Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library is aimed at assisting in the development of those types of applications.

Features

  • 📃 LLMs and Prompts: This includes prompt management, prompt optimization, generic interface for all LLMs, and common utilities for working with LLMs.
  • 🔗 Chains: Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
  • 📚 Data Augmented Generation: Data Augmented Generation involves specific types of chains that first interact with an external datasource to fetch data to use in the generation step. Examples of this include summarization of long pieces of text and question/answering over specific data sources.
  • 🤖 Agents: Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.
  • 🧠 Memory: Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
  • 🧐 Evaluation: [BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

Project Samples

Project Activity

See All Activity >

License

MIT License

Follow LangChain

LangChain Web Site

You Might Also Like
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Ratings

★★★★★
★★★★
★★★
★★
1
0
0
0
0
ease 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
features 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
design 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
support 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5

User Reviews

  • LangChain is so good and so essential
Read more reviews >

Additional Project Details

Programming Language

Python

Related Categories

Python Large Language Models (LLM), Python Generative AI

Registered

2023-03-23