MX2017011200A - Calculo estimativo de mapa de profundidad con imagenes estereo. - Google Patents
Calculo estimativo de mapa de profundidad con imagenes estereo.Info
- Publication number
- MX2017011200A MX2017011200A MX2017011200A MX2017011200A MX2017011200A MX 2017011200 A MX2017011200 A MX 2017011200A MX 2017011200 A MX2017011200 A MX 2017011200A MX 2017011200 A MX2017011200 A MX 2017011200A MX 2017011200 A MX2017011200 A MX 2017011200A
- Authority
- MX
- Mexico
- Prior art keywords
- stereo images
- depth map
- sensors
- estimate calculation
- piloted
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0248—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0251—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/593—Depth or shape recovery from multiple images from stereo images
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
- G06T2207/10012—Stereo images
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Game Theory and Decision Science (AREA)
- Medical Informatics (AREA)
- Business, Economics & Management (AREA)
- Optics & Photonics (AREA)
- Image Processing (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
Abstract
Los vehículos pueden estar equipados para funcionar en modo automático y piloteado por un ocupante. Al funcionar en cualquier modo, se puede utilizar un conjunto de sensores para pilotear el vehículo, incluidos cámaras estéreo y sensores 3D. También se pueden utilizar cámaras estéreo y sensores 3D para ayudar a los ocupantes cuando pilotean el vehículo. Se pueden utilizar redes neuronales convolucionales profundas para determinar mapas de profundidad estimados a partir de imágenes estéreo de escenas en tiempo real para vehículos en modos automático y piloteado por un ocupante.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/254,212 US10466714B2 (en) | 2016-09-01 | 2016-09-01 | Depth map estimation with stereo images |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| MX2017011200A true MX2017011200A (es) | 2018-09-21 |
Family
ID=60037097
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MX2017011200A MX2017011200A (es) | 2016-09-01 | 2017-08-31 | Calculo estimativo de mapa de profundidad con imagenes estereo. |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10466714B2 (es) |
| CN (1) | CN107798699B (es) |
| DE (1) | DE102017120112A1 (es) |
| GB (1) | GB2555214A (es) |
| MX (1) | MX2017011200A (es) |
| RU (1) | RU2017130319A (es) |
Families Citing this family (58)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11328403B2 (en) | 2020-01-22 | 2022-05-10 | Gary B. Levin | Apparatus and method for onboard stereoscopic inspection of vehicle tires |
| EP3264763A1 (en) * | 2016-06-29 | 2018-01-03 | Thomson Licensing | Method and apparatus for improved significance flag coding using simple local predictor |
| US10466714B2 (en) * | 2016-09-01 | 2019-11-05 | Ford Global Technologies, Llc | Depth map estimation with stereo images |
| US10139823B2 (en) * | 2016-09-13 | 2018-11-27 | Toyota Motor Engineering & Manufacturing North America, Inc. | Method and device for producing vehicle operational data based on deep learning techniques |
| US10460511B2 (en) * | 2016-09-23 | 2019-10-29 | Blue Vision Labs UK Limited | Method and system for creating a virtual 3D model |
| KR102707595B1 (ko) * | 2016-12-01 | 2024-09-19 | 삼성전자주식회사 | 눈 검출 방법 및 장치 |
| FR3063374B1 (fr) * | 2017-02-27 | 2019-06-07 | Stmicroelectronics Sa | Procede et dispositif de determination d'une carte de profondeurs d'une scene |
| US10210672B2 (en) * | 2017-04-07 | 2019-02-19 | Toyota Research Institute, Inc. | Systems and methods for remotely controlling data collection by a vehicle |
| US20230107110A1 (en) * | 2017-04-10 | 2023-04-06 | Eys3D Microelectronics, Co. | Depth processing system and operational method thereof |
| US10755428B2 (en) * | 2017-04-17 | 2020-08-25 | The United States Of America, As Represented By The Secretary Of The Navy | Apparatuses and methods for machine vision system including creation of a point cloud model and/or three dimensional model |
| US10657446B2 (en) * | 2017-06-02 | 2020-05-19 | Mitsubishi Electric Research Laboratories, Inc. | Sparsity enforcing neural network |
| US10678241B2 (en) | 2017-09-06 | 2020-06-09 | GM Global Technology Operations LLC | Unsupervised learning agents for autonomous driving applications |
| US11004202B2 (en) * | 2017-10-09 | 2021-05-11 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for semantic segmentation of 3D point clouds |
| US10460512B2 (en) * | 2017-11-07 | 2019-10-29 | Microsoft Technology Licensing, Llc | 3D skeletonization using truncated epipolar lines |
| WO2019096310A1 (en) * | 2017-11-20 | 2019-05-23 | Shanghaitech University | Light field image rendering method and system for creating see-through effects |
| DE102017127600A1 (de) * | 2017-11-22 | 2019-05-23 | Connaught Electronics Ltd. | Verfahren zum automatischen Parken für ein Kraftfahrzeug mit einem Fahrunterstützungssystem |
| US12008465B1 (en) | 2017-12-29 | 2024-06-11 | Perceive Corporation | Dynamic generation of data sets for training machine-trained network |
| WO2020076737A1 (en) * | 2018-10-07 | 2020-04-16 | Ocula Corporation | Fixed-element digital-optical measuring device |
| CA3087756A1 (en) | 2018-01-07 | 2019-07-11 | Ocula Corporation | Digital-optical object tracker |
| US11094075B1 (en) * | 2018-01-23 | 2021-08-17 | Facebook Technologies, Llc | Systems and methods utilizing a machine learning model for generating defocus blur effects |
| WO2019176877A1 (ja) * | 2018-03-15 | 2019-09-19 | 株式会社小糸製作所 | オブジェクト識別システム、自動車、車両用灯具、オブジェクトの種類の識別方法 |
| WO2019182974A2 (en) * | 2018-03-21 | 2019-09-26 | Nvidia Corporation | Stereo depth estimation using deep neural networks |
| CN108537837B (zh) * | 2018-04-04 | 2023-05-05 | 腾讯科技(深圳)有限公司 | 一种深度信息确定的方法及相关装置 |
| DE102018206848A1 (de) * | 2018-05-03 | 2019-11-07 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Ermitteln eines Tiefeninformationsbilds aus einem Eingangsbild |
| KR102506959B1 (ko) * | 2018-05-17 | 2023-03-07 | 나이앤틱, 인크. | 깊이 추정 시스템의 자가 감독 훈련 |
| WO2020033967A1 (en) | 2018-08-10 | 2020-02-13 | Buffalo Automation Group Inc. | Training a deep learning system for maritime applications |
| US10782691B2 (en) | 2018-08-10 | 2020-09-22 | Buffalo Automation Group Inc. | Deep learning and intelligent sensing system integration |
| CN110827341A (zh) * | 2018-08-10 | 2020-02-21 | 中国移动通信有限公司研究院 | 一种图片深度估计方法、装置和存储介质 |
| TWI716938B (zh) * | 2018-08-10 | 2021-01-21 | 宏達國際電子股份有限公司 | 臉部表情建構方法、裝置及非暫態電腦可讀取紀錄媒體 |
| RU2698402C1 (ru) * | 2018-08-30 | 2019-08-26 | Самсунг Электроникс Ко., Лтд. | Способ обучения сверточной нейронной сети для восстановления изображения и система для формирования карты глубины изображения (варианты) |
| US10672136B2 (en) * | 2018-08-31 | 2020-06-02 | Snap Inc. | Active image depth prediction |
| CN109470166B (zh) * | 2018-11-09 | 2020-12-08 | 业成科技(成都)有限公司 | 结构光深度感测器及感测方法 |
| US10861176B2 (en) | 2018-11-27 | 2020-12-08 | GM Global Technology Operations LLC | Systems and methods for enhanced distance estimation by a mono-camera using radar and motion data |
| US11170299B2 (en) * | 2018-12-28 | 2021-11-09 | Nvidia Corporation | Distance estimation to objects and free-space boundaries in autonomous machine applications |
| CN109840500B (zh) * | 2019-01-31 | 2021-07-02 | 深圳市商汤科技有限公司 | 一种三维人体姿态信息检测方法及装置 |
| US10949684B2 (en) | 2019-05-08 | 2021-03-16 | Ford Global Technologies, Llc | Vehicle image verification |
| CN114072842A (zh) * | 2019-05-17 | 2022-02-18 | 大学之母博洛尼亚大学 | 从图像中确定深度的方法和相关系统 |
| US11132772B2 (en) * | 2019-06-11 | 2021-09-28 | Samsung Electronics Co., Ltd. | Asymmetric normalized correlation layer for deep neural network feature matching |
| CN110332929A (zh) * | 2019-07-10 | 2019-10-15 | 上海交通大学 | 车载行人定位系统及方法 |
| US11340624B2 (en) * | 2019-08-29 | 2022-05-24 | Ford Global Technologies, Llc | Vehicle neural network |
| WO2021046547A1 (en) * | 2019-09-06 | 2021-03-11 | Ouster, Inc. | Processing of lidar images |
| EP3796209B1 (en) * | 2019-09-17 | 2025-05-21 | Aptiv Technologies AG | Method and system for determining an activity of an occupant of a vehicle |
| US10944898B1 (en) * | 2019-09-19 | 2021-03-09 | Capital One Services, Llc | Systems and methods for guiding image sensor angle settings in different environments |
| US20220383530A1 (en) * | 2019-10-27 | 2022-12-01 | Ramot At Tel-Aviv University Ltd. | Method and system for generating a depth map |
| US11763433B2 (en) | 2019-11-14 | 2023-09-19 | Samsung Electronics Co., Ltd. | Depth image generation method and device |
| RU2716311C1 (ru) * | 2019-11-18 | 2020-03-12 | федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) | Устройство для восстановления карты глубины с поиском похожих блоков на основе нейронной сети |
| EP4070278A1 (en) * | 2019-12-02 | 2022-10-12 | Alma Mater Studiorum - Università di Bologna | Method to determine the depth from images by self-adaptive learning of a neural network and system thereof |
| US11503266B2 (en) * | 2020-03-06 | 2022-11-15 | Samsung Electronics Co., Ltd. | Super-resolution depth map generation for multi-camera or other environments |
| US12347177B2 (en) | 2020-04-23 | 2025-07-01 | Nokia Technologies Oy | Method and device for 3D object detection |
| WO2021258254A1 (en) * | 2020-06-22 | 2021-12-30 | Nvidia Corporation | Hybrid solution for stereo imaging |
| DE102020117811A1 (de) | 2020-07-07 | 2022-01-13 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Bereitstellen einer Einrichtung zum Ermitteln von Interessenregionen für eine automatisierte Fahrzeugfunktion und Assistenzeinrichtung für ein Kraftfahrzeug |
| DE102020214622A1 (de) | 2020-11-20 | 2022-05-25 | Conti Temic Microelectronic Gmbh | Auswertung von Bilddaten einer Stereokamera zur Objektbewertung |
| DE102021000600A1 (de) | 2021-02-05 | 2022-08-11 | Mercedes-Benz Group AG | Verfahren und Vorrichtung zur Erkennung von Beeinträchtigungen im optischen Pfad einer Stereokamera |
| DE102021107904A1 (de) | 2021-03-29 | 2022-09-29 | Conti Temic Microelectronic Gmbh | Verfahren und System zur Bestimmung der Bodenebene mit einem künstlichen neuronalen Netz |
| CN114519713B (zh) * | 2022-02-24 | 2025-07-18 | 合肥芯明智能科技有限公司 | 深度测量方法、双目立体视觉系统、装置及存储介质 |
| US12492909B2 (en) * | 2022-09-30 | 2025-12-09 | Toyota Motor Engineering & Manufacturing North America, Inc. | Parking assist system |
| US12293454B2 (en) * | 2023-02-17 | 2025-05-06 | Varjo Technologies Oy | Multiresolution truncated neural radiance fields |
| DE102023202139A1 (de) | 2023-03-09 | 2024-09-12 | Continental Autonomous Mobility Germany GmbH | Kamerasystem |
Family Cites Families (50)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3226641B2 (ja) * | 1992-02-04 | 2001-11-05 | 富士写真フイルム株式会社 | パターン学習方法 |
| US5983161A (en) | 1993-08-11 | 1999-11-09 | Lemelson; Jerome H. | GPS vehicle collision avoidance warning and control system and method |
| US8041483B2 (en) | 1994-05-23 | 2011-10-18 | Automotive Technologies International, Inc. | Exterior airbag deployment techniques |
| US7629899B2 (en) | 1997-10-22 | 2009-12-08 | Intelligent Technologies International, Inc. | Vehicular communication arrangement and method |
| JPH0951430A (ja) * | 1995-08-09 | 1997-02-18 | Fuji Photo Film Co Ltd | 画像データ補間演算方法および装置 |
| US6891960B2 (en) * | 2000-08-12 | 2005-05-10 | Facet Technology | System for road sign sheeting classification |
| GB0200985D0 (en) | 2002-01-17 | 2002-03-06 | Daniels Seymour C | Vehicle's third eye |
| US9007197B2 (en) | 2002-05-20 | 2015-04-14 | Intelligent Technologies International, Inc. | Vehicular anticipatory sensor system |
| US20050129306A1 (en) * | 2003-12-12 | 2005-06-16 | Xianglin Wang | Method and apparatus for image deinterlacing using neural networks |
| US8234234B2 (en) | 2007-03-20 | 2012-07-31 | International Business Machines Corporation | Utilizing ray tracing for enhanced artificial intelligence path-finding |
| US8605947B2 (en) * | 2008-04-24 | 2013-12-10 | GM Global Technology Operations LLC | Method for detecting a clear path of travel for a vehicle enhanced by object detection |
| TW201005673A (en) | 2008-07-18 | 2010-02-01 | Ind Tech Res Inst | Example-based two-dimensional to three-dimensional image conversion method, computer readable medium therefor, and system |
| US20140063054A1 (en) * | 2010-02-28 | 2014-03-06 | Osterhout Group, Inc. | Ar glasses specific control interface based on a connected external device type |
| US9916538B2 (en) * | 2012-09-15 | 2018-03-13 | Z Advanced Computing, Inc. | Method and system for feature detection |
| US11074495B2 (en) * | 2013-02-28 | 2021-07-27 | Z Advanced Computing, Inc. (Zac) | System and method for extremely efficient image and pattern recognition and artificial intelligence platform |
| US8873813B2 (en) * | 2012-09-17 | 2014-10-28 | Z Advanced Computing, Inc. | Application of Z-webs and Z-factors to analytics, search engine, learning, recognition, natural language, and other utilities |
| US9672609B1 (en) * | 2011-11-11 | 2017-06-06 | Edge 3 Technologies, Inc. | Method and apparatus for improved depth-map estimation |
| WO2013184215A2 (en) * | 2012-03-22 | 2013-12-12 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer readable media for simulating sound propagation in large scenes using equivalent sources |
| US9285477B1 (en) * | 2013-01-25 | 2016-03-15 | Apple Inc. | 3D depth point cloud from timing flight of 2D scanned light beam pulses |
| US9110163B2 (en) * | 2013-06-14 | 2015-08-18 | Microsoft Technology Licensing, Llc | Lidar-based classification of object movement |
| TWI539406B (zh) * | 2013-07-12 | 2016-06-21 | 國立中央大學 | 影像插補方法以及應用影像插補方法之影像插補裝置與影像裝置 |
| US9269012B2 (en) * | 2013-08-22 | 2016-02-23 | Amazon Technologies, Inc. | Multi-tracker object tracking |
| DE102013217915A1 (de) * | 2013-09-09 | 2015-03-12 | Conti Temic Microelectronic Gmbh | Verfahren und Vorrichtung zur Objekterkennung aus tiefenaufgelösten Bilddaten |
| US10055013B2 (en) * | 2013-09-17 | 2018-08-21 | Amazon Technologies, Inc. | Dynamic object tracking for user interfaces |
| US9224060B1 (en) * | 2013-09-17 | 2015-12-29 | Amazon Technologies, Inc. | Object tracking using depth information |
| US9756319B2 (en) * | 2014-02-27 | 2017-09-05 | Harman International Industries, Incorporated | Virtual see-through instrument cluster with live video |
| US10203762B2 (en) * | 2014-03-11 | 2019-02-12 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
| US9626566B2 (en) * | 2014-03-19 | 2017-04-18 | Neurala, Inc. | Methods and apparatus for autonomous robotic control |
| JP6282193B2 (ja) * | 2014-07-28 | 2018-02-21 | クラリオン株式会社 | 物体検出装置 |
| US9568611B2 (en) | 2014-08-20 | 2017-02-14 | Nec Corporation | Detecting objects obstructing a driver's view of a road |
| RU2666631C2 (ru) * | 2014-09-12 | 2018-09-11 | МАЙКРОСОФТ ТЕКНОЛОДЖИ ЛАЙСЕНСИНГ, ЭлЭлСи | Обучение dnn-студента посредством распределения вывода |
| CN104266654A (zh) * | 2014-09-26 | 2015-01-07 | 广东好帮手电子科技股份有限公司 | 一种车载实景导航系统及方法 |
| US10726560B2 (en) * | 2014-10-31 | 2020-07-28 | Fyusion, Inc. | Real-time mobile device capture and generation of art-styled AR/VR content |
| US9493157B2 (en) * | 2015-01-29 | 2016-11-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Autonomous vehicle operation in obstructed occupant view and sensor detection environments |
| CA3067160A1 (en) * | 2015-02-10 | 2016-08-18 | Mobileye Vision Technologies Ltd. | Sparse map for autonomous vehicle navigation |
| US9589210B1 (en) * | 2015-08-26 | 2017-03-07 | Digitalglobe, Inc. | Broad area geospatial object detection using autogenerated deep learning models |
| US20170076304A1 (en) * | 2015-09-11 | 2017-03-16 | Powerscout, Inc. | Spatial modeling and other data analytics enabled energy platform |
| WO2017079702A1 (en) * | 2015-11-05 | 2017-05-11 | Google Inc. | Edge-aware bilateral image processing |
| US10126135B2 (en) * | 2015-12-15 | 2018-11-13 | Nissan North America, Inc. | Traffic signal timing estimation using an artificial neural network model |
| US10216998B2 (en) * | 2016-01-06 | 2019-02-26 | Orcam Technologies Ltd. | Methods and systems for visual pairing of external devices with a wearable apparatus |
| US10235994B2 (en) * | 2016-03-04 | 2019-03-19 | Microsoft Technology Licensing, Llc | Modular deep learning model |
| US9802599B2 (en) * | 2016-03-08 | 2017-10-31 | Ford Global Technologies, Llc | Vehicle lane placement |
| US9760690B1 (en) * | 2016-03-10 | 2017-09-12 | Siemens Healthcare Gmbh | Content-based medical image rendering based on machine learning |
| US10618673B2 (en) * | 2016-04-15 | 2020-04-14 | Massachusetts Institute Of Technology | Systems and methods for dynamic planning and operation of autonomous systems using image observation and information theory |
| KR102805829B1 (ko) * | 2016-04-15 | 2025-05-12 | 삼성전자주식회사 | 인터페이스 뉴럴 네트워크 |
| CN105844653B (zh) * | 2016-04-18 | 2019-07-30 | 深圳先进技术研究院 | 一种多层卷积神经网络优化系统及方法 |
| US20170300763A1 (en) * | 2016-04-19 | 2017-10-19 | GM Global Technology Operations LLC | Road feature detection using a vehicle camera system |
| US10402670B2 (en) * | 2016-04-19 | 2019-09-03 | GM Global Technology Operations LLC | Parallel scene primitive detection using a surround camera system |
| US10466714B2 (en) * | 2016-09-01 | 2019-11-05 | Ford Global Technologies, Llc | Depth map estimation with stereo images |
| US10401866B2 (en) * | 2017-05-03 | 2019-09-03 | GM Global Technology Operations LLC | Methods and systems for lidar point cloud anomalies |
-
2016
- 2016-09-01 US US15/254,212 patent/US10466714B2/en active Active
-
2017
- 2017-08-28 RU RU2017130319A patent/RU2017130319A/ru not_active Application Discontinuation
- 2017-08-29 GB GB1713798.5A patent/GB2555214A/en not_active Withdrawn
- 2017-08-31 MX MX2017011200A patent/MX2017011200A/es unknown
- 2017-08-31 DE DE102017120112.2A patent/DE102017120112A1/de active Pending
- 2017-09-01 CN CN201710776968.7A patent/CN107798699B/zh active Active
Also Published As
| Publication number | Publication date |
|---|---|
| RU2017130319A (ru) | 2019-02-28 |
| CN107798699A (zh) | 2018-03-13 |
| GB2555214A (en) | 2018-04-25 |
| US10466714B2 (en) | 2019-11-05 |
| US20180059679A1 (en) | 2018-03-01 |
| GB201713798D0 (en) | 2017-10-11 |
| CN107798699B (zh) | 2023-07-18 |
| DE102017120112A1 (de) | 2018-03-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MX2017011200A (es) | Calculo estimativo de mapa de profundidad con imagenes estereo. | |
| EP3032458A3 (en) | Driver assistance for a vehicle | |
| MX382250B (es) | Aparato de operacion de vehiculo autonomo y metodo de operacion de vehiculo autonomo. | |
| MX384507B (es) | Metodo de control y dispositivo de control de vehiculo de conduccion automatica. | |
| MX349843B (es) | Anticipacion con respecto a semaforos. | |
| MX2017003499A (es) | Posicion de limite de carriles de vehiculos. | |
| WO2016055589A3 (fr) | Détermination d'une vitesse optimale pour un véhicule automobile approchant d'un feu tricolore | |
| WO2015185971A8 (en) | Control device for vehicle | |
| MX2018002979A (es) | Sistema y metodo para proporcionar asistencia de manejo para rebasar con seguridad un vehiculo. | |
| PE20151254A1 (es) | Control del uso de un solo espacio de estacionamiento multivehicular utilizando varias camaras | |
| EP2789504A3 (en) | Warning device and method for vehicles | |
| EP2784618A3 (en) | Method for shooting a film performance using an unmanned aerial vehicle | |
| EP3900995A3 (en) | Testing predictions for autonomous vehicles | |
| CA3291753A1 (en) | Vehicle traction map for autonomous vehicles | |
| RU2014151123A (ru) | Способ управления автономным транспортным средством | |
| MX373538B (es) | Método de asistencia al desplazamiento y dispositivo de control de conducción. | |
| CN105807763B8 (zh) | 车辆系统 | |
| MX364029B (es) | Dispositivo de presentacion de informacion de vehiculo. | |
| EP2876025A3 (en) | Method of generating optimum parking path of unmanned driving vehicle, and unmanned driving vehicle adopting the method | |
| MX360751B (es) | Dispositivo de control a prueba de fallas para vehículo híbrido. | |
| WO2015173300A9 (en) | Method and system for determining on which floor of a parking area a vehicle is positioned | |
| EP4276567A3 (en) | Intervention in operation of a vehicle having autonomous driving capabilities | |
| WO2013020550A3 (de) | Verfahren zur fahrspurerkennung mittels einer kamera | |
| MY195149A (en) | Obstacle Determination Method, Parking Support Method, Dispatch Support Method, and Obstacle Determination Device | |
| EP2664484A3 (en) | Traveling range calculation apparatus, method and program |