Memvid encodes text chunks as QR codes within MP4 frames to build a portable “video memory” for AI systems. This innovative approach uses standard video containers and offers millisecond-level semantic search across large corpora with dramatically less storage than vector DBs. It's self-contained—no DB needed—and supports features like PDF indexing, chat integration, and cloud dashboards.
Features
- Encodes text as QR in video frames
- Millisecond semantic search without DB
- Compact storage vs vector DBs
- Supports importing PDFs
- Works offline and embeddable
- Simple Python encoder/retriever API
Categories
Semantic WebLicense
MIT LicenseFollow Memvid
You Might Also Like
Gen AI apps are built with MongoDB Atlas
MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of Memvid!