[go: up one dir, main page]

new

Get trending papers in your email inbox!

Subscribe

Trending Papers

byAK and the research community

Trending Papers
Submitted by
yawarnihal

ShapeR: Robust Conditional 3D Shape Generation from Casual Captures

ShapeR generates high-fidelity 3D shapes from casual image sequences using visual-inertial SLAM, 3D detection, and vision-language models with rectified flow transformer conditioning.

facebook AI at Meta · Jan 16, 2026

Conditional Memory via Scalable Lookup: A New Axis of Sparsity for Large Language Models

Conditional memory via Engram module enhances Transformer models by enabling efficient knowledge lookup and improving reasoning capabilities through optimized sparsity allocation.

  • 14 authors
· Jan 12, 2026

EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning

EverMemOS presents a self-organizing memory system for large language models that processes dialogue streams into structured memory cells and scenes to enhance long-term interaction capabilities.

  • 11 authors
· Jan 5, 2026

dots.ocr: Multilingual Document Layout Parsing in a Single Vision-Language Model

A unified Vision-Language Model, dots.ocr, achieves state-of-the-art performance on document layout parsing by jointly learning layout detection, text recognition, and relational understanding, validated on OmniDocBench and XDocParse benchmarks.

  • 5 authors
· Dec 2, 2025
Submitted by
Dongchao

HeartMuLa: A Family of Open Sourced Music Foundation Models

A suite of open-source music foundation models is introduced, featuring components for audio-text alignment, lyric recognition, music coding, and large language model-based song generation with controllable attributes and scalable parameterization.

  • 28 authors
· Jan 15, 2026
Submitted by
taesiri

MiroThinker: Pushing the Performance Boundaries of Open-Source Research Agents via Model, Context, and Interactive Scaling

We present MiroThinker v1.0, an open-source research agent designed to advance tool-augmented reasoning and information-seeking capabilities. Unlike previous agents that only scale up model size or context length, MiroThinker explores interaction scaling at the model level, systematically training the model to handle deeper and more frequent agent-environment interactions as a third dimension of performance improvement. Unlike LLM test-time scaling, which operates in isolation and risks degradation with longer reasoning chains, interactive scaling leverages environment feedback and external information acquisition to correct errors and refine trajectories. Through reinforcement learning, the model achieves efficient interaction scaling: with a 256K context window, it can perform up to 600 tool calls per task, enabling sustained multi-turn reasoning and complex real-world research workflows. Across four representative benchmarks-GAIA, HLE, BrowseComp, and BrowseComp-ZH-the 72B variant achieves up to 81.9%, 37.7%, 47.1%, and 55.6% accuracy respectively, surpassing previous open-source agents and approaching commercial counterparts such as GPT-5-high. Our analysis reveals that MiroThinker benefits from interactive scaling consistently: research performance improves predictably as the model engages in deeper and more frequent agent-environment interactions, demonstrating that interaction depth exhibits scaling behaviors analogous to model size and context length. These findings establish interaction scaling as a third critical dimension for building next-generation open research agents, complementing model capacity and context windows.

  • 54 authors
· Nov 14, 2025

Continuous Audio Language Models

Audio Language Models (ALM) have emerged as the dominant paradigm for speech and music generation by representing audio as sequences of discrete tokens. Yet, unlike text tokens, which are invertible, audio tokens are extracted from lossy codecs with a limited bitrate. As a consequence, increasing audio quality requires generating more tokens, which imposes a trade-off between fidelity and computational cost. We address this issue by studying Continuous Audio Language Models (CALM). These models instantiate a large Transformer backbone that produces a contextual embedding at every timestep. This sequential information then conditions an MLP that generates the next continuous frame of an audio VAE through consistency modeling. By avoiding lossy compression, CALM achieves higher quality at lower computational cost than their discrete counterpart. Experiments on speech and music demonstrate improved efficiency and fidelity over state-of-the-art discrete audio language models, facilitating lightweight, high-quality audio generation. Samples are available at https://continuous-audio-language-models.github.io

  • 5 authors
· Sep 8, 2025
Submitted by
JiaaqiLiu

SimpleMem: Efficient Lifelong Memory for LLM Agents

To support reliable long-term interaction in complex environments, LLM agents require memory systems that efficiently manage historical experiences. Existing approaches either retain full interaction histories via passive context extension, leading to substantial redundancy, or rely on iterative reasoning to filter noise, incurring high token costs. To address this challenge, we introduce SimpleMem, an efficient memory framework based on semantic lossless compression. We propose a three-stage pipeline designed to maximize information density and token utilization: (1) Semantic Structured Compression, which applies entropy-aware filtering to distill unstructured interactions into compact, multi-view indexed memory units; (2) Recursive Memory Consolidation, an asynchronous process that integrates related units into higher-level abstract representations to reduce redundancy; and (3) Adaptive Query-Aware Retrieval, which dynamically adjusts retrieval scope based on query complexity to construct precise context efficiently. Experiments on benchmark datasets show that our method consistently outperforms baseline approaches in accuracy, retrieval efficiency, and inference cost, achieving an average F1 improvement of 26.4% while reducing inference-time token consumption by up to 30-fold, demonstrating a superior balance between performance and efficiency. Code is available at https://github.com/aiming-lab/SimpleMem.

  • 8 authors
· Jan 5, 2026
Submitted by
andito

SmolDocling: An ultra-compact vision-language model for end-to-end multi-modal document conversion

SmolDocling is a compact vision-language model that performs end-to-end document conversion with robust performance across various document types using 256M parameters and a new markup format.

ibm-granite IBM Granite · Mar 14, 2025
Submitted by
hao-li

Agent READMEs: An Empirical Study of Context Files for Agentic Coding

Agentic coding tools receive goals written in natural language as input, break them down into specific tasks, and write or execute the actual code with minimal human intervention. Central to this process are agent context files ("READMEs for agents") that provide persistent, project-level instructions. In this paper, we conduct the first large-scale empirical study of 2,303 agent context files from 1,925 repositories to characterize their structure, maintenance, and content. We find that these files are not static documentation but complex, difficult-to-read artifacts that evolve like configuration code, maintained through frequent, small additions. Our content analysis of 16 instruction types shows that developers prioritize functional context, such as build and run commands (62.3%), implementation details (69.9%), and architecture (67.7%). We also identify a significant gap: non-functional requirements like security (14.5%) and performance (14.5%) are rarely specified. These findings indicate that while developers use context files to make agents functional, they provide few guardrails to ensure that agent-written code is secure or performant, highlighting the need for improved tooling and practices.

  • 11 authors
· Nov 17, 2025
Submitted by
taesiri

LTX-2: Efficient Joint Audio-Visual Foundation Model

LTX-2 is an open-source audiovisual diffusion model that generates synchronized video and audio content using a dual-stream transformer architecture with cross-modal attention and classifier-free guidance.

  • 29 authors
· Jan 6, 2026
Submitted by
akhaliq

LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models

LlamaFactory is a unified framework enabling efficient fine-tuning of large language models across various tasks using a web-based user interface.

  • 5 authors
· Mar 20, 2024
Submitted by
rajkumarrawal

Recursive Language Models

We study allowing large language models (LLMs) to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference strategy that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs successfully handle inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of base LLMs and common long-context scaffolds across four diverse long-context tasks, while having comparable (or cheaper) cost per query.

Submitted by
akhaliq

Efficient Memory Management for Large Language Model Serving with PagedAttention

PagedAttention algorithm and vLLM system enhance the throughput of large language models by efficiently managing memory and reducing waste in the key-value cache.

  • 9 authors
· Sep 12, 2023
Submitted by
taesiri

PaddleOCR-VL: Boosting Multilingual Document Parsing via a 0.9B Ultra-Compact Vision-Language Model

PaddleOCR-VL, a vision-language model combining NaViT-style dynamic resolution and ERNIE, achieves state-of-the-art performance in document parsing and element recognition with high efficiency.

PaddlePaddle PaddlePaddle · Oct 16, 2025
Submitted by
taesiri

MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing

MinerU2.5, a 1.2B-parameter document parsing vision-language model, achieves state-of-the-art recognition accuracy with computational efficiency through a coarse-to-fine parsing strategy.

  • 61 authors
· Sep 26, 2025
Submitted by
wanderkid

MinerU: An Open-Source Solution for Precise Document Content Extraction

MinerU is an open-source tool that enhances document content extraction using fine-tuned models and pre/postprocessing rules across diverse document types.

  • 18 authors
· Sep 27, 2024
Submitted by
taesiri

Action100M: A Large-scale Video Action Dataset

Action100M is a large-scale video action dataset constructed from internet instructional videos using automated pipelines with V-JEPA embeddings and GPT-based reasoning for structured annotations.

metaresearch Meta Research · Jan 15, 2026
Submitted by
unilm

VibeVoice Technical Report

VibeVoice synthesizes long-form multi-speaker speech using next-token diffusion and a highly efficient continuous speech tokenizer, achieving superior performance and fidelity.

MicrosoftResearch Microsoft Research · Aug 26, 2025

Scaling Large-Language-Model-based Multi-Agent Collaboration

Multi-agent collaboration networks enhance collective intelligence, outperforming baselines across various topologies and showing emergent abilities earlier than neural scaling laws suggest.

  • 10 authors
· Jun 11, 2024

Multi-Agent Software Development through Cross-Team Collaboration

Cross-Team Collaboration improves software quality by enabling multiple LLM agent teams to propose and communicate decisions.

  • 8 authors
· Jun 13, 2024
Submitted by
taesiri

HunyuanVideo 1.5 Technical Report

HunyuanVideo 1.5 is a lightweight video generation model with state-of-the-art visual quality and motion coherence, using a DiT architecture with SSTA and an efficient video super-resolution network.

  • 81 authors
· Nov 24, 2025
Submitted by
taesiri

AgentScope 1.0: A Developer-Centric Framework for Building Agentic Applications

AgentScope enhances agentic applications by providing flexible tool-based interactions, unified interfaces, and advanced infrastructure based on the ReAct paradigm, supporting efficient and safe development and deployment.

  • 23 authors
· Aug 22, 2025
Submitted by
akhaliq

Very Large-Scale Multi-Agent Simulation in AgentScope

Enhancements to the AgentScope platform improve scalability, efficiency, and ease of use for large-scale multi-agent simulations through distributed mechanisms, flexible environments, and user-friendly tools.

  • 8 authors
· Jul 25, 2024
Submitted by
daixufang

Agent Lightning: Train ANY AI Agents with Reinforcement Learning

Agent Lightning is a flexible RL framework for training LLMs in various agents, using a hierarchical RL algorithm and decoupling execution from training to handle complex interactions.

  • 8 authors
· Aug 5, 2025

Self-Supervised Prompt Optimization

A self-supervised framework optimizes prompts for both closed and open-ended tasks by evaluating LLM outputs without external references, reducing costs and required data.

  • 9 authors
· Feb 7, 2025
Submitted by
akhaliq

Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory

Mem0, a memory-centric architecture with graph-based memory, enhances long-term conversational coherence in LLMs by efficiently extracting, consolidating, and retrieving information, outperforming existing memory systems in terms of accuracy and computational efficiency.

  • 5 authors
· Apr 28, 2025
Submitted by
xiaochonglinghu

Urban Socio-Semantic Segmentation with Vision-Language Reasoning

Urban socio-semantic segmentation is achieved through a vision-language model framework that combines cross-modal recognition and multi-stage reasoning with reinforcement learning optimization.

alibaba-inc alibaba-inc · Jan 15, 2026

InfiAgent: An Infinite-Horizon Framework for General-Purpose Autonomous Agents

InfiAgent is a framework that maintains bounded reasoning context for long-horizon tasks by externalizing persistent state into a file-centric abstraction, enabling stable performance without task-specific fine-tuning.

  • 5 authors
· Jan 6, 2026

TradingAgents: Multi-Agents LLM Financial Trading Framework

A multi-agent framework using large language models for stock trading simulates real-world trading firms, improving performance metrics like cumulative returns and Sharpe ratio.

  • 4 authors
· Dec 28, 2024

Monolith: Real Time Recommendation System With Collisionless Embedding Table

Monolith is a system designed for online training in recommendation scenarios, featuring a collisionless embedding table and high fault-tolerant architecture to enable real-time learning with dynamic and sparse features.

  • 11 authors
· Sep 16, 2022
Submitted by
dyyyyyyyy

FAPO: Flawed-Aware Policy Optimization for Efficient and Reliable Reasoning

Flawed-Aware Policy Optimization (FAPO) enhances reinforcement learning with verifiable rewards by penalizing flawed-positive rollouts, improving reasoning capability and training stability in large language models.

  • 6 authors
· Oct 26, 2025

MediaPipe: A Framework for Building Perception Pipelines

MediaPipe framework facilitates the development of perception applications by providing tools for combining components, prototyping, and measuring performance across platforms.

  • 14 authors
· Jun 14, 2019
Submitted by
zhongwenxu

Single-stream Policy Optimization

Single-stream Policy Optimization (SPO) improves policy-gradient training for Large Language Models by eliminating group-based issues and providing a stable, low-variance learning signal, leading to better performance and efficiency.

tencent Tencent · Sep 16, 2025

IndexTTS: An Industrial-Level Controllable and Efficient Zero-Shot Text-To-Speech System

IndexTTS, an enhanced text-to-speech system combining XTTS and Tortoise models, offers improved naturalness, enhanced voice cloning, and controllable usage through hybrid character-pinyin modeling and optimized vector quantization.

  • 5 authors
· Feb 8, 2025
Submitted by
akhaliq

OpenDevin: An Open Platform for AI Software Developers as Generalist Agents

OpenDevin is a platform for developing AI agents that interact with the world by writing code, using command lines, and browsing the web, with support for multiple agents and evaluation benchmarks.

  • 24 authors
· Jul 23, 2024
Submitted by
taesiri

FrankenMotion: Part-level Human Motion Generation and Composition

A diffusion-based framework generates human motion from text prompts with fine-grained part-level control using a newly constructed dataset with atomic, temporally-aware annotations.

  • 5 authors
· Jan 15, 2026

Zep: A Temporal Knowledge Graph Architecture for Agent Memory

Zep, a memory layer service, outperforms MemGPT in the DMR benchmark and LongMemEval by excelling in dynamic knowledge integration and temporal reasoning, critical for enterprise use cases.

  • 5 authors
· Jan 20, 2025

OmniFlatten: An End-to-end GPT Model for Seamless Voice Conversation

A novel GPT-based model, OmniFlatten, enables real-time natural full-duplex spoken dialogue through a multi-stage post-training technique that integrates speech and text without altering the original model's architecture.

  • 9 authors
· Oct 23, 2024

SkyReels-V2: Infinite-length Film Generative Model

SkyReels-V2 combines multi-modal language models, reinforcement learning, and diffusion forcing to address challenges in video generation, enabling high-quality, long-form synthesis with realistic motion and duration.

  • 25 authors
· Apr 17, 2025
Submitted by
Jeff-Wang

GigaBrain-0: A World Model-Powered Vision-Language-Action Model

GigaBrain-0, a VLA foundation model, uses world model-generated data to enhance cross-task generalization and policy robustness, improving real-world performance on complex manipulation tasks.

open-gigaai GigaAI · Oct 22, 2025
Submitted by
Paper99

Z-Image: An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer

Z-Image, a 6B-parameter Scalable Single-Stream Diffusion Transformer (S3-DiT) model, achieves high-performance image generation with reduced computational cost, offering sub-second inference and compatibility with consumer hardware.

Tongyi-MAI Tongyi-MAI · Nov 27, 2025
Submitted by
Cxxs

Decoupled DMD: CFG Augmentation as the Spear, Distribution Matching as the Shield

The study reveals that in text-to-image generation, CFG Augmentation is the primary driver of few-step distillation in Distribution Matching Distillation (DMD), while the distribution matching term acts as a regularizer.

Tongyi-MAI Tongyi-MAI · Nov 27, 2025
Submitted by
akhaliq

FunAudioLLM: Voice Understanding and Generation Foundation Models for Natural Interaction Between Humans and LLMs

FunAudioLLM enhances voice interactions by integrating SenseVoice for multilingual speech recognition, emotion detection, and audio event detection with CosyVoice for natural speech generation across languages, timbres, and styles.

  • 1 authors
· Jul 4, 2024
Submitted by
Weiyun1025

InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models

InternVL3 is a multimodal pre-trained language model that jointly learns from both multimodal data and text, improving performance and scalability through advanced techniques and setting a new state-of-the-art in multimodal tasks.

  • 47 authors
· Apr 14, 2025

LightRAG: Simple and Fast Retrieval-Augmented Generation

LightRAG improves Retrieval-Augmented Generation by integrating graph structures for enhanced contextual awareness and efficient information retrieval, achieving better accuracy and response times.

  • 5 authors
· Oct 8, 2024
Submitted by
UglyToilet

MemOS: A Memory OS for AI System

MemOS, a memory operating system for Large Language Models, addresses memory management challenges by unifying plaintext, activation-based, and parameter-level memories, enabling efficient storage, retrieval, and continual learning.

  • 39 authors
· Jul 4, 2025
Submitted by
karrykkk

Think-Then-Generate: Reasoning-Aware Text-to-Image Diffusion with LLM Encoders

Text-to-image diffusion models enhanced with language model reasoning capabilities achieve improved factual consistency and semantic alignment through a think-then-generate paradigm with dual-gradient reinforcement optimization.

SJTU-DENG-Lab DENG Lab @ SJTU · Jan 15, 2026
Submitted by
amael-apple

Sharp Monocular View Synthesis in Less Than a Second

SHARP synthesizes photorealistic views from a single image using a 3D Gaussian representation, achieving state-of-the-art results with rapid processing.

apple Apple · Dec 11, 2025
Submitted by
zbhpku

DataFlow: An LLM-Driven Framework for Unified Data Preparation and Workflow Automation in the Era of Data-Centric AI

DataFlow is an LLM-driven data preparation framework that enhances data quality and reproducibility for various tasks, improving LLM performance with automatically generated pipelines.

PekingUniversity Peking University · Dec 18, 2025