[go: up one dir, main page]

MX2017014963A - Deteccion y clasificacion de semaforos mediante el uso de vision informatica y aprendizaje profundo. - Google Patents

Deteccion y clasificacion de semaforos mediante el uso de vision informatica y aprendizaje profundo.

Info

Publication number
MX2017014963A
MX2017014963A MX2017014963A MX2017014963A MX2017014963A MX 2017014963 A MX2017014963 A MX 2017014963A MX 2017014963 A MX2017014963 A MX 2017014963A MX 2017014963 A MX2017014963 A MX 2017014963A MX 2017014963 A MX2017014963 A MX 2017014963A
Authority
MX
Mexico
Prior art keywords
traffic
frame
classification
deep learning
light detection
Prior art date
Application number
MX2017014963A
Other languages
English (en)
Inventor
Nariyambut Murali Vidya
J Goh Madeline
Zhang Yi
Moosaei Maryam
Original Assignee
Ford Global Tech Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Tech Llc filed Critical Ford Global Tech Llc
Publication of MX2017014963A publication Critical patent/MX2017014963A/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20132Image cropping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

Se describe un método para detectar y clasificar uno o más semáforos. El método puede incluir convertir un cuadro RGB en un cuadro HSV. El cuadro HSV puede filtrarse en al menos un valor de umbral para obtener al menos un cuadro de saturación. Se puede extraer al menos un contorno de al menos un cuadro de saturación. Por consiguiente, se puede recortar una primera parte del RGB con el fin de abarcar un área que incluye el al menos un contorno. La primera parte puede clasificarse entonces por una red neural artificial para determinar si la primera parte corresponde a una clase de no semáforo, una clase de semáforo en rojo, una clase de semáforo verde, una clase de semáforo en amarillo o similares.
MX2017014963A 2016-11-23 2017-11-22 Deteccion y clasificacion de semaforos mediante el uso de vision informatica y aprendizaje profundo. MX2017014963A (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/360,883 US10185881B2 (en) 2016-11-23 2016-11-23 Traffic-light detection and classification using computer vision and deep learning

Publications (1)

Publication Number Publication Date
MX2017014963A true MX2017014963A (es) 2018-10-04

Family

ID=60805820

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2017014963A MX2017014963A (es) 2016-11-23 2017-11-22 Deteccion y clasificacion de semaforos mediante el uso de vision informatica y aprendizaje profundo.

Country Status (6)

Country Link
US (3) US10185881B2 (es)
CN (1) CN108090411B (es)
DE (1) DE102017127489A1 (es)
GB (1) GB2559005A (es)
MX (1) MX2017014963A (es)
RU (1) RU2017135215A (es)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10185881B2 (en) * 2016-11-23 2019-01-22 Ford Global Technologies, Llc Traffic-light detection and classification using computer vision and deep learning
JP6834425B2 (ja) * 2016-12-02 2021-02-24 スズキ株式会社 運転支援装置
US10650257B2 (en) * 2017-02-09 2020-05-12 SMR Patents S.à.r.l. Method and device for identifying the signaling state of at least one signaling device
US10614326B2 (en) * 2017-03-06 2020-04-07 Honda Motor Co., Ltd. System and method for vehicle control based on object and color detection
US11069234B1 (en) 2018-02-09 2021-07-20 Applied Information, Inc. Systems, methods, and devices for communication between traffic controller systems and mobile transmitters and receivers
CN108830199B (zh) 2018-05-31 2021-04-16 京东方科技集团股份有限公司 识别交通灯信号的方法、装置、可读介质及电子设备
US11205345B1 (en) 2018-10-02 2021-12-21 Applied Information, Inc. Systems, methods, devices, and apparatuses for intelligent traffic signaling
CN109508635B (zh) * 2018-10-08 2022-01-07 海南师范大学 一种基于TensorFlow结合多层CNN网络的交通灯识别方法
US11056005B2 (en) 2018-10-24 2021-07-06 Waymo Llc Traffic light detection and lane state recognition for autonomous vehicles
JP7172441B2 (ja) * 2018-10-25 2022-11-16 トヨタ自動車株式会社 進行可能方向検出装置及び進行可能方向検出方法
US10467487B1 (en) * 2018-12-11 2019-11-05 Chongqing Jinkang New Energy Automobile Co., Ltd. Fusion-based traffic light recognition for autonomous driving
CN111723614A (zh) * 2019-03-20 2020-09-29 北京四维图新科技股份有限公司 交通信号灯识别方法及装置
DE102019207580A1 (de) 2019-05-23 2020-11-26 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines tiefen Neuronalen Netzes
US10944912B2 (en) 2019-06-04 2021-03-09 Ford Global Technologies, Llc Systems and methods for reducing flicker artifacts in imaged light sources
CN110633635A (zh) * 2019-08-08 2019-12-31 北京联合大学 一种基于roi的交通标志牌实时检测方法及系统
DE102019129029A1 (de) * 2019-10-28 2021-04-29 Bayerische Motoren Werke Aktiengesellschaft System und verfahren zur objektdetektion
US11210571B2 (en) 2020-03-13 2021-12-28 Argo AI, LLC Using rasterization to identify traffic signal devices
US12073632B2 (en) * 2020-05-11 2024-08-27 Toyota Research Institute, Inc. Structural object detector for hierarchical ontology for traffic light handling
CN111723690B (zh) * 2020-06-03 2023-10-20 北京全路通信信号研究设计院集团有限公司 一种电路设备状态监测方法和系统
US11900689B1 (en) * 2020-06-04 2024-02-13 Aurora Operations, Inc. Traffic light identification and/or classification for use in controlling an autonomous vehicle
US11704912B2 (en) * 2020-06-16 2023-07-18 Ford Global Technologies, Llc Label-free performance evaluator for traffic light classifier system
CA3212158A1 (en) 2021-03-03 2022-09-09 Mitsubishi Electric Corporation Signal processing device, control circuit, storage medium, and signal processing method
CN114067291B (zh) * 2021-11-24 2025-06-27 智道网联科技(北京)有限公司 信号灯检测方法和装置
CN117292357A (zh) * 2023-10-09 2023-12-26 广州小鹏自动驾驶科技有限公司 信号灯的检测方法、装置、汽车和介质

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380838B2 (ja) * 1999-04-08 2009-12-09 アジア航測株式会社 ビデオ画像の道路標識自動認識方法及び道路標識自動認識装置並びに道路標識自動認識プログラム
JP3621065B2 (ja) * 2000-12-25 2005-02-16 松下電器産業株式会社 画像検出装置、プログラムおよび記録媒体
US7724962B2 (en) 2006-07-07 2010-05-25 Siemens Corporation Context adaptive approach in vehicle detection under various visibility conditions
US8358806B2 (en) * 2007-08-02 2013-01-22 Siemens Corporation Fast crowd segmentation using shape indexing
CN101408942B (zh) * 2008-04-17 2011-01-12 浙江师范大学 一种复杂背景下的车牌定位方法
CN103020623B (zh) * 2011-09-23 2016-04-06 株式会社理光 交通标志检测方法和交通标志检测设备
CN102542260A (zh) 2011-12-30 2012-07-04 中南大学 一种面向无人驾驶车的道路交通标志识别方法
US9530056B2 (en) 2012-06-15 2016-12-27 Bhaskar Saha Day night classification of images using thresholding on HSV histogram
CN103489324B (zh) * 2013-09-22 2015-09-09 北京联合大学 一种基于无人驾驶的实时动态红绿灯检测识别方法
CN104778833B (zh) 2014-01-10 2018-05-08 北京信路威科技股份有限公司 识别交通信号灯的方法
CN103955705B (zh) * 2014-04-29 2017-11-28 银江股份有限公司 基于视频分析的交通信号灯定位、识别与分类方法
US20150339589A1 (en) * 2014-05-21 2015-11-26 Brain Corporation Apparatus and methods for training robots utilizing gaze-based saliency maps
CN104021378B (zh) * 2014-06-07 2017-06-30 北京联合大学 基于时空关联与先验知识的交通信号灯实时识别方法
CN105404856B (zh) * 2015-11-02 2018-08-24 长安大学 一种公交车辆座位占用状态检测方法
CN106101632A (zh) * 2016-06-29 2016-11-09 韦醒妃 基于视觉特征的图像处理装置
US10185881B2 (en) * 2016-11-23 2019-01-22 Ford Global Technologies, Llc Traffic-light detection and classification using computer vision and deep learning
CN106909937B (zh) 2017-02-09 2020-05-19 北京汽车集团有限公司 交通信号灯识别方法、车辆控制方法、装置及车辆

Also Published As

Publication number Publication date
GB201718962D0 (en) 2018-01-03
US10402667B2 (en) 2019-09-03
US10614327B2 (en) 2020-04-07
RU2017135215A (ru) 2019-04-05
US20190340450A1 (en) 2019-11-07
GB2559005A (en) 2018-07-25
US20190005340A1 (en) 2019-01-03
DE102017127489A1 (de) 2018-05-24
CN108090411A (zh) 2018-05-29
US20180144203A1 (en) 2018-05-24
CN108090411B (zh) 2023-06-02
US10185881B2 (en) 2019-01-22

Similar Documents

Publication Publication Date Title
MX2017014963A (es) Deteccion y clasificacion de semaforos mediante el uso de vision informatica y aprendizaje profundo.
MX2017004705A (es) Deteccion de lluvia basada en vision con aprendizaje profundo.
ZA202308518B (en) Intelligent recognition and alert methods and systems
MX2018000835A (es) Deteccion de vehiculos en condiciones de iluminacion baja.
MX382730B (es) Método, aparato y dispositivo electrónico para detección de la vitalidad facial.
US10509961B2 (en) Blindman navigation method and blindman navigation apparatus
EP2905665A3 (en) Information processing apparatus, diagnosis method, and program
EP2806373A3 (en) Image processing system and method of improving human face recognition
EP2851808A3 (en) Hybrid natural language processor
GB2549875A (en) Automated content classification/filtering
EP2573711A3 (en) Traffic sign detecting method and traffic sign detecing device
WO2015168026A3 (en) Method for label-free image cytometry
US8965068B2 (en) Apparatus and method for discriminating disguised face
JP2019053619A5 (es)
MX2022000580A (es) Sistemas, dispositivos, y metodos para detectar fertilidad y genero de huevos no eclosionados.
MX374173B (es) Método de identificación de señal de intrusión de perímetro de fibra óptica, dispositivo de identificación y sistema de alarma de intrusión de perímetro de fibra óptica.
JP2013257866A5 (ja) テキストを自動的に検出する方法
WO2010151029A3 (ko) 얼굴의 돌출부 인식 방법 및 장치
GB201304775D0 (en) Facial feature detection
EP2551793A3 (en) Obstacle detection system
ZA202108076B (en) An improved pedestrian attribute monitoring and recognition method
EP2731054A3 (en) Method and device for recognizing document image, and photographing method using the same
EP2767849A3 (en) Method and apparatus for processing polarimetric synthetic aperture radar image
CN102682304A (zh) 一种融合多特征的行人检测方法及装置
WO2015024257A8 (en) Unstructured road boundary detection