First, install Flashlight (using the 0.3 branch is required) with the ASR application. This repository includes recipes to reproduce the following research papers as well as pre-trained models. All results reproduction must use Flashlight <= 0.3.2 for exact reproducibility. At least one of LZMA, BZip2, or Z is required for LM compression with KenLM. It is highly recommended to build KenLM with position-independent code (-fPIC) enabled, to enable python compatibility. After installing, run export KENLM_ROOT_DIR=... so that wav2letter++ can find it. This is needed because KenLM doesn't support a make install step.wav2letter++ expects audio and transcription data to be prepared in a specific format so that they can be read from the pipelines. Each dataset (test/valid/train) needs to be in a separate file with one sample per line. A sample is specified using 4 columns separated by space (or tabs).

Features

  • Data preparation
  • Write architecture files
  • Train a model
  • Distributed training
  • Beam search decoder
  • Build python bindings

Project Samples

Project Activity

See All Activity >

License

BSD License

Follow wav2letter++

wav2letter++ Web Site

You Might Also Like
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

The database for AI-powered applications.

MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of wav2letter++!

Additional Project Details

Programming Language

C++

Related Categories

C++ Machine Learning Software, C++ Research Software, C++ Speech Recognition Software

Registered

2022-05-27