This project provides a set of Python tools for creating various kinds of neural networks, which can also be powered by genetic algorithms using grammatical evolution. MLP, backpropagation, recurrent, sparse, and skip-layer networks are supported.

Project Activity

See All Activity >

License

GNU General Public License version 2.0 (GPLv2)

Follow Python Neural Genetic Algorithm Hybrids

Python Neural Genetic Algorithm Hybrids Web Site

You Might Also Like
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

Build gen AI apps with an all-in-one modern database: MongoDB Atlas

MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
Start Free
Rate This Project
Login To Rate This Project

User Ratings

★★★★★
★★★★
★★★
★★
1
0
0
0
0
ease 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
features 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
design 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 0 / 5
support 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 0 / 5

User Reviews

  • The examples on the PyNeurGen website and in the source are excellent. However, I would like to see a new version which takes advantage of multiprocessing to speed up evaluation time.
Read more reviews >

Additional Project Details

Intended Audience

Developers, Science/Research

Programming Language

Python

Related Categories

Python UML Tool, Python Genetic Algorithms, Python Artificial Intelligence Software

Registered

2008-04-04