This repository implements DnCNN (“Deep CNN Denoiser”) from the paper “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising”. DnCNN is a feedforward convolutional neural network that learns to predict the residual noise (i.e. noise map) from a noisy input image, which is then subtracted to yield a clean image. This formulation allows efficient denoising, supports blind Gaussian noise (i.e. unknown noise levels), and can be extended to related tasks like image super-resolution or JPEG deblocking in some variants. The repository includes training code (using MatConvNet / MATLAB), demo scripts, pretrained models, and evaluation routines. Single model handling multiple noise levels.
Features
- Residual learning (predicting noise rather than clean image)
- Batch normalization to stabilize training
- Single model handling multiple noise levels (blind denoising)
- Demo / test scripts included
- Pretrained model weights for ease of use
- Extensions to super-resolution / deblocking tasks
Categories
Computer Vision LibrariesFollow DnCNN
You Might Also Like
MongoDB Atlas runs apps anywhere
MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of DnCNN!