Agentic Data Scientist is an experimental AI-driven research framework that orchestrates data science workflows through autonomous agents that can reason, plan, and execute complex analytics tasks. Unlike traditional scripted pipelines, this project lets AI agents break down high-level research goals into sub-tasks such as data acquisition, cleaning, modeling, evaluation, and reporting, with minimal human direction. Each agent is designed to independently call functions, interact with data sources, and adapt to uncertainties during processing, enabling iterative refinement of models without manual coordination. The framework supports interoperability with existing data tools and libraries, letting the agents leverage libraries like pandas, scikit-learn, and visualization frameworks to perform real computations rather than mock demonstrations.
Features
- AI agent orchestration of data science workflows
- Natural language task definition and planning
- Integration with standard data libraries
- Autonomous task execution with feedback loops
- Iterative model development and evaluation
- Human-readable reasoning trace