HomotopyContinuation.jl is a Julia package for solving systems of polynomial equations by numerical homotopy continuation. Many models in the sciences and engineering are expressed as sets of real solutions to systems of polynomial equations. We can optimize any objective whose gradient is an algebraic function using homotopy methods by computing all critical points of the objective function. An important special case is when the objective function is the euclidean distance to a given point. An example of an non-algebraic objective function whose derivative is algebraic is the Kullback–Leibler divergence. Homotopy continuation methods allow us to study the conformation space of molecules as for example cyclooctane (CH₂)₈. This molecule consists of eight carbon atoms aligned in a ring, and eight hydrogen atoms, each of which is attached to one of the carbon atoms.

Features

  • Julia package
  • HomotopyContinuation.jl aims at having easy-to-understand top-level commands
  • Documentation available
  • Examples available
  • For solving systems of polynomial equations
  • Kinematic synthesis
  • Computational Chemistry
  • Topological Data Analysis

Project Samples

Project Activity

See All Activity >

License

MIT License

Follow HomotopyContinuation.jl

HomotopyContinuation.jl Web Site

You Might Also Like
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of HomotopyContinuation.jl!

Additional Project Details

Programming Language

Julia

Related Categories

Julia Data Visualization Software

Registered

2023-11-23