HLearn is a Haskell-based machine learning library focused on composability, algebraic structure, and performance. It provides a functional approach to building machine learning algorithms by leveraging algebraic properties such as monoids and groups. This allows for parallel, incremental, and distributed computation in a mathematically consistent way. HLearn aims to provide implementations of common algorithms like k-means, naive Bayes, and others while maintaining the expressiveness and safety of the Haskell language.
Features
- Functional and composable machine learning framework
- Implements algebraically structured learning algorithms
- Supports parallel and distributed computation
- Provides incremental learning capabilities
- Leverages Haskell's type system and category theory
- Includes classification and clustering methods
Categories
Machine LearningLicense
MIT LicenseFollow HLearn
You Might Also Like
MongoDB Atlas runs apps anywhere
MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of HLearn!