bitnet.cpp is the official open-source inference framework and ecosystem designed to enable ultra-efficient execution of 1-bit large language models (LLMs), which quantize most model parameters to ternary values (-1, 0, +1) while maintaining competitive performance with full-precision counterparts. At its core is bitnet.cpp, a highly optimized C++ backend that supports fast, low-memory inference on both CPUs and GPUs, enabling models such as BitNet b1.58 to run without requiring enormous compute infrastructure. The project’s focus on extreme quantization dramatically reduces memory footprint and energy consumption compared with traditional 16-bit or 32-bit LLMs, making it practical to deploy advanced language understanding and generation models on everyday machines. BitNet is built to scale across architectures, with configurable kernels and tiling strategies that adapt to different hardware, and it supports large models with impressive throughput even on modest resources.

Features

  • Inference framework for 1-bit large language models
  • Highly optimized CPU and GPU kernels
  • Drastically reduced memory and energy use
  • Support for large model inference on consumer hardware
  • Tools for deployment and server hosting
  • Open-source with extensible architecture

Project Samples

Project Activity

See All Activity >

Categories

Frameworks

License

MIT License

Follow bitnet.cpp

bitnet.cpp Web Site

You Might Also Like
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of bitnet.cpp!

Additional Project Details

Programming Language

Python

Related Categories

Python Frameworks

Registered

2026-02-06