[go: up one dir, main page]

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Hilbert series and moduli spaces of k U(N ) vortices

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 02 February 2015
  • Volume 2015, article number 12, (2015)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Hilbert series and moduli spaces of k U(N ) vortices
Download PDF
  • Amihay Hanany1 &
  • Rak-Kyeong Seong2 
  • 606 Accesses

  • 11 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study the moduli spaces of k U(N ) vortices which are realized by the Higgs branch of a U(k) supersymmetric gauge theory. The theory has 4 supercharges and lives on k D1-branes in a N D3- and NS5-brane background. We realize the vortex moduli space as a \( {\mathbb{C}}^{*} \) projection of the vortex master space. The Hilbert series is calculated in order to characterize the algebraic structure of the vortex master space and to identify the precise \( {\mathbb{C}}^{*} \) projection. As a result, we are able to fully classify the moduli spaces up to 3 vortices.

Article PDF

Download to read the full article text

Similar content being viewed by others

Hilbert series for theories with Aharony duals

Article Open access 20 November 2015

Factorisation of 3d \( \mathcal{N} \) = 4 twisted indices and the geometry of vortex moduli space

Article Open access 04 August 2020

Blocks and vortices in the 3d ADHM quiver gauge theory

Article Open access 24 March 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algebraic Geometry
  • Algebraic Topology
  • Category Theory, Homological Algebra
  • Field Theory and Polynomials
  • K-Theory
  • Mathematical Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A.A. Abrikosov, The magnetic properties of superconducting alloys, J. Phys. Chem. Solid 2 (1957) 199.

    Article  ADS  Google Scholar 

  2. H.B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Auzzi, M. Shifman and A. Yung, Composite non-Abelian flux tubes in N = 2 SQCD, Phys. Rev. D 73 (2006) 105012 [Erratum ibid. D 76 (2007) 109901] [hep-th/0511150] [INSPIRE].

  5. K. Hashimoto and D. Tong, Reconnection of non-Abelian cosmic strings, JCAP 09 (2005) 004 [hep-th/0506022] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Eto et al., Non-Abelian Vortices of Higher Winding Numbers, Phys. Rev. D 74 (2006) 065021 [hep-th/0607070] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. M. Eto et al., Group Theory of Non-Abelian Vortices, JHEP 11 (2010) 042 [arXiv:1009.4794] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Hanany and K. Hashimoto, Reconnection of colliding cosmic strings, JHEP 06 (2005) 021 [hep-th/0501031] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Eto et al., On the moduli space of semilocal strings and lumps, Phys. Rev. D 76 (2007) 105002 [arXiv:0704.2218] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, NonAbelian superconductors: Vortices and confinement in N = 2 SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett. 96 (2006) 161601 [hep-th/0511088] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: The moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. A. Hanany and A. Zaffaroni, The master space of supersymmetric gauge theories, Adv. High Energy Phys. 2010 (2010) 427891.

    Article  MathSciNet  Google Scholar 

  15. D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The Master Space of N = 1 Gauge Theories, JHEP 08 (2008) 012 [arXiv:0801.1585] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Zaffaroni, The master space of N = 1 quiver gauge theories: Counting BPS operators, prepared for 8th Workshop on Continuous Advances in QCD (CAQCD-08), Minneapolis, Minnesota U.S.A., 15-18 May 2008.

  17. D. Forcella, Master Space and Hilbert Series for N = 1 Field Theories, arXiv:0902.2109 [INSPIRE].

  18. A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in Quiver Gauge Theories, JHEP 11 (2007) 092 [arXiv:0705.2771] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Dey, A. Hanany, N. Mekareeya, D. Rodríguez-Gómez, and R.-K. Seong, Hilbert Series for Moduli Spaces of Instantons on \( {\mathbb{C}}^2/{\mathbb{Z}}_n \), JHEP 01 (2014) 182 [arXiv:1309.0812] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y. Manin, Construction of Instantons, Phys. Lett. A 65 (1978) 185 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Hanany and C. Romelsberger, Counting BPS operators in the chiral ring of N = 2 supersymmetric gauge theories or N = 2 braine surgery, Adv. Theor. Math. Phys. 11 (2007) 1091 [hep-th/0611346] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Hanany, N. Mekareeya and G. Torri, The Hilbert Series of Adjoint SQCD, Nucl. Phys. B 825 (2010) 52 [arXiv:0812.2315] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Hanany and R.-K. Seong, Brane Tilings and Reflexive Polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. A. Hanany and R.-K. Seong, Brane Tilings and Specular Duality, JHEP 08 (2012) 107 [arXiv:1206.2386] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Cremonesi, A. Hanany and R.-K. Seong, Double Handled Brane Tilings, JHEP 10 (2013) 001 [arXiv:1305.3607] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. E. Getzler and M.M. Kapranov, Modular operads, dg-ga/9408003.

  31. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. C.-j. Kim, K.-M. Lee and S.-H. Yi, Tales of D0 on D6-branes: Matrix mechanics of identical particles, Phys. Lett. B 543 (2002) 107 [hep-th/0204109] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. J.-P. Magnot, Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation, Int. J. Geom. Meth. Mod. Phys. 10 (2013) 1350043 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  34. A. Hanany and R. Kalveks, in preparation.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, U.K.

    Amihay Hanany

  2. School of Physics, Korea Institute for Advanced Study, 85 Hoegi-ro, Seoul, 130-722, South Korea

    Rak-Kyeong Seong

Authors
  1. Amihay Hanany
    View author publications

    Search author on:PubMed Google Scholar

  2. Rak-Kyeong Seong
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Rak-Kyeong Seong.

Additional information

ArXiv ePrint: 1403.4950

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanany, A., Seong, RK. Hilbert series and moduli spaces of k U(N ) vortices. J. High Energ. Phys. 2015, 12 (2015). https://doi.org/10.1007/JHEP02(2015)012

Download citation

  • Received: 27 May 2014

  • Revised: 10 October 2014

  • Accepted: 11 January 2015

  • Published: 02 February 2015

  • DOI: https://doi.org/10.1007/JHEP02(2015)012

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetric gauge theory
  • D-branes
  • Differential and Algebraic Geometry
  • Superstring Vacua
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature