CN104102816A - 基于症状匹配和机器学习的自动诊断系统和方法 - Google Patents
基于症状匹配和机器学习的自动诊断系统和方法 Download PDFInfo
- Publication number
- CN104102816A CN104102816A CN201410280966.5A CN201410280966A CN104102816A CN 104102816 A CN104102816 A CN 104102816A CN 201410280966 A CN201410280966 A CN 201410280966A CN 104102816 A CN104102816 A CN 104102816A
- Authority
- CN
- China
- Prior art keywords
- disease
- symptom
- user
- sigma
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 208000024891 symptom Diseases 0.000 title claims abstract description 205
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000010801 machine learning Methods 0.000 title claims abstract description 14
- 238000003745 diagnosis Methods 0.000 title claims abstract description 11
- 201000010099 disease Diseases 0.000 claims abstract description 262
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 262
- 208000011580 syndromic disease Diseases 0.000 claims description 14
- 230000008878 coupling Effects 0.000 claims description 12
- 238000010168 coupling process Methods 0.000 claims description 12
- 238000005859 coupling reaction Methods 0.000 claims description 12
- 230000013011 mating Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 230000001502 supplementing effect Effects 0.000 claims description 3
- 230000003993 interaction Effects 0.000 abstract 1
- 206010012735 Diarrhoea Diseases 0.000 description 21
- 206010000087 Abdominal pain upper Diseases 0.000 description 13
- 210000000436 anus Anatomy 0.000 description 8
- 208000002193 Pain Diseases 0.000 description 6
- 206010006784 Burning sensation Diseases 0.000 description 5
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 206010037660 Pyrexia Diseases 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 206010013954 Dysphoria Diseases 0.000 description 1
- 206010030302 Oliguria Diseases 0.000 description 1
- 206010034568 Peripheral coldness Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
Abstract
本发明公开一种基于症状匹配和机器学习的自动诊断系统和方法,其中系统包括:疾病/症候数据库,用于保存已知的每种疾病/症候及其对应的症状;用户交互模块,用于接收用户输入的症状关键词集合;症状匹配模块,用于根据用户输入的所述症状关键词集合与所述疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度;诊断模块,用于根据所述症状关键词集合与每种疾病/症候的匹配度确定对应的疾病/症候。
Description
技术领域
本发明涉及医疗信息领域,具体而言,涉及一种基于症状匹配和机器学习的自动诊断系统和方法。
背景技术
以下首先介绍本发明中用到的医学术语:
疾病:是致病邪气作用于人体,人体正气与之抗争而引起的机体阴阳失调、脏腑组织损伤、生理机能失常或心理活动障碍的一个完整的生命过程。
症候:是疾病过程中某一阶段或某一类型的病理概括,一般有一组相对固定的、有内在联系的、能揭示疾病某一阶段或某一类型病变本质的症状和体征构成。
症状:是疾病过程中表现出的个别、孤立的现象,可以是病人异常的主观感觉或行为表现,也可以是医生检查病人时发现的异常征象。
随着信息化程度的日益提高,人们已经可以通过各种信息终端获取医疗信息,但如何根据已知的症状提供给用户准确的疾病/症候诊断结果仍是一个亟需解决的问题。
发明内容
本发明提供一种基于症状匹配和机器学习的自动诊断系统和方法,用以根据已知的症状提供给用户准确的疾病/症候诊断结果。
为达到上述目的,本发明提供了一种基于症状匹配和机器学习的自动诊断系统,包括:
疾病/症候数据库,用于保存已知的每种疾病/症候及其对应的症状;
用户交互模块,用于接收用户输入的症状关键词集合;
症状匹配模块,用于根据用户输入的所述症状关键词集合与所述疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度;
诊断模块,用于根据所述症状关键词集合与每种疾病/症候的匹配度确定对应的疾病/症候。
进一步地,上述系统还包括:
词表构建模块,用于构建症状相关度词表,具体为:
获取症状数据,其中所述症状数据包括从教科书、词典中获取的症状同、近义词表、从所述疾病/症候数据库中获取的每条疾病/症候的症状集合以及从用户请求记录中获取的每条有效请求的症状集合;
对于所获取的症状数据,假设有两个症状x和y,则该两个症状x和y的关联度μ(x,y)为
其中ρ(P)表示数据源P的判断权重,根据专家经验人为设定,ρ(同近义词表)>ρ(疾病/证候库)≥ρ(用户请求记录);r,p,q表示数据源P内的每个并发症状集合;
其中|p|表示症状集合p中含有的症状的个数,
将关联度大于关联度阈值的两个症状保存到创建的症状相关度词表。
进一步地,所述症状匹配模块包括:
权重计算单元,用于根据以下公式计算症状x在疾病/症候d中的权重W(d,x):
其中,ρ(S)表示数据源S的权重,e表示数据源S中有关疾病/症候的每一条描述单元信息;
匹配度计算单元,用于计算所述疾病/症候数据库中的每条疾病/症候相对于所述症状关键词集合的匹配度,具体为:
假设用户提供的所述症状关键词集合为A,遍历所述疾病/症候数据库中的每一个疾病/症候d及其对应的症状集合σ(d);
用以下算式计算疾病/症候d相对于所述症状关键词集合A的匹配度M(A,d):
按M(A,d)由大到小的顺序对对应的疾病/症候进行排序,将排序得到的结果用R表示并呈现给用户,其中R={d|M(A,d)>0且r(d)<N},r(d)表示按M(A,d)由大到小排序后对应的疾病/症候的序号,N为人为设定的常数。
进一步地,上述系统还包括:
更新模块,用于补充和更新所述疾病/症候数据库。
进一步地,所述有效请求的症状集合是指该请求的匹配结果中含有匹配度大于设定的常量C的疾病/症候。
为达到上述目的,本发明还提供了一种基于症状匹配和机器学习的自动诊断方法,包括以下步骤:
接收用户输入的症状关键词集合;
根据用户输入的症状关键词集合与疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度,其中所述疾病/症候数据库保存有已知的每种疾病/症候及其对应的症状;
根据所述症状关键词集合与每种疾病/症候的匹配度确定对应的疾病/症候。
进一步地,在根据用户输入的症状关键词集合与疾病/症候数据库中的症状进行匹配步骤之前还包括以下步骤:
构建症状相关度词表,具体包括:
获取症状数据,其中所述症状数据包括从教科书、词典中获取的症状同、近义词表、从所述疾病/症候数据库中获取的每条疾病/症候的症状集合以及从用户请求记录中获取的每条有效请求的症状集合;
对于所获取的症状数据,假设有两个症状x和y,则该两个症状x和y的关联度μ(x,y)为
ρ(P)表示数据源P的判断权重,根据专家经验人为设定,ρ(同近义词表)>ρ(疾病/证候库)≥ρ(用户请求记录);r,p,q表示数据源P内的每个并发症状集合;
其中|p|表示症状集合p中含有的症状的个数,
将关联度大于关联度阈值的两个症状保存到创建的症状相关度词表。
进一步地,所述根据用户输入的症状关键词集合与疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度步骤包括:
计算症状x在疾病/症候d中的权重W(d,x)为
其中,ρ(S)表示数据源S的权重,
e表示数据源S中有关疾病/症候的每一条描述单元信息;
假设用户提供的所述症状关键词集合为A,遍历所述疾病/症候数据库中的每一个疾病/症候d及其对应的症状集合σ(d);
用以下算式计算疾病/症候d相对于所述症状关键词集合A的匹配度M(A,d)
其中,|A|和|σ(d)|分别表示集合A和集合σ(d)中的元素个数;
按M(A,d)由大到小的顺序对对应的疾病/症候进行排序,将排序得到的结果用R表示并呈现给用户,其中R={d|M(A,d)>0且r(d)<N},r(d)表示按M(A,d)由大到小排序后对应的疾病/症候的序号,N为人为设定的常数。
进一步地,上述方法还包括以下步骤:
对所述疾病/症候数据库进行补充和更新。
进一步地,所述有效请求的症状集合是指该请求的匹配结果中含有匹配度大于设定的常量C的疾病/症候。
本发明将用户提供的一组症状与系统中已收录的疾病和证候对应的症状进行匹配,通过计算匹配程度而自动推断造成该组症状的可能疾病和证候,从而向用户提供相对准确的诊断结果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例的基于症状匹配和机器学习的自动诊断系统模块图;
图2为本发明一个优选实施例的基于症状匹配和机器学习的自动诊断系统工作原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明一个实施例的基于症状匹配和机器学习的自动诊断系统模块图;图2为本发明一个优选实施例的基于症状匹配和机器学习的自动诊断系统工作原理图。如图所示,该自动诊断系统包括:
疾病/症候数据库,用于保存已知的每种疾病/症候及其对应的症状;
其中,在构建疾病/症候数据库时,所选择的数据源可以是国家标准(如《中医临床诊疗术语症候部分》),现代中医教科书、现代中医词典等,中医古籍中的病症、医案论述等,以及现代病历数据。
用户交互模块,用于接收用户输入的症状关键词集合;
症状匹配模块,用于根据用户输入的所述症状关键词集合与所述疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度;
诊断模块,用于根据所述症状关键词集合与每种疾病/症候的匹配度确定对应的疾病/症候。
进一步地,上述系统还包括:
词表构建模块,用于构建症状相关度词表,具体为:
获取症状数据,其中所述症状数据包括从教科书、词典中获取的症状同、近义词表、从所述疾病/症候数据库中获取的每条疾病/症候的症状集合以及从用户请求记录中获取的每条有效请求的症状集合;这里的教科书、词典例如可以是中医大辞典、中医症状鉴别诊断学、汉语近义词词典等,这里的有效请求的症状集合是指该请求的匹配结果中含有匹配度大于设定的常量C的疾病/症候;
对于所获取的症状数据,假设有两个症状x和y,则该两个症状x和y的关联度μ(x,y)为
其中ρ(P)表示数据源P的判断权重,根据专家经验人为设定,ρ(同近义词表)>ρ(疾病/证候库)≥ρ(用户请求记录);r,p,q表示数据源P内的每个并发症状集合;
其中|p|表示症状集合p中含有的症状的个数,
将关联度大于关联度阈值的两个症状保存到创建的症状相关度词表。
进一步地,所述症状匹配模块包括:
权重计算单元,用于根据以下公式计算症状x在疾病/症候d中的权重W(d,x):
其中,ρ(S)表示数据源S的权重,根据专家经验人为设定,满足ρ(国家标准)>ρ(教科书、词典)≥ρ(中医古籍)>ρ(现代病例,e表示数据源S中有关疾病/症候的每一条描述单元信息;
匹配度计算单元,用于计算所述疾病/症候数据库中的每条疾病/症候相对于所述症状关键词集合的匹配度,具体为:
假设用户提供的所述症状关键词集合为A,遍历所述疾病/症候数据库中的每一个疾病/症候d及其对应的症状集合σ(d);
用以下算式计算疾病/症候d相对于所述症状关键词集合A的匹配度M(A,d):
其中,|A|和|σ(d)|分别表示集合A和集合σ(d)中的元素个数;
按M(A,d)由大到小的顺序对对应的疾病/症候进行排序,将排序得到的结果用R表示并呈现给用户,其中R={d|M(A,d)>0且r(d)<N},r(d)表示按M(A,d)由大到小排序后对应的疾病/症候的序号,N为人为设定的常数。
进一步地,上述系统还包括:
更新模块,用于补充和更新所述疾病/症候数据库。
其中,更新的时机可以是定期,如每周执行一次;也可以是由突发事件触发的即时更新,如新的国家标准颁布、世卫组织公布新的流行疾病信息等。
示例:
用户输入:症状集A:拉肚子、肚子痛、肛门热、脉滑数
收录的疾病/症候
d1:泄泻 湿热伤
σ(d1):泄泻腹痛、泻下急迫、粪色黄褐、肛门灼热、烦热口渴、小便短黄、脉滑数
d2:霍乱 湿热症
σ(d2):吐利、寒热身痛、不寒热腹中痛、心胸苦闷、恶心呕吐、腹中雷鸣绕脐作痛、泻出软便继泻绿水或若泔汁、四肢厥冷、下腿拘挛、脉滑数
假设根据已有数据源,由μ(x,y)的公式计算得到μ(拉肚子,泄泻腹痛)=0.14,μ(拉肚子,泻下急迫)=0.43,μ(肚子痛,泄泻腹痛)=0.31,μ(肛门热,肛门灼热)=0.61,μ(脉滑数,脉滑数)=1.00,μ(肚子痛,腹中雷鸣绕脐作痛)=0.14,μ(拉肚子,泻出软便继泻绿水或若泔汁)=0.07,其它的μ(x,y)均为0;
而且根据已有数据源,由W(d,y)的公式计算得到W(d1,泄泻腹痛)=0.71,W(d1,泻下急迫)=0.65,W(d1,肛门灼热)=0.57,W(d1,脉滑数)=0.41,W(d2,腹中雷鸣绕脐作痛)=0.31,W(d2,泻出软便继泻绿水或若泔汁)=0.57,,其它的W(d,y)均为0;
则由M(A,d)的公式可计算得到d1和d2分别与用户输入的症状集合的匹配度如下:
M(A,d1)=[μ(拉肚子,泄泻腹痛)×W(d1,泄泻腹痛)+μ(拉肚子,泻下急迫)×W(d1,泻下急迫)+μ(肚子痛,泄泻腹痛)×W(d1,泄泻腹痛)+μ(肛门热,肛门灼热)×W(d1,肛门灼热)+μ(脉滑数,脉滑数)×W(d1,脉滑数)]/(|A|·|σ(d1)|)=0.0485
M(A,d2)=[μ(肚子痛,腹中雷鸣绕脐作痛)×W(d2,腹中雷鸣绕脐作痛)+μ(拉肚子,泻出软便继泻绿水或若泔汁)×W(d2,泻出软便继泻绿水或若泔汁)]/(|A|·|σ(d2)|)=0.0021
由于M(A,d1)>M(A,d2),因此在返回给用户的诊断结果R中,M(A,d1)被放置在前。与上述系统实施例相适应,以下为本发明一个实施例的基于症状匹配和机器学习的自动诊断方法实施例,包括以下步骤:
接收用户输入的症状关键词集合;
根据用户输入的症状关键词集合与疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度,其中所述疾病/症候数据库保存有已知的每种疾病/症候及其对应的症状;
根据所述症状关键词集合与每种疾病/症候的匹配度确定对应的疾病/症候。
进一步地,在根据用户输入的症状关键词集合与疾病/症候数据库中的症状进行匹配步骤之前还包括以下步骤:
构建症状相关度词表,具体包括:
获取症状数据,其中所述症状数据包括从教科书、词典中获取的症状同、近义词表、从所述疾病/症候数据库中获取的每条疾病/症候的症状集合以及从用户请求记录中获取的每条有效请求的症状集合;
对于所获取的症状数据,假设有两个症状x和y,则该两个症状x和y的关联度μ(x,y)为
ρ(P)表示数据源P的判断权重,其中
将关联度大于关联度阈值的两个症状保存到创建的症状相关度词表。
进一步地,所述根据用户输入的症状关键词集合与疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度步骤包括:
计算症状x在疾病/症候d中的权重W(d,x)为
其中,ρ(S)表示数据源S的权重,e表示数据源S中有关疾病/症候的每一条描述单元信息;
假设用户提供的所述症状关键词集合为A,遍历所述疾病/症候数据库中的每一个疾病/症候d及其对应的症状集合σ(d);
用以下算式计算疾病/症候d相对于所述症状关键词集合A的匹配度M(A,d)
进一步地,上述方法还包括以下步骤:
对所述疾病/症候数据库进行补充和更新。
进一步地,所述有效请求的症状集合是指该请求的匹配结果中含有匹配度大于设定的常量C的疾病/症候。
本发明将用户提供的一组症状与系统中已收录的疾病和证候对应的症状进行匹配,通过计算匹配程度而自动推断造成该组症状的可能疾病和证候,从而向用户提供相对准确的诊断结果。
本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域普通技术人员可以理解:实施例中的装置中的模块可以按照实施例描述分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。
Claims (10)
1.一种基于症状匹配和机器学习的自动诊断系统,其特征在于,包括:
疾病/症候数据库,用于保存已知的每种疾病/症候及其对应的症状;
用户交互模块,用于接收用户输入的症状关键词集合;
症状匹配模块,用于根据用户输入的所述症状关键词集合与所述疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度;
诊断模块,用于根据所述症状关键词集合与每种疾病/症候的匹配度确定对应的疾病/症候。
2.根据权利要求1所述的自动诊断系统,其特征在于,还包括:
词表构建模块,用于构建症状相关度词表,具体为:
获取症状数据,其中所述症状数据包括从教科书、词典中获取的症状同、近义词表、从所述疾病/症候数据库中获取的每条疾病/症候的症状集合以及从用户请求记录中获取的每条有效请求的症状集合;
对于所获取的症状数据,假设有两个症状x和y,则该两个症状x和y的关联度μ(x,y)为
其中ρ(P表示数据源P的判断权重,根据专家经验人为设定,ρ(同近义词表)>ρ(疾病/证候库)≥ρ(用户请求记录);r,p,q表示数据源P内的每个并发症状集合;
其中|p|表示症状集合p中含有的症状的个数,
将关联度大于关联度阈值的两个症状保存到创建的症状相关度词表。
3.根据权利要求2所述的自动诊断系统,其特征在于,所述症状匹配模块包括:
权重计算单元,用于根据以下公式计算症状x在疾病/症候d中的权重W(d,x):
其中,ρ(S)表示数据源S的权重,e表示数据源S中有关疾病/症候的每一条描述单元信息;
匹配度计算单元,用于计算所述疾病/症候数据库中的每条疾病/症候相对于所述症状关键词集合的匹配度,具体为:
假设用户提供的所述症状关键词集合为A,遍历所述疾病/症候数据库中的每一个疾病/症候d及其对应的症状集合σ(d);
用以下算式计算疾病/症候d相对于所述症状关键词集合A的匹配度M(A,d):
其中,|A|和|σ(d)|分别表示集合A和集合σ(d)中的元素个数;
按M(A,d)由大到小的顺序对对应的疾病/症候进行排序,将排序得到的结果用R表示并呈现给用户,其中R={d|M(A,d)>0且r(d)<N},r(d)表示按M(A,d)由大到小排序后对应的疾病/症候的序号,N为人为设定的常数。
4.根据权利要求1-3中任一项所述的自动诊断系统,其特征在于,还包括:
更新模块,用于补充和更新所述疾病/症候数据库。
5.根据权利要求2所述的自动诊断系统,其特征在于,所述有效请求的症状集合是指该请求的匹配结果中含有匹配度大于设定的常量C的疾病/症候。
6.一种基于症状匹配和机器学习的自动诊断方法,其特征在于,包括以下步骤:
接收用户输入的症状关键词集合;
根据用户输入的症状关键词集合与疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度,其中所述疾病/症候数据库保存有已知的每种疾病/症候及其对应的症状;
根据所述症状关键词集合与每种疾病/症候的匹配度确定对应的疾病/症候。
7.根据权利要求6所述的自动诊断方法,其特征在于,在根据用户输入的症状关键词集合与疾病/症候数据库中的症状进行匹配步骤之前还包括以下步骤:
构建症状相关度词表,具体包括:
获取症状数据,其中所述症状数据包括从教科书、词典中获取的症状同、近义词表、从所述疾病/症候数据库中获取的每条疾病/症候的症状集合以及从用户请求记录中获取的每条有效请求的症状集合;
对于所获取的症状数据,假设有两个症状x和y,则该两个症状x和y的关联度μ(x,y)为
ρ(P)表示数据源P的判断权重,根据专家经验人为设定,ρ(同近义词表)>ρ(疾病/证候库)≥ρ(用户请求记录);r,p,q表示数据源P内的每个并发症状集合;
其中|p|表示症状集合p中含有的症状的个数,
将关联度大于关联度阈值的两个症状保存到创建的症状相关度词表。
8.根据权利要求7所述的自动诊断方法,其特征在于,所述根据用户输入的症状关键词集合与疾病/症候数据库中的症状进行匹配,计算所述症状关键词集合与每种疾病/症候的匹配度步骤包括:
计算症状x在疾病/症候d中的权重W(d,x)为
其中,ρ(S)表示数据源S的权重,e表示数据源S中有关疾病/症候的每一条描述单元信息;
假设用户提供的所述症状关键词集合为A,遍历所述疾病/症候数据库中的每一个疾病/症候d及其对应的症状集合σ(d);
用以下算式计算疾病/症候d相对于所述症状关键词集合A的匹配度M(A,d)
其中,|A|和|σ(d)|分别表示集合A和集合σ(d)中的元素个数;
按M(A,d)由大到小的顺序对对应的疾病/症候进行排序,将排序得到的结果用R表示并呈现给用户,其中R={d|M(A,d)>0且r(d)<N},r(d)表示按M(A,d)由大到小排序后对应的疾病/症候的序号,N为人为设定的常数。
9.根据权利要求6-8中任一项所述的自动诊断方法,其特征在于,还包括以下步骤:
对所述疾病/症候数据库进行补充和更新。
10.根据权利要求7所述的自动诊断方法,其特征在于,所述有效请求的症状集合是指该请求的匹配结果中含有匹配度大于设定的常量C的疾病/症候。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410280966.5A CN104102816B (zh) | 2014-06-20 | 2014-06-20 | 基于症状匹配和机器学习的自动诊断系统和方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410280966.5A CN104102816B (zh) | 2014-06-20 | 2014-06-20 | 基于症状匹配和机器学习的自动诊断系统和方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN104102816A true CN104102816A (zh) | 2014-10-15 |
| CN104102816B CN104102816B (zh) | 2017-07-25 |
Family
ID=51670961
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410280966.5A Active CN104102816B (zh) | 2014-06-20 | 2014-06-20 | 基于症状匹配和机器学习的自动诊断系统和方法 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104102816B (zh) |
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104484844A (zh) * | 2014-12-30 | 2015-04-01 | 天津迈沃医药技术有限公司 | 基于疾病圈数据信息的自我诊疗方法 |
| CN104573350A (zh) * | 2014-12-26 | 2015-04-29 | 深圳市前海安测信息技术有限公司 | 基于网络医院的全科医生辅助诊疗系统及方法 |
| CN105335623A (zh) * | 2015-12-04 | 2016-02-17 | 上海市第六人民医院 | 一种骨转移癌骨相关事件的判断系统 |
| CN106156457A (zh) * | 2015-03-27 | 2016-11-23 | 时云医疗科技(上海)有限公司 | 一种基于体征数据的信息推送方法及系统 |
| CN106372439A (zh) * | 2016-09-21 | 2017-02-01 | 北京大学 | 基于病例库的疾病症状及其权重知识的获取和处理方法 |
| CN106599574A (zh) * | 2016-12-13 | 2017-04-26 | 天津迈沃医药技术股份有限公司 | 基于医疗信息平台的诊疗数据分析方法及系统 |
| CN106815479A (zh) * | 2017-01-17 | 2017-06-09 | 北京农信互联科技有限公司 | 牲畜养殖远程诊断系统及方法 |
| CN106991284A (zh) * | 2017-03-31 | 2017-07-28 | 南华大学 | 智能育儿知识服务方法及系统 |
| CN107066818A (zh) * | 2017-03-30 | 2017-08-18 | 深圳市金立通信设备有限公司 | 一种疾病诊断方法及终端 |
| CN107330289A (zh) * | 2017-07-10 | 2017-11-07 | 叮当(深圳)健康机器人科技有限公司 | 一种症状信息分析方法及装置 |
| CN107330287A (zh) * | 2017-07-10 | 2017-11-07 | 叮当(深圳)健康机器人科技有限公司 | 一种疾病信息分析方法及装置 |
| CN107330288A (zh) * | 2017-07-10 | 2017-11-07 | 叮当(深圳)健康机器人科技有限公司 | 一种用药信息获取方法及装置 |
| CN107436996A (zh) * | 2017-06-28 | 2017-12-05 | 广州尚恩科技股份有限公司 | 一种基于云计算的心脏病病理数据处理系统 |
| CN107451388A (zh) * | 2016-05-31 | 2017-12-08 | 百度(美国)有限责任公司 | 用于使医疗诊断自动化的方法、装置和系统 |
| CN107463782A (zh) * | 2017-08-11 | 2017-12-12 | 海南希尔康科技发展有限公司 | 一种医疗服务系统 |
| CN107463783A (zh) * | 2017-08-16 | 2017-12-12 | 安徽影联乐金信息科技有限公司 | 一种临床决策支持系统和决策方法 |
| CN107680689A (zh) * | 2017-05-05 | 2018-02-09 | 平安科技(深圳)有限公司 | 医疗文本的潜在疾病推断方法、系统及可读存储介质 |
| CN108122611A (zh) * | 2017-12-22 | 2018-06-05 | 东软集团股份有限公司 | 一种信息推荐方法、装置及存储介质、程序产品 |
| CN108630311A (zh) * | 2018-04-17 | 2018-10-09 | 杭州希和信息技术有限公司 | 一种用户健康的干预方法及系统 |
| CN109036508A (zh) * | 2018-05-31 | 2018-12-18 | 平安医疗科技有限公司 | 一种中医医疗信息处理方法、装置、计算机设备和存储介质 |
| CN109119132A (zh) * | 2018-08-03 | 2019-01-01 | 国家卫生计生委科学技术研究所 | 基于病历特征匹配单基因病名称的方法及系统 |
| CN109670088A (zh) * | 2018-12-13 | 2019-04-23 | 平安科技(深圳)有限公司 | 语音问答交互方法、装置、计算机设备及存储介质 |
| CN109949927A (zh) * | 2019-02-18 | 2019-06-28 | 四川拾智联兴科技有限公司 | 一种基于深度神经网络的智能诊断方法及其系统 |
| CN110444293A (zh) * | 2019-07-30 | 2019-11-12 | 中国中医科学院望京医院 | 股骨头坏死诊疗系统和云服务系统 |
| CN111276259A (zh) * | 2018-12-04 | 2020-06-12 | 阿里巴巴集团控股有限公司 | 服务确定、网络交互、分类方法和客户端、服务器和介质 |
| CN111985246A (zh) * | 2020-08-27 | 2020-11-24 | 武汉东湖大数据交易中心股份有限公司 | 一种基于主要症状与伴随症状词的疾病认知系统 |
| CN112133391A (zh) * | 2020-09-17 | 2020-12-25 | 吾征智能技术(北京)有限公司 | 一种基于人体异常眉毛的疾病认知系统 |
| CN112735555A (zh) * | 2021-01-20 | 2021-04-30 | 山东第一医科大学附属省立医院(山东省立医院) | 罕见病数据采集上报方法及系统 |
| CN112768082A (zh) * | 2021-02-04 | 2021-05-07 | 常熟和医信息技术有限公司 | 一种根据电子病历文本自动给出疾病诊疗方案的方法 |
| CN114140983A (zh) * | 2021-12-02 | 2022-03-04 | 内蒙古海洋工信科技有限责任公司 | 一种居家用智能远程慢病监管系统 |
| CN114373552A (zh) * | 2021-11-26 | 2022-04-19 | 南昌协达科技发展有限公司 | 食物中毒与传染病的应急管理方法、系统及设备 |
| CN114661990A (zh) * | 2022-03-23 | 2022-06-24 | 北京百度网讯科技有限公司 | 数据预测及模型训练的方法、装置、设备、介质及产品 |
| CN116189878A (zh) * | 2022-12-30 | 2023-05-30 | 华中科技大学同济医学院附属同济医院 | 疾病早期预测方法及相关设备 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040193022A1 (en) * | 2003-03-24 | 2004-09-30 | Fujitsu Limited | Diagnostic support system and diagnostic support program |
| CN101609484A (zh) * | 2008-06-20 | 2009-12-23 | 上海中医药大学 | 利用计算机进行中医问诊的方法 |
| CN102054114A (zh) * | 2009-10-30 | 2011-05-11 | 上海市农业科学院 | 一种蔬菜病虫害诊断专家系统构建和服务方法 |
| CN102156812A (zh) * | 2011-04-02 | 2011-08-17 | 中国医学科学院医学信息研究所 | 基于症状相似度分析的就医辅助决策方法 |
| CN102298662A (zh) * | 2010-06-24 | 2011-12-28 | 上海中医药大学 | 基于自适应谐振理论的神经网络中医证候诊断系统 |
| CN102436552A (zh) * | 2011-12-07 | 2012-05-02 | 南京毗邻医疗科技有限公司 | 基于复合病情模板的智慧医学仿真病人系统 |
| CN103186707A (zh) * | 2011-12-30 | 2013-07-03 | 中国移动通信集团公司 | 一种诊疗信息处理方法、服务器及系统 |
-
2014
- 2014-06-20 CN CN201410280966.5A patent/CN104102816B/zh active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040193022A1 (en) * | 2003-03-24 | 2004-09-30 | Fujitsu Limited | Diagnostic support system and diagnostic support program |
| CN101609484A (zh) * | 2008-06-20 | 2009-12-23 | 上海中医药大学 | 利用计算机进行中医问诊的方法 |
| CN102054114A (zh) * | 2009-10-30 | 2011-05-11 | 上海市农业科学院 | 一种蔬菜病虫害诊断专家系统构建和服务方法 |
| CN102298662A (zh) * | 2010-06-24 | 2011-12-28 | 上海中医药大学 | 基于自适应谐振理论的神经网络中医证候诊断系统 |
| CN102156812A (zh) * | 2011-04-02 | 2011-08-17 | 中国医学科学院医学信息研究所 | 基于症状相似度分析的就医辅助决策方法 |
| CN102436552A (zh) * | 2011-12-07 | 2012-05-02 | 南京毗邻医疗科技有限公司 | 基于复合病情模板的智慧医学仿真病人系统 |
| CN103186707A (zh) * | 2011-12-30 | 2013-07-03 | 中国移动通信集团公司 | 一种诊疗信息处理方法、服务器及系统 |
Cited By (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104573350A (zh) * | 2014-12-26 | 2015-04-29 | 深圳市前海安测信息技术有限公司 | 基于网络医院的全科医生辅助诊疗系统及方法 |
| CN104484844A (zh) * | 2014-12-30 | 2015-04-01 | 天津迈沃医药技术有限公司 | 基于疾病圈数据信息的自我诊疗方法 |
| CN104484844B (zh) * | 2014-12-30 | 2018-07-13 | 天津迈沃医药技术股份有限公司 | 一种基于疾病圈数据信息的自我诊疗网站平台 |
| CN106156457A (zh) * | 2015-03-27 | 2016-11-23 | 时云医疗科技(上海)有限公司 | 一种基于体征数据的信息推送方法及系统 |
| CN106156457B (zh) * | 2015-03-27 | 2019-04-09 | 时云医疗科技(上海)有限公司 | 一种基于体征数据的信息推送方法及系统 |
| CN105335623A (zh) * | 2015-12-04 | 2016-02-17 | 上海市第六人民医院 | 一种骨转移癌骨相关事件的判断系统 |
| CN107451388A (zh) * | 2016-05-31 | 2017-12-08 | 百度(美国)有限责任公司 | 用于使医疗诊断自动化的方法、装置和系统 |
| CN106372439A (zh) * | 2016-09-21 | 2017-02-01 | 北京大学 | 基于病例库的疾病症状及其权重知识的获取和处理方法 |
| CN106599574A (zh) * | 2016-12-13 | 2017-04-26 | 天津迈沃医药技术股份有限公司 | 基于医疗信息平台的诊疗数据分析方法及系统 |
| CN106599574B (zh) * | 2016-12-13 | 2019-04-30 | 天津迈沃医药技术股份有限公司 | 基于医疗信息平台的诊疗数据分析方法及系统 |
| CN106815479A (zh) * | 2017-01-17 | 2017-06-09 | 北京农信互联科技有限公司 | 牲畜养殖远程诊断系统及方法 |
| CN107066818A (zh) * | 2017-03-30 | 2017-08-18 | 深圳市金立通信设备有限公司 | 一种疾病诊断方法及终端 |
| CN106991284B (zh) * | 2017-03-31 | 2019-12-31 | 南华大学 | 智能育儿知识服务方法及系统 |
| CN106991284A (zh) * | 2017-03-31 | 2017-07-28 | 南华大学 | 智能育儿知识服务方法及系统 |
| CN107680689A (zh) * | 2017-05-05 | 2018-02-09 | 平安科技(深圳)有限公司 | 医疗文本的潜在疾病推断方法、系统及可读存储介质 |
| CN107436996A (zh) * | 2017-06-28 | 2017-12-05 | 广州尚恩科技股份有限公司 | 一种基于云计算的心脏病病理数据处理系统 |
| CN107330287A (zh) * | 2017-07-10 | 2017-11-07 | 叮当(深圳)健康机器人科技有限公司 | 一种疾病信息分析方法及装置 |
| CN107330288A (zh) * | 2017-07-10 | 2017-11-07 | 叮当(深圳)健康机器人科技有限公司 | 一种用药信息获取方法及装置 |
| CN107330289A (zh) * | 2017-07-10 | 2017-11-07 | 叮当(深圳)健康机器人科技有限公司 | 一种症状信息分析方法及装置 |
| CN107463782A (zh) * | 2017-08-11 | 2017-12-12 | 海南希尔康科技发展有限公司 | 一种医疗服务系统 |
| CN107463783A (zh) * | 2017-08-16 | 2017-12-12 | 安徽影联乐金信息科技有限公司 | 一种临床决策支持系统和决策方法 |
| CN108122611B (zh) * | 2017-12-22 | 2021-05-07 | 东软集团股份有限公司 | 一种信息推荐方法、装置及存储介质、程序产品 |
| CN108122611A (zh) * | 2017-12-22 | 2018-06-05 | 东软集团股份有限公司 | 一种信息推荐方法、装置及存储介质、程序产品 |
| CN108630311A (zh) * | 2018-04-17 | 2018-10-09 | 杭州希和信息技术有限公司 | 一种用户健康的干预方法及系统 |
| CN109036508A (zh) * | 2018-05-31 | 2018-12-18 | 平安医疗科技有限公司 | 一种中医医疗信息处理方法、装置、计算机设备和存储介质 |
| CN109036508B (zh) * | 2018-05-31 | 2023-10-03 | 平安医疗科技有限公司 | 一种中医医疗信息处理方法、装置、计算机设备和存储介质 |
| CN109119132A (zh) * | 2018-08-03 | 2019-01-01 | 国家卫生计生委科学技术研究所 | 基于病历特征匹配单基因病名称的方法及系统 |
| CN111276259A (zh) * | 2018-12-04 | 2020-06-12 | 阿里巴巴集团控股有限公司 | 服务确定、网络交互、分类方法和客户端、服务器和介质 |
| CN111276259B (zh) * | 2018-12-04 | 2024-03-01 | 阿里巴巴集团控股有限公司 | 服务确定、网络交互、分类方法和客户端、服务器和介质 |
| CN109670088A (zh) * | 2018-12-13 | 2019-04-23 | 平安科技(深圳)有限公司 | 语音问答交互方法、装置、计算机设备及存储介质 |
| CN109949927A (zh) * | 2019-02-18 | 2019-06-28 | 四川拾智联兴科技有限公司 | 一种基于深度神经网络的智能诊断方法及其系统 |
| CN110444293A (zh) * | 2019-07-30 | 2019-11-12 | 中国中医科学院望京医院 | 股骨头坏死诊疗系统和云服务系统 |
| CN111985246A (zh) * | 2020-08-27 | 2020-11-24 | 武汉东湖大数据交易中心股份有限公司 | 一种基于主要症状与伴随症状词的疾病认知系统 |
| CN111985246B (zh) * | 2020-08-27 | 2023-08-15 | 武汉东湖大数据交易中心股份有限公司 | 一种基于主要症状与伴随症状词的疾病认知系统 |
| CN112133391B (zh) * | 2020-09-17 | 2024-01-26 | 吾征智能技术(北京)有限公司 | 一种基于人体异常眉毛的疾病认知系统 |
| CN112133391A (zh) * | 2020-09-17 | 2020-12-25 | 吾征智能技术(北京)有限公司 | 一种基于人体异常眉毛的疾病认知系统 |
| CN112735555A (zh) * | 2021-01-20 | 2021-04-30 | 山东第一医科大学附属省立医院(山东省立医院) | 罕见病数据采集上报方法及系统 |
| CN112768082A (zh) * | 2021-02-04 | 2021-05-07 | 常熟和医信息技术有限公司 | 一种根据电子病历文本自动给出疾病诊疗方案的方法 |
| CN114373552A (zh) * | 2021-11-26 | 2022-04-19 | 南昌协达科技发展有限公司 | 食物中毒与传染病的应急管理方法、系统及设备 |
| CN114140983A (zh) * | 2021-12-02 | 2022-03-04 | 内蒙古海洋工信科技有限责任公司 | 一种居家用智能远程慢病监管系统 |
| CN114661990A (zh) * | 2022-03-23 | 2022-06-24 | 北京百度网讯科技有限公司 | 数据预测及模型训练的方法、装置、设备、介质及产品 |
| CN114661990B (zh) * | 2022-03-23 | 2024-10-25 | 北京百度网讯科技有限公司 | 数据预测及模型训练的方法、装置、设备、介质及产品 |
| CN116189878A (zh) * | 2022-12-30 | 2023-05-30 | 华中科技大学同济医学院附属同济医院 | 疾病早期预测方法及相关设备 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104102816B (zh) | 2017-07-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104102816A (zh) | 基于症状匹配和机器学习的自动诊断系统和方法 | |
| Venes | Taber's cyclopedic medical dictionary | |
| Trieschmann | Spinal cord injuries: Psychological, social, and vocational rehabilitation | |
| Williams et al. | Interventions to reduce cognitive decline in aging | |
| Gibson et al. | Gender and infertility: A relational approach to counseling women | |
| Calik et al. | Effects of SP6 acupuncture point stimulation on labor pain and duration of labor | |
| US20210201689A1 (en) | Apparatus and method for treating mild cognitive impairment and dementia | |
| Gierut et al. | Effect size for single-subject design in phonological treatment | |
| KR20190132290A (ko) | 환자 진단 학습 방법, 서버 및 프로그램 | |
| Ussher et al. | Routledge international handbook of women's sexual and reproductive health | |
| Wade | Why physical medicine, physical disability and physical rehabilitation? We should abandon Cartesian dualism | |
| Almeida et al. | Inpatient rehabilitation of a person with Guillain–Barré syndrome associated with COVID-19 infection: An expert interdisciplinary approach to a case study | |
| Hudak et al. | Poverty predicts amblyopia treatment failure | |
| Knights et al. | The use of computerized test profiles in neuropsychological assessment | |
| Meneses et al. | Validation of interventions for risk of impaired skin integrity in adult and aged patients | |
| Khorasgani et al. | Investigating Knowledge and Attitude of Nursing Students Towards Iranian Traditional Medicine: Case Study: Universities of Tehran in 2012-2013 | |
| Doan et al. | The heroic cancer patient: A critical analysis of the relationship between illusion and mental health. | |
| Shuler et al. | The Shuler nurse practitioner practice model: Clinical application, Part 2 | |
| Wyatt et al. | Self-administered acupressure for persistent cancer-related fatigue: fidelity considerations | |
| Corso et al. | Nursing care systematization for outpatient treatment care of patients with multiple sclerosis | |
| Schnarch | The role of medical students' stereotype of physicians in sex education | |
| Hafezi et al. | Dynamic model with factors of polycystic ovarian syndrome in infertile women | |
| Baldwin | Implementation of a bowel management care bundle on the spinal cord injury patient population during acute recovery | |
| Wang et al. | The application of the IMB model combined with feedback-based health education in the rehabilitation of limb function in stroke patients | |
| Yan | Application of Rapid Rehabilitation Surgical Concept in Liver Transplantation Care |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20191125 Address after: A603-1, building 1, a 22, Dongsi shitiao, Dongcheng District, Beijing 100007 Patentee after: Beijing shenhuang Technology Co., Ltd Address before: 100000 Beijing city Dongcheng District No. 22 Dongsishitiao nanxincang business building block A No. 605 Patentee before: Zhou Jin |
|
| TR01 | Transfer of patent right |