First, install Flashlight (using the 0.3 branch is required) with the ASR application. This repository includes recipes to reproduce the following research papers as well as pre-trained models. All results reproduction must use Flashlight <= 0.3.2 for exact reproducibility. At least one of LZMA, BZip2, or Z is required for LM compression with KenLM. It is highly recommended to build KenLM with position-independent code (-fPIC) enabled, to enable python compatibility. After installing, run export KENLM_ROOT_DIR=... so that wav2letter++ can find it. This is needed because KenLM doesn't support a make install step.wav2letter++ expects audio and transcription data to be prepared in a specific format so that they can be read from the pipelines. Each dataset (test/valid/train) needs to be in a separate file with one sample per line. A sample is specified using 4 columns separated by space (or tabs).
Features
- Data preparation
- Write architecture files
- Train a model
- Distributed training
- Beam search decoder
- Build python bindings