CN100356729C - Method and system for monitoring network service performance - Google Patents
Method and system for monitoring network service performance Download PDFInfo
- Publication number
- CN100356729C CN100356729C CNB2004100320792A CN200410032079A CN100356729C CN 100356729 C CN100356729 C CN 100356729C CN B2004100320792 A CNB2004100320792 A CN B2004100320792A CN 200410032079 A CN200410032079 A CN 200410032079A CN 100356729 C CN100356729 C CN 100356729C
- Authority
- CN
- China
- Prior art keywords
- baseline
- data
- network
- performance
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信网络技术,尤其涉及一种监控网络业务性能的方法及系统。The invention relates to communication network technology, in particular to a method and system for monitoring network service performance.
背景技术Background technique
在通信网络中,运营商需要对网络各个时期运行情况进行把握,通过分析采集的性能数据来判断运行是否有变坏或者异常趋势,作为网络优化、业务规划、故障诊断、病毒源发现、黑网吧追踪的依据。In the communication network, operators need to grasp the operation status of the network in each period, and judge whether the operation has deteriorated or abnormal trend by analyzing the collected performance data. basis for tracking.
目前网络性能分析中,特别是流量分析中,运营商仅仅获得相关的性能数据,按照时间轴和管理对象集进行统计,只能获得一定时刻的统计信息,无法获得网络的长期运行趋势或者周期性运行趋势。At present, in network performance analysis, especially in traffic analysis, operators only obtain relevant performance data, and make statistics according to the time axis and management object set. They can only obtain statistical information at a certain time, and cannot obtain the long-term operation trend or periodicity of the network. running trend.
发明内容Contents of the invention
本发明的目的在于提供一种监控网络业务性能的方法及系统,以解决现有技术中存在无法长期或周期性监控网络业务性能变化趋势的问题。The purpose of the present invention is to provide a method and system for monitoring network service performance, so as to solve the problem in the prior art that it is impossible to monitor the change trend of network service performance for a long time or periodically.
实现本发明的技术方法:Realize technical method of the present invention:
一种监控网络业务性能的方法,所述网络具有可采集网络业务数据的网管系统,该方法包括步骤:A method for monitoring network service performance, the network has a network management system capable of collecting network service data, the method comprising the steps of:
通过网管系统配置基线分析参数,如果是简单基线,则确定基线类型和历史数据点数,如果是周期性基线,则确定周期类型,历史数据周期数和分布点分析基本单位;Configure the baseline analysis parameters through the network management system. If it is a simple baseline, determine the baseline type and the number of historical data points;
根据配置从网络中采样业务数据;Sampling business data from the network according to the configuration;
如果是简单基线,则从所述业务数据中获得历史数据点数的平均值、最大值和/或最小值,并以该值为基准点形成反映业务性能的一条或多条水平基线,如果是周期性基线,则根据历史数据周期数从所述业务数据中获得周期内每个分布点分析基本单位的平均值、最大值和/或最小值,并以该值为基准点形成反映业务性能的一条或多条基线;If it is a simple baseline, obtain the average value, maximum value and/or minimum value of historical data points from the business data, and use this value as a benchmark to form one or more horizontal baselines reflecting business performance, if it is a cycle If there is a permanent baseline, the average value, maximum value and/or minimum value of the basic unit of analysis of each distribution point in the cycle is obtained from the business data according to the number of historical data cycles, and a benchmark reflecting the business performance is formed based on this value. or multiple baselines;
以所述基线为参考,从网络中获取当前业务数据值并与基线上当前时间点对应的值进行比较,当出现连续多个采样点的业务数据值均大于或者小于一基线上对应采样点的值时,则判定网络的业务性能存在固定的变化趋势。Using the baseline as a reference, obtain the current service data value from the network and compare it with the value corresponding to the current time point on the baseline. When the value is , it is determined that there is a fixed trend in the service performance of the network.
当判定网络的业务性能存在固定的变化趋势时,产生告警信息或/和执行预先配置的控制策略对网络进行动态优化控制。When it is determined that the service performance of the network has a fixed change trend, an alarm message is generated or/and a pre-configured control strategy is executed to dynamically optimize the control of the network.
所述基线为表示业务量数据在一时间段期间内存在相对稳定特性的简单基线,该基线分析参数包括基线类型、历史数据点数据、异常数据淘汰方式和置信区间。The baseline is a simple baseline representing relatively stable characteristics of traffic data within a period of time, and the baseline analysis parameters include baseline type, historical data point data, abnormal data elimination method and confidence interval.
所述基线为表示业务数据在一定时间内存在周期性变化趋势的性能周期性基线,该基线分析参数包括周期、历史数据周期数、分布分析点基本单位、异常数据淘汰方式和置信区间。The baseline is a performance periodic baseline that indicates that business data has a periodic change trend within a certain period of time. The baseline analysis parameters include cycle, historical data cycle number, basic unit of distribution analysis points, abnormal data elimination method, and confidence interval.
一种网络业务性能监控系统,包括:A network service performance monitoring system, comprising:
性能数据库模块,用于存储历史性能数据;A performance database module for storing historical performance data;
基线数据库模块,用于存储基线配置数据和基线数据;A baseline database module for storing baseline configuration data and baseline data;
业务数据采集模块,用于从电信网络收集相关的性能业务指标的实际数据,并存储到所述性能数据库模块;A business data acquisition module, used to collect actual data related to performance business indicators from the telecommunication network, and store them in the performance database module;
基线分析配置模块,用于接收定制的基线分析配置参数,如果是简单基线,则确定基线类型和历史数据点数,将配置数据存储到基线数据库模块,如果是周期性基线,则确定周期类型,历史数据周期数和分布点分析基本单位,将配置数据存储到基线数据库模块;The baseline analysis configuration module is used to receive customized baseline analysis configuration parameters. If it is a simple baseline, determine the baseline type and the number of historical data points, and store the configuration data in the baseline database module. If it is a periodic baseline, determine the period type, history The basic unit of data cycle number and distribution point analysis, and store the configuration data in the baseline database module;
基线数据分析模块,分别从所述性能数据库模块和基线数据库模块读取历史性能数据和基线分析配置参数形成基线,如果是简单基线,则根据获得的历史数据点数的平均值、最大值和/或最小值,为基准点形成反映业务性能的一条或多条水平基线,并保存到基线数据库中,如果是周期性基线,则根据获得的周期内每个分布点分析基本单位的平均值、最大值和/或最小值作为基准点连接后形成反映业务性能的一条或多条基线,并保存到基线数据库中;The baseline data analysis module reads historical performance data and baseline analysis configuration parameters from the performance database module and the baseline database module to form a baseline, and if it is a simple baseline, according to the average value, maximum value and/or The minimum value forms one or more horizontal baselines reflecting business performance for the benchmark point and saves them in the baseline database. If it is a periodic baseline, analyze the average value and maximum value of the basic unit according to each distribution point in the obtained cycle and/or the minimum value as a reference point to form one or more baselines reflecting business performance, and save them in the baseline database;
网络优化分析模块,用于根据基线数据、网络设备的业务配置和采集到的当前性能数据判断网络性能优劣,并对网络进行相应的优化操作。The network optimization analysis module is used to judge the quality of the network performance according to the baseline data, the service configuration of the network equipment and the collected current performance data, and perform corresponding optimization operations on the network.
本发明具有以下有益效果:The present invention has the following beneficial effects:
1、可以监视电信网络中的异常流量,自动对异常的端口进行定位和隔离控制,尤其适用于控制病毒和控制黑网吧上。1. It can monitor the abnormal traffic in the telecommunications network, automatically locate and isolate the abnormal ports, especially suitable for controlling viruses and black Internet cafes.
2、通过提供业务性能变化的基础数据,便于运维人员进行网络优化、网络规划、故障诊断、病毒源发现、黑网吧追踪。2. By providing basic data of business performance changes, it is convenient for operation and maintenance personnel to perform network optimization, network planning, fault diagnosis, virus source discovery, and black Internet cafe tracking.
3、通过置信区间剔除异常数据,避免进行基线分析预测时候由于样本点不多造成偏差较大的情况。3. Eliminate abnormal data through the confidence interval to avoid the large deviation caused by the small number of sample points when performing baseline analysis and prediction.
4、通过基线区间方式,给出用户一个可以接受的业务性能变化区间。4. Through the baseline interval method, an acceptable business performance change interval is given to the user.
5、通过连续一致变化趋势的基线比较可以早期发现性能变化(变坏/变好)的趋势。5. The trend of performance change (worse/better) can be found early by baseline comparison of continuous and consistent change trends.
附图说明Description of drawings
图1为电信城域网示意图;Figure 1 is a schematic diagram of a telecom metropolitan area network;
图2为本发明网络优化基线分析系统结构示意图;Fig. 2 is a schematic structural diagram of the network optimization baseline analysis system of the present invention;
图3A为二区局上行端口简单基线示意图;Fig. 3A is a simple baseline schematic diagram of the uplink port of the second regional office;
图3B为八区局上行端口简单基线示意图;Fig. 3B is a simple baseline schematic diagram of the uplink port of the eight regional offices;
图4A为二区局当前业务数据和基线比较图;Figure 4A is a comparison chart between the current business data and the baseline of the second regional bureau;
图4B为八区局当前业务数据和基线比较图;Figure 4B is a comparison chart between the current business data and the baseline of the eight regional bureaus;
图5为二区局上行端口日周期性基线示意图;Figure 5 is a schematic diagram of the daily periodic baseline of the uplink port of the second regional office;
图6为二区局上行端口实际业务数据和日周期性基线比较示意图。Fig. 6 is a schematic diagram of the comparison between the actual service data of the uplink port of the second regional office and the daily periodic baseline.
具体实施方式Detailed ways
实施例一Embodiment one
本实施例对本发明的性能简单基线分析进行说明。参阅图1所示的电信城域网的网络,在这样一个分级汇聚的宽带城域接入网中,分为二区和八区两个地区,都采用MA5 100提供ADSL业务接入,所有流量汇聚到ISN8850后进入城域网传输。在网管上运行程序进行流量数据的采集。采集的范围为所有ISN8850上行端口日平均速率。This example illustrates a simple baseline analysis of the performance of the present invention. Referring to the network of the telecom metropolitan area network shown in Figure 1, in such a hierarchically converged broadband metropolitan access network, it is divided into two regions, the second district and the eighth district, both of which use MA5 100 to provide ADSL service access, and all traffic After converging to ISN8850, it enters the metropolitan area network for transmission. Run the program on the network management system to collect traffic data. The scope of collection is the daily average rate of all ISN8850 uplink ports.
参阅图2所示,网络业务性能监控系统包括:Referring to Figure 2, the network service performance monitoring system includes:
性能数据库:保存历史性能数据。Performance Database: Holds historical performance data.
基线数据库:保存基线配置数据和基线数据。Baseline Database: Holds baseline configuration data and baseline data.
业务数据采集模块:负责从电信网络收集相关的性能业务指标的实际数据,并保存到性能数据库中。Business data collection module: responsible for collecting the actual data of relevant performance business indicators from the telecommunication network and saving them in the performance database.
基线分析配置模板:负责接收用户定制的基线分析配置参数,将配置数据保存到数据库,用于基线分析。Baseline analysis configuration template: responsible for receiving user-defined baseline analysis configuration parameters, and saving configuration data to the database for baseline analysis.
基线数据分析模块:分别从所述性能数据库模块和基线数据库模块读取历史性能数据和基线分析配置参数,基于基线分析方法形成用户所需的基线,并保存到基线数据库中。Baseline data analysis module: read historical performance data and baseline analysis configuration parameters from the performance database module and baseline database module respectively, form the baseline required by the user based on the baseline analysis method, and save it in the baseline database.
网络优化分析模块:负责根据基线数据,结合网络设备的业务配置和采集到的当前性能数据,进行基线比较,判断网络性能优劣,输出网络优化分析报告,并进行网络配置的自动或者手动优化操作。Network optimization analysis module: responsible for baseline comparison based on the baseline data, combined with the business configuration of network equipment and the collected current performance data, judging the quality of the network performance, outputting the network optimization analysis report, and performing automatic or manual optimization operations on the network configuration .
性能简单基线分析包括:简单基线分析配置、异常数据剔除、简单基线数据分析、基线比较。Performance simple baseline analysis includes: simple baseline analysis configuration, abnormal data elimination, simple baseline data analysis, and baseline comparison.
1、简单基线分析配置:定义建立基线历史数据范围,需要配置如下相关参数:1. Simple baseline analysis configuration: To define and establish the historical data range of the baseline, the following related parameters need to be configured:
基线类型:日基线、周基线、月基线、年基线。Baseline type: daily baseline, weekly baseline, monthly baseline, yearly baseline.
历史数据点数:进行简单基线数据分析所需的历史数据点数目。点数设置越多越反映长期趋势,点数较少能很好反映最近变化趋势。Number of historical data points: The number of historical data points required for simple baseline data analysis. The more the number of points is set, the more it reflects the long-term trend, and the less the number of points can well reflect the recent changing trend.
异常数据淘汰方式:淘汰异常数据;不淘汰异常数据。不淘汰异常数据的方式,所有的数据将用于基线分析。Abnormal data elimination method: eliminate abnormal data; do not eliminate abnormal data. All data will be used for baseline analysis without weeding out outlier data.
置信区间:淘汰异常数据采用[平均值-平均值×n%,平均值+平均值×n%],其中n%为置信度,n取值为30,n的控制可以通过设置实现。Confidence interval: Eliminate abnormal data using [average value - average value × n%, average value + average value × n%], where n% is the confidence level, and the value of n is 30, and the control of n can be realized by setting.
简单基线分析配置确定了原始数据的范围和基线类型。对于采用淘汰异常数据方式,就需要进行数据的预处理。相反进入第3步:简单基线数据分布分析。下面建立日基线为例来说明一下。The simple baseline analysis configuration determines the scope of the raw data and the type of baseline. For the method of eliminating abnormal data, data preprocessing is required. Instead proceed to Step 3: Simple Baseline Data Distribution Analysis. Let's take the establishment of the daily baseline as an example to illustrate.
例如:共参考过去7天的历史数据来建立简单日基线,采用30%的置信度来淘汰异常数据,参数为:For example: refer to the historical data of the past 7 days to establish a simple daily baseline, and use a 30% confidence level to eliminate abnormal data. The parameters are:
基线类型:日基线Baseline Type: Daily Baseline
历史数据点数:7Number of historical data points: 7
异常数据淘汰方式:淘汰异常数据Abnormal data elimination method: Eliminate abnormal data
置信区间:[平均值-平均值×30%,平均值+平均值×30%]Confidence interval: [mean - mean x 30%, mean + mean x 30%]
分析的原始数据如下(七天):The raw data analyzed are as follows (seven days):
二区的ISN 8850上行端口实际速率(Gb/s)The actual rate of the ISN 8850 uplink port in Zone 2 (Gb/s)
1 2 3 4 5 6 71 2 3 3 4 5 6 7
0.7 0.45 0.65 0.5 0.60 0.55 0.850.7 0.45 0.65 0.5 0.60 0.55 0.85
八区的ISN 8850上行端口实际速率(Gb/s)The actual speed of the ISN 8850 uplink port in the eight districts (Gb/s)
1 2 3 4 5 6 71 2 3 4 5 6 7
0.8 0.69 0.9 0.76 0.42 0.85 0.940.8 0.69 0.9 0.76 0.42 0.85 0.94
2、异常数据剔除2. Eliminate abnormal data
异常数据是指和所有原始数据平均值偏差太大的数据。由于样本点的数据不多,不适用正态分布的计算,采用简单的置信区间[平均值-平均值×n%,平均值+平均值×n%]方式来剔除异常数据。该初始平均值不同于后续的基线平均值。对例子中的数据我们计算如下:Abnormal data refers to data that deviates too much from the mean of all original data. Due to the small amount of data in the sample points, the calculation of the normal distribution is not applicable, and a simple confidence interval [mean value - mean value × n%, mean value + mean value × n%] is used to eliminate abnormal data. This initial average differs from subsequent baseline averages. For the data in the example we calculate as follows:
二区的ISN 8850上行端口实际速率(Gb/s)The actual rate of the ISN 8850 uplink port in Zone 2 (Gb/s)
平均值=(0.7+0.45+0.65+0.5+0.60+0.55+0.85)/7=0.614Average value = (0.7+0.45+0.65+0.5+0.60+0.55+0.85)/7=0.614
置信区间:[0.614×0.7,0.614*1.3]=[0.43,0.80]Confidence interval: [0.614×0.7, 0.614*1.3]=[0.43, 0.80]
第7个数据0.85被剔除。The 7th data 0.85 was eliminated.
八区的ISN 8850上行端口实际速率(Gb/s)The actual speed of the ISN 8850 uplink port in the eight districts (Gb/s)
平均值=(0.8+0.69+0.9+0.76+0.42+0.85+0.94)/7=0.766Average value = (0.8+0.69+0.9+0.76+0.42+0.85+0.94)/7=0.766
置信区间:[0.766×0.7,0.766*1.3]=[0.54,0.99]Confidence interval: [0.766×0.7, 0.766*1.3]=[0.54, 0.99]
第5个数据0.42被剔除。The 5th data 0.42 was eliminated.
3、简单基线数据分析3. Simple baseline data analysis
简单基线数据分析是对历史数据采样点有效数据计算其平均值、最大值、最小值,这样就形成三个点,沿着x轴方向水平延伸水平方向延伸就形成了基线。对例子中的数据,计算数据如下,延伸就形成了日基线。Simple baseline data analysis is to calculate the average value, maximum value, and minimum value of the effective data of historical data sampling points, thus forming three points, extending horizontally along the x-axis direction to form a baseline. For the data in the example, the calculated data is as follows, and the extension forms the daily baseline.
二区的ISN 8850上行端口实际速率(Gb/s):The actual speed of the ISN 8850 uplink port in Zone 2 (Gb/s):
最大值=MAX[0.7,0.45,0.65,0.5,0.60,0.55]=0.7Maximum value = MAX[0.7, 0.45, 0.65, 0.5, 0.60, 0.55] = 0.7
最小值=MIN[0.7,0.45,0.65,0.5,0.60,0.55]=0.45Min = MIN[0.7, 0.45, 0.65, 0.5, 0.60, 0.55] = 0.45
平均值=AVG[0.7,0.45,0.65,0.5,0.60,0.55]=0.575Average = AVG[0.7, 0.45, 0.65, 0.5, 0.60, 0.55] = 0.575
二区的性能简单基线参阅图3A所示。A simple baseline of performance in
八区的ISN 8850上行端口实际速率(Gb/s):The actual speed of the ISN 8850 uplink port in the eight districts (Gb/s):
最大值=MAX[0.8,0.69,0.9,0.76,0.85,0.94]=0.94Maximum value = MAX[0.8, 0.69, 0.9, 0.76, 0.85, 0.94] = 0.94
最小值=MIN[0.8,0.69,0.9,0.76,0.85,0.94]=0.69Min = MIN[0.8, 0.69, 0.9, 0.76, 0.85, 0.94] = 0.69
平均值=AVG[0.8,0.69,0.9,0.76,0.85,0.94]=0.82Average = AVG[0.8, 0.69, 0.9, 0.76, 0.85, 0.94] = 0.82
八区的性能简单基线参阅图3B所示。A simple baseline of performance across the eight regions is shown in Figure 3B.
4、基线比较4. Baseline comparison
网络优化分析模块,从网络上获取的当前的性能数据,将这些性能数据和基线数据进行比较,比较采用基线区间图方式。根据当前采样点超出基线区间来做了解当前业务性能变化。The network optimization analysis module compares the current performance data obtained from the network with the baseline data, and the comparison adopts a baseline interval diagram. Based on the current sampling point exceeding the baseline interval, we can understand the current business performance changes.
二区ISN8850上行端口当前采集的速率数据:The rate data currently collected by the ISN8850 uplink port in Zone 2:
0.6 0.58 0.65 0.49 0.52 0.56 0.650.6 0.58 0.65 0.49 0.52 0.56 0.65
二区当前数据和基线数据比较如图4A所示。The comparison between the current data and the baseline data in
八区ISN8850上行端口当前采集的速率数据:The rate data currently collected by the ISN8850 uplink port in the eighth area:
0.96 0.98 0.95 0.92 0.80.96 0.98 0.95 0.92 0.8
八区当前数据和基线数据比较如图4B所示。The comparison of current data and baseline data in the eight districts is shown in Figure 4B.
在比较判断中,借鉴质量管理体系中的质量抽样分析方法,一般采用有连续7次超过处于相同的方向的偏差,可以判定系统存在固定的变化趋势。本系统按照连续多次在同一个方向超出某一基线区间来判断网络性能是否已经发生某个趋势上的性能变化。其次数由不同的业务领域决定,电信网络一般采用4-7点来计算,也可用根据当前业务实际情况进行调整(放大或者缩小)。In comparison and judgment, referring to the quality sampling analysis method in the quality management system, generally adopting deviations that exceed the same direction for 7 consecutive times, it can be determined that the system has a fixed trend of change. The system judges whether the network performance has undergone a performance change in a certain trend by exceeding a certain baseline interval in the same direction several times in a row. The second number is determined by different business fields. Telecom networks generally use 4-7 points to calculate, and can also be adjusted (enlarged or reduced) according to the current actual business situation.
5、当判定网络的业务性能存在固定的变化趋势时,执行预先配置的控制策略对网络进行动态优化控制。5. When it is determined that there is a fixed change trend in the service performance of the network, the pre-configured control strategy is executed to dynamically optimize the control of the network.
当取3作为质量抽样偏差次数来判断性能变化趋势。由上两图可以看出,二区的汇聚设备的当前上行端口实际流量处于基线范围内,暂时不会出现大的变化,也没有扩容的需求,而八区的汇聚设备的当前上行端口实际流量出现了连续三次超过基线最大值和最小值的基线区间,表示该区域网络业务量过大,急需进行扩容措施。在实际实施过程中,将八区间的一个接入点切割到二区间的ISN 8850下,这样实现无扩容投资的网络优化。When taking 3 as the number of quality sampling deviations to judge the performance change trend. From the above two figures, it can be seen that the actual traffic of the current uplink port of the aggregation device in the second zone is within the baseline range, and there will be no major changes for the time being, and there is no need for capacity expansion. The actual traffic of the current uplink port of the aggregation device in the eighth area Three consecutive baseline intervals exceeding the maximum and minimum values of the baseline have occurred, indicating that the network traffic in this area is too large, and capacity expansion measures are urgently needed. In the actual implementation process, an access point in the eighth section is cut to the ISN 8850 in the second section, so as to realize network optimization without expansion investment.
实施例二:Embodiment two:
本实施例对本发明的性能周期性基线分析进行说明。同样以图1所示网络中二区局的ISN8850上行端口的每天8:00-9:00AM的端口实际速率为例。网络业务性能监控系统如图2所示。This embodiment describes the periodic performance baseline analysis of the present invention. Also take the actual port rate of the ISN8850 uplink port of the second regional office in the network shown in Figure 1 at 8:00-9:00 AM every day as an example. The network service performance monitoring system is shown in Figure 2.
性能周期性基线分析包括:周期性基线分析配置、异常数据剔除、周期性基线数据分析和基线比较。Performance periodic baseline analysis includes: periodic baseline analysis configuration, abnormal data elimination, periodic baseline data analysis, and baseline comparison.
1、周期性基线分析配置包括:1. Periodic baseline analysis configuration includes:
周期:根据业务特征来说,一般的周期包括日周期、周周期、月周期和年周期。Cycle: According to business characteristics, the general cycle includes daily cycle, weekly cycle, monthly cycle and annual cycle.
历史数据周期数:进行基线分析的原始数据是多个周期的历史数据,历史数据越多越能反映一般趋势,但是对于有长期增/减趋势的业务来说,由过多历史数据综合形成的基线将不能很好地反映最近的业务特征。过少的历史数据又容易造成数据偏差较大,个体影响较大,不能作为有效的性能基线。合适的历史数据的周期数目为3-8个周期。Number of historical data cycles: The original data for baseline analysis is historical data of multiple cycles. The more historical data, the better it can reflect the general trend. Baselines will not reflect recent business characteristics well. Too little historical data is likely to cause large data deviations and large individual influences, which cannot be used as an effective performance baseline. A suitable cycle number of historical data is 3-8 cycles.
分布分析点基本单位:就是在周期内,进行分布分析的时间点的单位。一般在日周期内采用小时作为分布分析点基本单位;周周期内采用日作为分布分析点基本单位;月周期内采用日作为分布分析点基本单位;年周期内采用月作为分布分析点基本单位。The basic unit of distribution analysis point: it is the unit of time point for distribution analysis within the cycle. Generally, the hour is used as the basic unit of distribution analysis points in the daily cycle; the day is used as the basic unit of distribution analysis points in the weekly cycle; the day is used as the basic unit of distribution analysis points in the monthly cycle; the month is used as the basic unit of distribution analysis points in the annual cycle.
异常数据淘汰方式:淘汰异常数据;不淘汰异常数据。不淘汰异常数据的方式,所有的数据将用于基线分析。Abnormal data elimination method: eliminate abnormal data; do not eliminate abnormal data. All data will be used for baseline analysis without weeding out outlier data.
置信区间:淘汰异常数据采用[平均值-平均值×n%,平均值+平均值×n%],其中n%为置信度,n取30,n的控制可以通过设置实现。Confidence interval: Eliminate abnormal data using [average value - average value × n%, average value + average value × n%], where n% is the confidence level, n is 30, and the control of n can be realized by setting.
周期性基线分析配置确定了原始数据的范围和基线类型。对于采用淘汰异常数据方式,就需要进行数据的预处理。相反进入第3步:周期性基线数据分布分析。下面建立日基线为例来说明:The periodic baseline analysis configuration determines the scope of raw data and the type of baseline. For the method of eliminating abnormal data, data preprocessing is required. Instead go to Step 3: Periodic Baseline Data Distribution Analysis. The following is an example of establishing a daily baseline:
例如:共参考过去7天的端口实际速率历史数据来建立日基线,每天有24个小时分布分析点。采用30%的置信度来淘汰异常数据,参数为:For example: the daily baseline is established by referring to the historical data of the port actual rate in the past 7 days, and the analysis points are distributed 24 hours a day. A 30% confidence level is used to eliminate abnormal data, and the parameters are:
周期:日周期Cycle: Daily cycle
历史数据周期数:7Number of historical data cycles: 7
分布点分析基本单位:小时Distribution point analysis base unit: hour
异常数据淘汰方式:淘汰异常数据Abnormal data elimination method: Eliminate abnormal data
置信区间:[平均值-平均值×30%,平均值+平均值×30%]Confidence interval: [mean - mean x 30%, mean + mean x 30%]
取其中一个分布分析点8:00-9:00AM的7天模拟原始数据,如下:Take the 7-day simulated raw data of one of the distribution analysis points 8:00-9:00AM, as follows:
单位:Gb/sUnit: Gb/s
1 2 3 4 5 6 71 2 3 4 4 5 6 7
0.66 0.68 0.72 0.61 0.70 0.79 0.640.66 0.68 0.72 0.61 0.70 0.79 0.64
为了建立周期性日基线,需要对每个分布分析点进行下面处理。对例中情况,需要对24个小时段分别进行如下步骤2-3处理。In order to establish a periodic daily baseline, the following processing needs to be performed for each distribution analysis point. For the case in the example, it is necessary to perform the following steps 2-3 for the 24-hour segment.
2、异常数据剔除2. Eliminate abnormal data
异常数据是指和所有原始数据平均值偏差太大的数据。由于分布分析点的样本数据不多,不适用正态分布的计算,采用简单的置信区间[平均值-平均值×n%,平均值+平均值×n%]方式(n=30)来剔除异常数据。该初始平均值不同于后续的基线平均值。对例子中的数据计算如下:Abnormal data refers to data that deviates too much from the mean of all original data. Due to the small sample data of the distribution analysis points, the calculation of normal distribution is not applicable, and the simple confidence interval [average-average×n%, average+average×n%] method (n=30) is used to eliminate abnormal data. This initial average differs from subsequent baseline averages. The calculation for the data in the example is as follows:
平均值=(0.66+0.68+0.95+0.61+0.70+0.79+0.64)/7=0.72Average value = (0.66+0.68+0.95+0.61+0.70+0.79+0.64)/7=0.72
置信区间:[0.72×0.7,0.72*1.3]=[0.50,0.94]Confidence interval: [0.72×0.7, 0.72*1.3]=[0.50, 0.94]
第3个数据0.95被剔除。The third data 0.95 was eliminated.
3、周期性基线数据分析3. Periodic baseline data analysis
周期性基线数据分析是对周期内每个分布分析点采用有效数据计算其平均值、最大值、最小值,这样周期内的多个分布分析点就形成三条线,作为周期性基线。Periodic baseline data analysis is to use valid data to calculate the average, maximum and minimum values of each distribution analysis point in the cycle, so that multiple distribution analysis points in the cycle form three lines as a periodic baseline.
对上述分布分析点的数据,计算如下:For the data of the above distribution analysis points, the calculation is as follows:
最大值=MAX[0.66,0.68,0.61,0.70,0.79,0.64]=0.79Maximum value = MAX[0.66, 0.68, 0.61, 0.70, 0.79, 0.64] = 0.79
最小值=MIN[0.66,0.68,0.61,0.70,0.79,0.64]=0.61Min = MIN[0.66, 0.68, 0.61, 0.70, 0.79, 0.64] = 0.61
平均值=AVG[0.66,0.68,0.61,0.70,0.79,0.64]=0.68Average = AVG[0.66, 0.68, 0.61, 0.70, 0.79, 0.64] = 0.68
对24个小时段分别进行如下步骤2-3处理,共24个分布分析点形成的三条基线如图5所示。The following steps 2-3 are performed on the 24-hour period respectively, and the three baselines formed by a total of 24 distribution analysis points are shown in Figure 5.
4、基线比较4. Baseline comparison
从网络上获取的当前周期的性能数据,将这些数据和当前的基线数据进行比较。比较采用曲线区间图方式,如图6所示。根据某个分布分析点超出曲线区间来了解特定分布分析点的业务性能变化。The performance data of the current cycle is obtained from the network, and these data are compared with the current baseline data. The comparison adopts the method of curve interval diagram, as shown in Figure 6. Based on the fact that a distribution analysis point exceeds the curve interval, the business performance change of a specific distribution analysis point can be understood.
借鉴质量管理体系中的质量抽样分析方法,一般采用有连续7次超过处于相同方向的偏差,可以判定系统存在固定的变化趋势。本系统按照周期内的连续多次在同一个方向超出基线区间来判断网络性能是否已经发生某个趋势上的性能变化。所述连续多次由周期内的分布点决定,采用分布点数目的15%-30%来计算。Referring to the quality sampling analysis method in the quality management system, it is generally adopted that there are 7 consecutive deviations exceeding the same direction, and it can be determined that the system has a fixed trend of change. The system judges whether the network performance has undergone a performance change in a certain trend according to the multiple consecutive times in the period that exceed the baseline interval in the same direction. The number of consecutive times is determined by the distribution points in the period, and is calculated by using 15%-30% of the number of distribution points.
对于采用性能简单基线分析和性能周期基线分析输出的数据,可以进行网络优化,来保障电信网络的服务质量。例如:对于网络接口流量存在固定变大的趋势,系统计算出依据当前变化率,在多少日后将达到网络当前配置的最大容量。当网络接口流量达到最大容量的60%的时候,系统发出告警,当网络接口流量达到最大容量的80%的时候,系统给出严重告警,并通过模式对话框强制要求用户决定是否需要增加PVC的带宽配置,并对用户的操作进行记录。如果用户需要增加PVC带宽配置,则提供用户选择所需配置的网络接口PVC流量配置模板。For the data output by simple performance baseline analysis and performance cycle baseline analysis, network optimization can be performed to ensure the service quality of the telecommunication network. For example, if the network interface traffic has a constant increasing trend, the system calculates how many days it will take to reach the maximum capacity of the current configuration of the network based on the current rate of change. When the network interface traffic reaches 60% of the maximum capacity, the system sends an alarm; when the network interface traffic reaches 80% of the maximum capacity, the system issues a serious alarm and forces the user to decide whether to increase the PVC through a modal dialog box. Bandwidth configuration, and user operations are recorded. If the user needs to increase the PVC bandwidth configuration, a network interface PVC traffic configuration template for the user to select the required configuration is provided.
应用这种基线分析方法可以有效地预警性能变差或者网络资源繁忙的情况,从而控制对网络配置的优化。如果用户配置了策略服务器,可以基于策略服务器定制某些关键网络性能指标(例如:上面所提到的网络接口流量等)的网络优化控制策略,将关键的网络性能指标限定和用户签订的SLA中,从而实现自动对网络的动态优化控制。Applying this baseline analysis method can effectively warn of poor performance or busy network resources, so as to control the optimization of network configuration. If the user configures a policy server, the network optimization control strategy for certain key network performance indicators (such as the network interface traffic mentioned above) can be customized based on the policy server, and the key network performance indicators are limited to the SLA signed by the user. , so as to realize automatic dynamic optimization control of the network.
采用本基线分析方法的输出数据可以作为运营商提高网络使用效率的参考数据。例如:对例子中的数据,24个小时分布点,采用4个连续分布点偏差作为严重趋势变化判断标识。可以看见从0点开始到4点,端口流量偏低,低于基线值,这样运营商可以针对该时段提供一些优惠政策,使得用户在该时段使用得到一定折扣,来充分利用网络。The output data using this baseline analysis method can be used as reference data for operators to improve network usage efficiency. For example: for the data in the example, the 24-hour distribution points, use the deviation of 4 continuous distribution points as the judgment mark of serious trend changes. It can be seen that from 0 o'clock to 4 o'clock, the port traffic is low, lower than the baseline value, so the operator can provide some preferential policies for this period, so that users can get a certain discount during this period to make full use of the network.
采用本基线分析方法的网管系统和电信OSS系统建立接口来传送一些使用率性能指标,可以对基线分析出来的使用率低时间段,采用不同的资费段划分,形成科学的资费调整策略。The network management system using this baseline analysis method and the telecom OSS system establish an interface to transmit some utilization rate performance indicators, which can be divided into different tariff segments for the low utilization rate periods analyzed by the baseline analysis to form a scientific tariff adjustment strategy.
采用周期性基线分析方法,可以用来监视电信网络中的异常流量,对异常的端口进行定位,在控制病毒和控制黑网吧方面尤其重要。例如:将采用基线分析的网管系统和病毒监控软件建立接口,可以通过流量基线分析,找出异常流量的端口,然后进一步分析其传送包可以发现是否进行DOS攻击请求的报文或者其他病毒转发服务器,从而进行端口隔离控制,防止其危及整个网络的运行。The periodic baseline analysis method can be used to monitor abnormal traffic in the telecommunication network and locate abnormal ports, which is especially important in controlling viruses and black Internet cafes. For example: the network management system that adopts baseline analysis will establish an interface with virus monitoring software, and the ports of abnormal traffic can be found out through traffic baseline analysis, and then further analysis of its transmission packets can find out whether there are packets of DOS attack requests or other virus forwarding servers , so as to carry out port isolation control to prevent it from endangering the operation of the entire network.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100320792A CN100356729C (en) | 2004-03-31 | 2004-03-31 | Method and system for monitoring network service performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100320792A CN100356729C (en) | 2004-03-31 | 2004-03-31 | Method and system for monitoring network service performance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1677934A CN1677934A (en) | 2005-10-05 |
CN100356729C true CN100356729C (en) | 2007-12-19 |
Family
ID=35050250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100320792A Expired - Fee Related CN100356729C (en) | 2004-03-31 | 2004-03-31 | Method and system for monitoring network service performance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100356729C (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100384153C (en) * | 2005-12-26 | 2008-04-23 | 北京交通大学 | An IPv6-based network performance analysis reporting system and its implementation method |
CN101141759B (en) * | 2007-02-12 | 2010-12-29 | 中兴通讯股份有限公司 | Call behavior statistical and analytical method and device |
CN101291177B (en) * | 2008-06-16 | 2012-05-23 | 中兴通讯股份有限公司 | Method and device for diagnosing network management historical performance data |
CN101770419B (en) * | 2008-12-31 | 2013-03-20 | 中国银联股份有限公司 | System robustness analyzer and analysis method |
CN102035666A (en) * | 2009-09-24 | 2011-04-27 | 中兴通讯股份有限公司 | Method of administration of networks for business single plate and network administration system |
CN102111307B (en) * | 2009-12-29 | 2013-09-04 | 亿阳信通股份有限公司 | Method and device for monitoring and controlling network risks |
CN102480381B (en) * | 2010-11-29 | 2015-04-15 | 腾讯科技(深圳)有限公司 | Method and device for checking network service operational data |
CN102026230A (en) * | 2010-12-20 | 2011-04-20 | 中兴通讯股份有限公司 | Method and device for monitoring data service quality of code division multiple access (CDMA) network |
CN102495808B (en) * | 2011-11-24 | 2014-12-17 | 深圳市亚特尔科技有限公司 | Method for saving memory space |
CN103139007A (en) * | 2011-12-05 | 2013-06-05 | 阿里巴巴集团控股有限公司 | Method and system for detecting application server performance |
CN103793309B (en) * | 2012-10-29 | 2017-11-21 | 中国移动通信集团浙江有限公司 | A kind of batch service method for early warning and device |
CN103036741B (en) * | 2012-12-19 | 2016-02-03 | 北京神州绿盟信息安全科技股份有限公司 | The defining method of flow monitoring baseline and device |
CN103905227B (en) * | 2012-12-26 | 2018-05-22 | 中国移动通信集团辽宁有限公司 | A kind of server energy consumption control method and system |
CN104767651B (en) * | 2014-01-07 | 2019-02-26 | 中国移动通信集团黑龙江有限公司 | A kind of multi-service merge processing method, system and device |
CN103856965A (en) * | 2014-03-24 | 2014-06-11 | 宁夏信友通信监理咨询有限责任公司 | WLAN (Wireless Local Area Network) comprehensive analysis system and method |
CN105406991A (en) * | 2015-10-26 | 2016-03-16 | 上海华讯网络系统有限公司 | Method and system for generating service threshold by historical data based on network monitoring indexes |
CN106357474A (en) * | 2016-08-30 | 2017-01-25 | 成都科来软件有限公司 | Data flow baseline acquisition method and device based on link |
CN106951351A (en) * | 2017-01-16 | 2017-07-14 | 上海新炬网络信息技术有限公司 | A kind of database loads tendency monitoring method |
CN108965039B (en) * | 2017-05-19 | 2021-04-27 | 腾讯科技(深圳)有限公司 | Alarm method based on flow monitoring and electronic equipment |
CN108732313A (en) * | 2018-05-31 | 2018-11-02 | 深圳市创艺工业技术有限公司 | Urban air pollution object concentration intelligence observation system |
CN111225404B (en) * | 2018-11-23 | 2021-08-31 | 华为技术有限公司 | A kind of network quality monitoring method and device |
CN110377228A (en) * | 2019-06-19 | 2019-10-25 | 深圳壹账通智能科技有限公司 | Automatic expansion method, device, O&M terminal and the storage medium of block chain node |
CN112380100B (en) * | 2020-12-01 | 2025-01-24 | 北京威努特技术有限公司 | Business anomaly detection method, device and medium based on directional deviation |
CN113900784A (en) * | 2021-10-09 | 2022-01-07 | 北京房江湖科技有限公司 | Method, apparatus, electronic device and storage medium for determining task baseline time |
CN114064760B (en) * | 2021-11-18 | 2022-12-13 | 广州泰禾大数据服务有限公司 | Multi-dimensional early warning analysis and judgment method for data |
CN114500310A (en) * | 2021-12-23 | 2022-05-13 | 中国人民解放军63921部队 | An accurate method for determining the baseline of multi-dimensional network situation data |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1267427A (en) * | 1997-06-16 | 2000-09-20 | 艾利森电话股份有限公司 | Telecommunications performance management system |
-
2004
- 2004-03-31 CN CNB2004100320792A patent/CN100356729C/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1267427A (en) * | 1997-06-16 | 2000-09-20 | 艾利森电话股份有限公司 | Telecommunications performance management system |
Non-Patent Citations (1)
Title |
---|
《基于策略的网络管理系统的实现》 潘成胜,陈冬松,李航.《火力与指挥控制》,第28卷第3期 2003 * |
Also Published As
Publication number | Publication date |
---|---|
CN1677934A (en) | 2005-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100356729C (en) | Method and system for monitoring network service performance | |
CA2673135C (en) | Determining usage predictions and detecting anomalous user activity through traffic patterns | |
CN112543465B (en) | Anomaly detection method, device, terminal and storage medium | |
US9015312B2 (en) | Network management system and method for identifying and accessing quality of service issues within a communications network | |
CN103580905B (en) | A kind of method for predicting, system and flow monitoring method, system | |
CN110572280B (en) | A network monitoring method and system | |
CN103178990A (en) | A network equipment performance monitoring method and network management system | |
US12294888B2 (en) | Method and system for managing mobile network congestion | |
WO2024066331A1 (en) | Network abnormality detection method and apparatus, electronic device, and storage medium | |
US8797891B2 (en) | System and method for capacity planning on a high speed data network | |
CN102668454A (en) | Method and operation support system for providing performance management in mobile telecommunication system | |
CN119544510A (en) | Bandwidth allocation method, device and electronic equipment | |
CN115086140A (en) | Quality evaluation method and device of broadband service, electronic equipment and storage medium | |
CN112333020A (en) | Network security monitoring and data message analyzing system based on quintuple | |
CN107248959A (en) | A kind of flow optimization method and device | |
CN101350732A (en) | Analysis and processing, testing method and device of network resource utilization status of transmission network | |
CN111800311B (en) | Real-time sensing method for decentralized computing state | |
TWI548235B (en) | Network anomaly traffic monitoring system with normal distribution mode | |
CN117014348A (en) | Method for determining network key performance index threshold and related equipment | |
CN117320054A (en) | Network service quality evaluation method, device, equipment and medium | |
KR101027549B1 (en) | Anomaly Traffic Detection Method Using Adaptive Threshold | |
CN115515173A (en) | Method, system, electronic device and storage medium for analyzing performance of base station | |
CN118764415A (en) | An Internet cloud data transmission supervision system based on traffic monitoring | |
CN118740699B (en) | A multi-network information management system based on artificial intelligence | |
CN118764896A (en) | Wireless router control method and wireless router |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071219 Termination date: 20150331 |
|
EXPY | Termination of patent right or utility model |