bitnet.cpp is the official open-source inference framework and ecosystem designed to enable ultra-efficient execution of 1-bit large language models (LLMs), which quantize most model parameters to ternary values (-1, 0, +1) while maintaining competitive performance with full-precision counterparts. At its core is bitnet.cpp, a highly optimized C++ backend that supports fast, low-memory inference on both CPUs and GPUs, enabling models such as BitNet b1.58 to run without requiring enormous compute infrastructure. The project’s focus on extreme quantization dramatically reduces memory footprint and energy consumption compared with traditional 16-bit or 32-bit LLMs, making it practical to deploy advanced language understanding and generation models on everyday machines. BitNet is built to scale across architectures, with configurable kernels and tiling strategies that adapt to different hardware, and it supports large models with impressive throughput even on modest resources.
Features
- Inference framework for 1-bit large language models
- Highly optimized CPU and GPU kernels
- Drastically reduced memory and energy use
- Support for large model inference on consumer hardware
- Tools for deployment and server hosting
- Open-source with extensible architecture