Mathematical Physics
[Submitted on 7 Oct 2025]
Title:Analog and Symbolic Computation through the Koopman Framework
View PDF HTML (experimental)Abstract:We develop a Koopman operator framework for studying the {computational properties} of dynamical systems. Specifically, we show that the resolvent of the Koopman operator provides a natural abstraction of halting, yielding a ``Koopman halting problem that is recursively enumerable in general. For symbolic systems, such as those defined on Cantor space, this operator formulation captures the reachability between clopen sets, while for equicontinuous systems we prove that the Koopman halting problem is decidable. Our framework demonstrates that absorbing (halting) states {in finite automata} correspond to Koopman eigenfunctions with eigenvalue one, while cycles in the transition graph impose algebraic constraints on spectral properties. These results provide a unifying perspective on computation in symbolic and analog systems, showing how computational universality is reflected in operator spectra, invariant subspaces, and algebraic structures. Beyond symbolic dynamics, this operator-theoretic lens opens pathways to analyze {computational power of} a broader class of dynamical systems, including polynomial and analog models, and suggests that computational hardness may admit dynamical signatures in terms of Koopman spectral structure.
Submission history
From: Francesco Caravelli [view email][v1] Tue, 7 Oct 2025 12:32:29 UTC (607 KB)
Current browse context:
math-ph
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.