が検出される。逆に、色分類の結果、単色に近い場合、複雑な線図形とみなすことができる。多くの色が存在している場合、写真と判定し、そのまま修正領域データ154として出力する(ステップST403)。また、単色に近い場合、次に色分布画像データ152から該当する領域の色分布の偏りを調査する(ステップST404)。写真であるならば、色が領域中に散らばっていることが多い。逆に、線図形であるならば、オブジェクトに単一色を割り当てることが多いため、色の分布に偏りが生じることが予想される。色の偏りを調べる方法としては、色分布画像データが色情報をもったランレングスデータで表現されているため、色毎の領域抽出処理を行ない、写真と同じ領域で抽出された同一色領域の大きさや形状や画素の分布といった特徴量を抽出してもよい。その結果、色に偏りが無い場合、写真と判定し、そのまま修正領域データ154として出力する(ステップST405)。偏りがある場合、線図形と判定し、写真属性から線図形属性に修正した修正領域データ154を出力する(ステップST406)。
【0062】
以上の処理を全ての写真領域に行なうことで、識別精度の向上を図ることが可能となる。
【0063】
図8は上記した本発明の第1実施形態に於ける画像処理装置に入力される一例としての画像データの例である。ここでは画像データ501として、線図形部分502と、文章部分503が描かれているものを示してある。この例を用いて画素属性識別部104に於ける実際の処理過程を説明する。
【0064】
上記図8に示す画像データ501を画像入力部101より取り込み、領域識別部102によって領域として抽出した線図形部分502は、複雑なグラフであるために、写真領域と誤識別され、文章部分503は文字領域として識別される。その結果は、例えば、線図形領域、は写真領域と誤識別され、図9の502aの如く、文字領域は503aの如く出力される。
【0065】
さて、写真領域と誤識別された線図形領域502aは、画素属性識別部104によって写真であるか否か再判定される。この際は、色分類部103で生成された色分布画像データによって、写真領域と誤識別された線図形領域502aは色が少ないと判定されたとする。その後、色分布画像データから同一色領域の抽出を行ない、その大きさや形状や画素の分布状態から、色の分布に偏りがあると判定される。したがって、画素属性識別部104の出力としては、修正領域データとして、写真領域を線図形領域と変更し、出力することとなる。
【0066】
この例のように、本発明による画像処理装置によると複雑な線図形領域を写真領域として誤識別した場合であっても、色の分布状態から、線図形として正しく識別することが可能となる。
【0067】
以上が、画素属性識別部104の処理の詳細である
また、別の形態では、色分類部103で生成される色分布画像データにしたがって、出力を制御することも可能である。この機能を実現した画像処理装置の一例を本発明の第2実施形態として説明する。
【0068】
以下に本発明の第2実施形態に於ける、より具体的な処理の一例について、図面を参照して説明する。
【0069】
図10は本発明の第2実施形態に於ける画像処理装置の一構成例を示すブロック図である。
【0070】
図10に於いて、101は画像入力部、102は領域識別部、103は色分類部、104は画素属性識別部、105は画像出力部、106は画像出力制御部である。
【0071】
画像入力部101、領域識別部102、色分類部103、および画素属性識別部104については、上述した第1実施形態に於いて、図1を用いて説明した構成要素と同様のものであり、ここではその説明を省略する。
【0072】
画像出力制御部106は、色分類部103で生成される色分布画像データにしたがって、画像出力方法の変更を行ない、その情報を画像出力部105へ渡す。
【0073】
図11は本発明の画像処理装置に入力される一例としての画像データの例である。ここでは画像データ601として、写真部分602と、文章部分603と、閉曲線604が描かれているものを示している。文章部分603は黒で、閉曲線604は赤で描かれているとする。この例を用いて画像出力制御部106に於ける処理の一例を説明する。
【0074】
画像入力部101より取り込まれた画像データ601は、領域識別部102によって領域抽出される。ここでは、図12に於ける写真領域602aと文字領域603aと赤の平曲線604aとに識別される。
【0075】
画像出力制御部106は、抽出された領域の状態と色が対応付けられたルールによって構成される。例えば、「赤の閉曲線で囲まれた領域内に存在する文字の色を赤で置き換える」というルールが記述されているならば、色分類部103で生成される色分布画像データを参照することによって、閉曲線604a内に存在する文字領域603aの文字を「黒」から「赤」に置き換えることが可能となる。上述した従来技術では、閉曲線604a内の全て黒が赤に置き換えられてしまうが、本発明に於いては、画素属性とその色を対応付けることが可能であるため、このような高度な編集も可能となる。
【0076】
また、別の形態では、画像出力部105が画像ファイリングであっても効果がある。
【0077】
以下、本発明の第2実施形態に於ける、より具体的な処理の一例について、図面を参照して説明する。
【0078】
図13は本発明の第2実施形態に於ける画像処理装置に入力される一例としての画像データの例である。ここでは画像データ701として、線図形部分702と、文章部分703が描かれており、更に文字704と文字705は赤で描かれているとする。この例を用いて、上記画像出力制御部106に於ける処理の一例を説明する。
【0079】
画像入力部101より取り込まれた上記画像データ701は、領域識別部102によって領域抽出される。ここでは、図14に於ける線図形領域702aと文字領域703aとに識別される。
【0080】
通常、文書内に於ける赤い文字は、その文書に於いて重要な意味を成すことが多いため、ファイリング時のキーワードとして利用することが考えられる。
【0081】
画像出力制御部106で「赤の文字が存在する場合、その文字領域に対して文字認識処理を行なわせ、キーワードとして登録する」というルールを記述しておくと、上述した色分類部103で生成される色分布画像データを参照することによって、文字領域703a中に赤で描かれている文字704aと705aを自動的に抽出して、キーワード登録することも可能となる。
【0082】
このように本発明の実施形態に於いては、画像データを画像入力部101により取り込み、この画像データ(カラー画像)を領域識別部102に於いて画素値の濃度差や彩度などの状態により複数の画像データに分離し、物理的あるいは論理的に連結しているものを一つの領域として抽出した後、個々の領域の画像上の位置、大きさ、形状、構造、濃度分布等の特徴量を計測し、更に、その計測結果を予め定められたルールに基づいて文書構成要素として識別し、色分類部103に於いて画素値の色相や彩度などの状態によって、幾つかの色に分類し、その結果を色分布画像データとして保持し、画素属性識別部104に於いて領域識別データと色分布画像データから文書内の各画素の属性を決定し、画像出力部105によって、構造的な画素属性を出力している。このような処理機能をもつことで、文書要素の識別精度を向上させることが可能となり、また色の違いを利用した、より高度な編集処理を行なうことが可能となる。
【0083】
【発明の効果】
以上詳記したように、本発明によれば、画像データとして読み込まれた画像の各画素を、前記画像の画素およびその近傍画素の濃度情報に応じて複数の画像に分離し、当該各画像から領域を抽出し、抽出した領域の特徴量により分離された画像毎の属性を識別する画像処理に於いて、例えば写真領域、線図形領域等を弁別するための有効な処理が期待できる。
【0084】
更に、本発明によれば、文書をハードコピーしたり、イメージデータに変換して保存しようとする場合、入力されたカラー画像に対して、画素値の濃度差や彩度などの状態によって複数の画像データに分離し、物理的あるいは論理的に連結しているものを一つの領域として抽出した後、個々の領域の画像上の位置、大きさ、形状、構造、濃度分布等の特徴量を計測し、その計測結果を予め定められたルールに基づいて文書構成要素として識別し、画素値の色相や彩度などの状態によって、幾つかの色に分類して、その結果を色分布画像データとして保持し、領域識別結果と色分布画像データの比較により、文書要素の識別精度を向上させることが可能となる。その結果、従来発生していた写真領域や線図形領域の誤識別の軽減につながり、例えばハードコピーをとる場合、写真領域に対してはローパスフィルタ処理を行って滑らかな階調を再現するためにローパスフィルタを施すことによって、ざらつき感が無くなり、奇麗な出力となる。また、線図形領域ではハイパスフィルタ処理を施すことによって、文字のエッジ部分が強調され、くっきりとした出力にすることが可能となる。また、色によって画像編集の指示を行なったり、ファイリングの際に色付きの文字をキーワードとして自動登録を行なったりすることも可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に於ける画像処理装置の要部の構成要素を示すブロック図。
【図2】上記実施形態に於ける画像処理手順の一例を示すフローチャート。
【図3】上記実施形態に於ける色分類部の処理手順の一例を示すフローチャート。
【図4】上記実施形態に於ける色分類部の処理動作を説明するための画素変換のカラーモデルを示す図。し、図5はそのモデルの断面を表している。
【図5】上記図4に示すカラーモデルの断面を示す図。
【図6】上記実施形態に於ける色分布画像生成処理の動作説明図。
【図7】上記実施形態に於ける画素属性識別部の処理手順を示すフローチャート
【図8】上記実施形態の動作を説明するための入力画像データの一例を示す図。
【図9】上記図8に示す画像データの領域抽出例を示す図。
【図10】本発明の第2実施形態に於ける画像処理装置の要部の構成要素を示すブロック図。
【図11】上記実施形態の動作を説明するための入力画像データの一例を示す図。
【図12】上記図11に示す画像データの領域抽出例を示す図。
【図13】上記実施形態の動作を説明するための入力画像データの一例を示す図。
【図14】上記図13に示す画像データの領域抽出例を示す図。
【符号の説明】
101…は画像入力部
102…領域識別部
103…色分類部
104…画素属性識別部
105…画像出力部
106…画像出力制御部
501…画像データ
502…領域として抽出した線図形部分
503…領域として抽出した文章部分
502a…写真領域と誤識別された線図形領域
503a…文章領域と誤識別された線図形領域
601…画像データ
602…領域として抽出した写真部分
603…領域として抽出した文章部分
604…領域として抽出した閉曲線部分
602a…識別された写真領域
603a…識別された文字領域
604a…識別された平曲線領域
701…画像データ
702…領域として抽出した線図形部分
703…領域として抽出した文章部分
704…領域として抽出した文字部分
704,705…文字領域に赤で描かれた文字
702a…識別された線図形領域
703a…識別された文字領域
704a,705a…自動抽出された赤で描かれている文字

Claims (4)

  1. 画像データとして読み込まれた入力画像の各画素およびその近傍画素の濃度情報に応じて複数の画像に分離し、当該各画像から領域を抽出し、抽出した領域の特徴量により分離された画像毎の写真属性およびテキスト属性を含む複数の領域属性を識別する領域識別手段と、
    前記入力画像の各画素を、前記入力画像の画素およびその近傍画素の色情報によって数種類の色に分類する色分類手段と、
    前記領域識別手段によって識別された画像の領域属性が前記写真属性である場合、前記色分類手段によって分類された色の各情報をもとに、当該領域属性が真に写真属性であるかを再識別する画素属性識別手段であって、前記写真属性であると識別された領域を対象に、前記色分類手段によって分類された色の情報から取得される当該領域の色の数に基づき、当該領域の領域属性が真に写真属性であるかを識別し、真に写真属性であると識別されない場合、当該真に写真属性であると識別されない領域を対象に、前記色分類手段によって分類された色の情報をもとに当該領域における同一色の分布の偏りの有無を判定し、同一色の分布の偏りが無い場合には当該領域の領域属性が真に写真属性であると識別し、同一色の分布の偏りが有る場合には当該領域の領域属性が線図形属性であるとして前記領域識別手段による領域識別結果を修正する画素属性識別手段と
    を具備することを特徴とする画像処理装置。
  2. 前記画素属性識別手段によって識別された領域属性に従って画像を出力する画像出力手段を更に具備することを特徴とする請求項1記載の画像処理装置。
  3. 前記画素属性識別手段によって属性が識別された領域内に存在する特定の属性の画像の色を予め定められたルールに従って変更する画像出力制御手段を更に具備することを特徴とする請求項2記載の画像処理装置。
  4. 画像データとして読み込まれた入力画像の各画素およびその近傍画素の濃度情報に応じて複数の画像に分離し、当該各画像から領域を抽出し、抽出した領域の特徴量により分離された画像毎の写真属性およびテキスト属性を含む複数の領域属性を識別する領域識別ステップと
    前記入力画像の各画素を、前記入力画像の画素およびその近傍画素の色情報によって数種類の色に分類する分類ステップと
    前記領域識別ステップで識別された画像の領域属性が前記写真属性である場合、前記分類された色の各情報をもとに、当該写真属性が真に写真属性であるかを再識別する再識別ステップであって前記写真属性であると識別された領域を対象に、前記分類された色の情報から取得される当該領域の色の数に基づき、当該領域の領域属性が真に写真属性であるかを識別するステップと、真に写真属性であると識別されない場合、当該真に写真属性であると識別されない領域を対象に、前記分類された色の情報をもとに当該領域における同一色の分布の偏りの有無を判定するステップと、同一色の分布の偏りが無い場合には当該領域の領域属性が真に写真属性であると識別するステップと、同一色の分布の偏りが有る場合には当該領域の領域属性が線図形属性であるとして前記領域識別ステップによる領域識別結果を修正するステップとを含む再識別ステップと
    を具備することを特徴とする画像処理方法。
JP2001278478A 2001-09-13 2001-09-13 画像処理装置および画像処理方法 Expired - Fee Related JP4060559B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001278478A JP4060559B2 (ja) 2001-09-13 2001-09-13 画像処理装置および画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001278478A JP4060559B2 (ja) 2001-09-13 2001-09-13 画像処理装置および画像処理方法

Publications (2)

Publication Number Publication Date
JP2003087562A JP2003087562A (ja) 2003-03-20
JP4060559B2 true JP4060559B2 (ja) 2008-03-12

Family

ID=19102841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278478A Expired - Fee Related JP4060559B2 (ja) 2001-09-13 2001-09-13 画像処理装置および画像処理方法

Country Status (1)

Country Link
JP (1) JP4060559B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077567A (ja) 2002-08-09 2004-03-11 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
US7271784B2 (en) 2002-12-18 2007-09-18 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
US20070002348A1 (en) * 2005-03-15 2007-01-04 Kabushiki Kaisha Toshiba Method and apparatus for producing images by using finely optimized image processing parameters
JP4657773B2 (ja) 2005-03-22 2011-03-23 株式会社東芝 画像処理装置および画像処理方法
JP5178490B2 (ja) 2008-12-17 2013-04-10 キヤノン株式会社 画像処理装置、画像処理方法、コンピュータプログラム
JP5042251B2 (ja) * 2009-02-18 2012-10-03 三菱電機株式会社 画像処理装置および画像処理方法
US8977044B2 (en) * 2011-02-18 2015-03-10 Fuji Xerox Co., Ltd. Image processing apparatus for area separation of images, image processing method, and computer readable medium
JP2017175524A (ja) * 2016-03-25 2017-09-28 株式会社日立ドキュメントソリューションズ 文書管理システムおよびイメージデータ管理方法
CN115620065B (zh) * 2022-10-26 2025-06-17 中国民用航空飞行学院 一种基于颜色特征互信息量的火灾图像识别方法
CN116977998B (zh) * 2023-07-27 2024-07-05 江苏苏力机械股份有限公司 涂装生产线工件上件视觉识别系统及识别方法
CN119904165A (zh) * 2023-10-26 2025-04-29 北京京东远升科技有限公司 一种退换货订单处理的方法和装置

Also Published As

Publication number Publication date
JP2003087562A (ja) 2003-03-20

Similar Documents

Publication Publication Date Title
KR100339691B1 (ko) 코드인식을 위한 장치 및 그 방법
US6865290B2 (en) Method and apparatus for recognizing document image by use of color information
US9171224B2 (en) Method of improving contrast for text extraction and recognition applications
US20050232490A1 (en) Red-eye detection device, red-eye detection method, and red-eye detection program
JP5337563B2 (ja) 帳票認識方法および装置
JPH11126259A (ja) 画像検出方法、画像検出装置、画像処理方法、画像処理装置、及び媒体
JP4060559B2 (ja) 画像処理装置および画像処理方法
US8611658B2 (en) Image processing apparatus and image processing method
CN101551859A (zh) 图像辨别装置及图像检索装置
JP3018949B2 (ja) 文字読取装置およびその方法
KR100513784B1 (ko) 영상 개선 방법 및 장치
CN101802844A (zh) 将分割引擎应用于数字图像的不同映射
JP5929282B2 (ja) 画像処理装置及び画像処理プログラム
JP5887242B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP3906221B2 (ja) 画像処理方法及び画像処理装置
US20190356820A1 (en) Image processing apparatus for processing marked regions
JP4001446B2 (ja) 画像背景色特定のための方法、装置及びコンピュータ読み取り可能な記録媒体
US20050271260A1 (en) Device, method and program for removing pores
JPH0654180A (ja) 画像領域分離装置及び画像領域分離方法
JP4116377B2 (ja) 画像処理方法および画像処理装置
RU2571510C2 (ru) Метод и устройство, использующие увеличение изображения для подавления визуально заметных дефектов на изображении
JP3647071B2 (ja) 画像処理装置およびその方法
JP2003196592A (ja) 画像処理プログラム及び画像処理装置
JP2001109842A (ja) 光学文字読取装置
JP4228905B2 (ja) 画像処理装置及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4060559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees