[go: up one dir, main page]

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

On the impact of dimension-eight SMEFT operators on Higgs measurements

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 19 February 2019
  • Volume 2019, article number 123, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
On the impact of dimension-eight SMEFT operators on Higgs measurements
Download PDF
  • Chris Hays1,
  • Adam Martin2,
  • Verónica Sanz3 &
  • …
  • Jack Setford3 
  • 1956 Accesses

  • 87 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Using the production of a Higgs boson in association with a W boson as a test case, we assess the impact of dimension-8 operators within the context of the Standard Model Effective Field Theory. Dimension-8-SM-interference and dimension-6-squared terms appear at the same order in an expansion in 1/Λ, hence dimension-8 effects can be treated as a systematic uncertainty on the new physics inferred from analyses using dimension-6 operators alone. To study the phenomenological consequences of dimension-8 operators, one must first determine the complete set of operators that can contribute to a given process. We accomplish this through a combination of Hilbert series methods, which yield the number of invariants and their field content, and a step-by-step recipe to convert the Hilbert series output into a phenomenologically useful format. The recipe we provide is general and applies to any other process within the dimension ≤ 8 Standard Model Effective Theory. We quantify the effects of dimension-8 by turning on one dimension-6 operator at a time and setting all dimension-8 operator coefficients to the same magnitude. Under this procedure and given the current accuracy on σ(pp → h W+), we find the effect of dimension-8 operators on the inferred new physics scale to be small, \( \mathcal{O} \)(few %), with some variation depending on the relative signs of the dimension-8 coefficients and on which dimension-6 operator is considered. The impact of the dimension-8 terms grows as σ(pp → hW+) is measured more accurately or (more significantly) in high-mass kinematic regions. We provide a FeynRules implementation of our operator set to be used for further more detailed analyses.

Article PDF

Download to read the full article text

Similar content being viewed by others

Impact of dimension-8 SMEFT operators on diboson productions

Article Open access 23 June 2023

RGEs and Positivity Bounds of the SMEFT Dimension-8 Operators

Chapter © 2024

Dimension-8 SMEFT analysis of minimal scalar field extensions of the Standard Model

Article Open access 09 October 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Operator Theory
  • Particle Physics
  • Phenomenology
  • Quantum Physics
  • Theoretical Particle Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    Article  ADS  Google Scholar 

  2. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  3. L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev. D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].

    ADS  Google Scholar 

  4. B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485,…: Higher dimension operators in the SM EFT, JHEP 08 (2017) 016 [arXiv:1512.03433] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  6. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. R.S. Gupta, A. Pomarol and F. Riva, BSM Primary Effects, Phys. Rev. D 91 (2015) 035001 [arXiv:1405.0181] [INSPIRE].

    ADS  Google Scholar 

  8. E. Masso, An Effective Guide to Beyond the Standard Model Physics, JHEP 10 (2014) 128 [arXiv:1406.6376] [INSPIRE].

    Article  ADS  Google Scholar 

  9. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  10. A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J. C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun. 232 (2018) 71 [arXiv:1712.05298] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].

  13. A. Pomarol and F. Riva, Towards the Ultimate SM Fit to Close in on Higgs Physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Ellis, V. Sanz and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Ellis, V. Sanz and T. You, The Effective Standard Model after LHC Run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].

    Article  Google Scholar 

  16. C.W. Murphy, Statistical approach to Higgs boson couplings in the standard model effective field theory, Phys. Rev. D 97 (2018) 015007 [arXiv:1710.02008] [INSPIRE].

    ADS  Google Scholar 

  17. A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett. 116 (2016) 011801 [arXiv:1508.00581] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Falkowski and K. Mimouni, Model independent constraints on four-lepton operators, JHEP 02 (2016) 086 [arXiv:1511.07434] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP 02 (2017) 115 [arXiv:1609.06312] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Falkowski, G. Grilli di Cortona and Z. Tabrizi, Future DUNE constraints on EFT, JHEP 04 (2018) 101 [arXiv:1802.08296] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  25. T. Corbett, O.J.P. É boli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining Triple Gauge Boson Couplings from Higgs Data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].

  26. C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Buckley et al., Results from TopFitter, PoS(CKM2016)127 (2016) [arXiv:1612.02294] [INSPIRE].

  28. A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].

    ADS  Google Scholar 

  29. T. Corbett, O.J.P. Eboli, D. Goncalves, J. Gonzalez-Fraile, T. Plehn and M. Rauch, The Higgs Legacy of the LHC Run I, JHEP 08 (2015) 156 [arXiv:1505.05516] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].

  31. B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. J. de Blas et al., The Global Electroweak and Higgs Fits in the LHC era, PoS(EPS-HEP2017)467 (2017) [arXiv:1710.05402] [INSPIRE].

  33. J. de Blas et al., Electroweak precision constraints at present and future colliders, PoS(ICHEP2016)690 (2017) [arXiv:1611.05354] [INSPIRE].

  34. L. Berthier and M. Trott, Towards consistent Electroweak Precision Data constraints in the SMEFT, JHEP 05 (2015) 024 [arXiv:1502.02570] [INSPIRE].

    Article  ADS  Google Scholar 

  35. L. Berthier and M. Trott, Consistent constraints on the Standard Model Effective Field Theory, JHEP 02 (2016) 069 [arXiv:1508.05060] [INSPIRE].

    Article  ADS  Google Scholar 

  36. L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ± data in a global fit of SMEFT parameters to lift flat directions, JHEP 09 (2016) 157 [arXiv:1606.06693] [INSPIRE].

    Article  ADS  Google Scholar 

  37. I. Brivio and M. Trott, Scheming in the SMEFT… and a reparameterization invariance!, JHEP 07 (2017) 148 [arXiv:1701.06424] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE].

    Article  ADS  Google Scholar 

  39. S. Banerjee, C. Englert, R.S. Gupta and M. Spannowsky, Probing Electroweak Precision Physics via boosted Higgs-strahlung at the LHC, Phys. Rev. D 98 (2018) 095012 [arXiv:1807.01796] [INSPIRE].

    ADS  Google Scholar 

  40. C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP 02 (2014) 101 [arXiv:1308.6323] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of Strong Coupling for LHC Searches, JHEP 11 (2016) 141 [arXiv:1603.03064] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. Liu and L.-T. Wang, Precision Measurement with Diboson at the LHC, arXiv:1804.08688 [INSPIRE].

  43. A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].

    ADS  Google Scholar 

  44. L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologist’s toolbox, Phys. Rev. D 91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. L. Lehman and A. Martin, Low-derivative operators of the Standard Model effective field theory via Hilbert series methods, JHEP 02 (2016) 081 [arXiv:1510.00372] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. P. Pouliot, Molien function for duality, JHEP 01 (1999) 021 [hep-th/9812015] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. F.A. Dolan, Counting BPS operators in N = 4 SYM, Nucl. Phys. B 790 (2008) 432 [arXiv:0704.1038] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: A Geometric Apercu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Hanany, N. Mekareeya and G. Torri, The Hilbert Series of Adjoint SQCD, Nucl. Phys. B 825 (2010) 52 [arXiv:0812.2315] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Y. Chen and N. Mekareeya, The Hilbert series of U/SU SQCD and Toeplitz Determinants, Nucl. Phys. B 850 (2011) 553 [arXiv:1104.2045] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in Quiver Gauge Theories, JHEP 11 (2007) 092 [arXiv:0705.2771] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. D. Forcella, A. Hanany and A. Zaffaroni, Baryonic Generating Functions, JHEP 12 (2007) 022 [hep-th/0701236] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. D. Rodríguez-Gómez and G. Zafrir, On the 5d instanton index as a Hilbert series, Nucl. Phys. B 878 (2014) 1 [arXiv:1305.5684] [INSPIRE].

  58. A. Dey, A. Hanany, N. Mekareeya, D. Rodríguez-Gómez and R.-K. Seong, Hilbert Series for Moduli Spaces of Instantons on ℂ2 /ℤn, JHEP 01 (2014) 182 [arXiv:1309.0812] [INSPIRE].

  59. A. Hanany and R.-K. Seong, Hilbert series and moduli spaces of k U(N) vortices, JHEP 02 (2015) 012 [arXiv:1403.4950] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. L. Begin, C. Cummins and P. Mathieu, Generating functions for tensor products, hep-th/9811113 [INSPIRE].

  61. A. Hanany and R. Kalveks, Highest Weight Generating Functions for Hilbert Series, JHEP 10 (2014) 152 [arXiv:1408.4690] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices and their partition functions, JHEP 10 (2017) 199 [arXiv:1706.08520] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. E.E. Jenkins and A.V. Manohar, Algebraic Structure of Lepton and Quark Flavor Invariants and CP-violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Hanany, E.E. Jenkins, A.V. Manohar and G. Torri, Hilbert Series for Flavor Invariants of the Standard Model, JHEP 03 (2011) 096 [arXiv:1010.3161] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. A. Merle and R. Zwicky, Explicit and spontaneous breaking of SU(3) into its finite subgroups, JHEP 02 (2012) 128 [arXiv:1110.4891] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. A. Kobach and S. Pal, Hilbert Series and Operator Basis for NRQED and NRQCD/HQET, Phys. Lett. B 772 (2017) 225 [arXiv:1704.00008] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. A. Kobach and S. Pal, Conformal Structure of the Heavy Particle EFT Operator Basis, Phys. Lett. B 783 (2018) 311 [arXiv:1804.01534] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  69. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  70. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  71. G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like Boson via h → Vℱ decays, Phys. Lett. B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE].

    Article  ADS  Google Scholar 

  72. G. Isidori and M. Trott, Higgs form factors in Associated Production, JHEP 02 (2014) 082 [arXiv:1307.4051] [INSPIRE].

    Article  ADS  Google Scholar 

  73. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    Article  ADS  Google Scholar 

  74. I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070 [arXiv:1709.06492] [INSPIRE].

    Article  ADS  Google Scholar 

  75. R.M. Fonseca, Calculating the renormalisation group equations of a SUSY model with Susyno, Comput. Phys. Commun. 183 (2012) 2298 [arXiv:1106.5016] [INSPIRE].

    Article  ADS  Google Scholar 

  76. H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. E. Massa, Spinor equivalents of irreducible tensors under the special Lorentz group, Nuovo Cim. B 9 (1972) 41 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. B. Gripaios and D. Sutherland, DEFT: A program for operators in EFT, JHEP 01 (2019) 128 [arXiv:1807.07546] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  79. ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

  80. CMS collaboration, Evidence for the Higgs boson decay to a bottom quark-antiquark pair, Phys. Lett. B 780 (2018) 501 [arXiv:1709.07497] [INSPIRE].

  81. CMS collaboration, Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=13 \) TeV, submitted to Phys. Lett. (2018) [arXiv:1806.05246] [INSPIRE].

  82. CMS collaboration, Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2018) 185 [arXiv:1804.02716] [INSPIRE].

  83. ATLAS collaboration, Evidence for the \( H\to b\overline{b} \) decay with the ATLAS detector, JHEP 12 (2017) 024 [arXiv:1708.03299] [INSPIRE].

  84. ATLAS collaboration, Measurements of the Higgs boson production cross section via Vector Boson Fusion and associated W H production in the WW * → ℓνℓν decay mode with the ATLAS detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-112.

  85. A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs Effective Lagrangian via FEYNRULES, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].

    Article  ADS  Google Scholar 

  86. C. Degrande, B. Fuks, K. Mawatari, K. Mimasu and V. Sanz, Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD, Eur. Phys. J. C 77 (2017) 262 [arXiv:1609.04833] [INSPIRE].

    Article  ADS  Google Scholar 

  87. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  88. B. Bellazzini, L. Martucci and R. Torre, Symmetries, Sum Rules and Constraints on Effective Field Theories, JHEP 09 (2014) 100 [arXiv:1405.2960] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  90. J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].

    Article  ADS  Google Scholar 

  91. ATLAS collaboration, Prospects for the study of the Higgs boson in the VH(bb) channel at HL-LHC, ATL-PHYS-PUB-2014-011.

  92. ATLAS collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016.

  93. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

  94. CMS collaboration, Limits on anomalous triple and quartic gauge couplings, (2018) [https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC].

  95. ATLAS collaboration, Study of WWγ and WZγ production in pp collisions at \( \sqrt{s}=8 \) TeV and search for anomalous quartic gauge couplings with the ATLAS experiment, Eur. Phys. J. C 77 (2017) 646 [arXiv:1707.05597] [INSPIRE].

  96. M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading, U.S.A. (1995).

    Google Scholar 

  97. B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, University of Oxford, Oxford, OX1 3RH, U.K.

    Chris Hays

  2. Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, U.S.A.

    Adam Martin

  3. Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, U.K.

    Verónica Sanz & Jack Setford

Authors
  1. Chris Hays
    View author publications

    Search author on:PubMed Google Scholar

  2. Adam Martin
    View author publications

    Search author on:PubMed Google Scholar

  3. Verónica Sanz
    View author publications

    Search author on:PubMed Google Scholar

  4. Jack Setford
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Verónica Sanz.

Additional information

ArXiv ePrint: 1808.00442

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TGZ 16 kb)

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hays, C., Martin, A., Sanz, V. et al. On the impact of dimension-eight SMEFT operators on Higgs measurements. J. High Energ. Phys. 2019, 123 (2019). https://doi.org/10.1007/JHEP02(2019)123

Download citation

  • Received: 20 September 2018

  • Revised: 25 January 2019

  • Accepted: 02 February 2019

  • Published: 19 February 2019

  • DOI: https://doi.org/10.1007/JHEP02(2019)123

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phenomenological Models
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature